

School of Basic Sciences

Master of Science in Mathematics Mid Term Examination - May 2024

Duration: 90 Minutes Max Marks: 50

Sem II - C1PM205B - Advanced Numerical Analysis

General Instructions

Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

1\	David off the mumber 2 0000700 water 2 decimal places and find the	K2 (2)
1)	Round off the number 3.6252782 upto 3 decimal places and find the relative error.	N2 (2)
2)	Find the absolute, relative, percentage error if the number $X = 0.00545828$ is truncated to three decimal places	K1 (3)
3)	Explain the power method for approximating Eigen values and eigenvectors	K2 (4)
4)	Find a root of the equation $x. log_{10} x = 1.9$ by secant method. Perform three iterations.	K2 (6)
5)	Solve to find a root of $3x^3 - 9x^2 + 8 = 0$ using the Newton-Raphson method correct to three decimal places	K3 (6)
6)	Apply Muller's method to find the root of the equation $\cos x = xe^x$ which lies between 0 and 1	K3 (9)
7)	Using Newton's iterative method, find the real root of $x \log_{10} x = 1.2$ correct to four decimal places.	K4 (8)
8)	Obtain by power method, the numerically dominant eigen value and eigen vector of the matrix $A = \begin{bmatrix} 15 & -4 & -3 \\ -10 & 12 & -6 \\ -2 & 0 & 4 & -2 \end{bmatrix}$	K4 (12)
	OR	

Using Muller's method, find the root of the following equations, correct to three decimal places $x^3 - x^2 - x - 1 = 0$