

| ADMISSION NUMBER |  |  |  |  |  |  |  |  |  |  |  |
|------------------|--|--|--|--|--|--|--|--|--|--|--|
|                  |  |  |  |  |  |  |  |  |  |  |  |

## **School of Basic Sciences**

Master of Science in Mathematics Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

## Sem II - C1PM206B - Mathematical Statistics

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

| 1) | Explain perfect positive and perfect negative correlation.                                                                                                                                     |         |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|--|
| 2) | Find the probability distribution of the number of success in two tosses of a dice when a success is defined as getting a value 5 or 6.                                                        |         |  |  |  |  |
| 3) | Let a random variable and its probability mass function is given by<br>x: 0 1 2 3<br>P(X = x): 1/3 1/2 0 1/6<br>Estimate the value of X                                                        | K2 (4)  |  |  |  |  |
| 4) | Show that $\Phi_{x+y} = \Phi_x \Phi_y$ , where $\Phi$ is the mgf.                                                                                                                              |         |  |  |  |  |
| 5) | Develop the binomial distribution whose mean is 20 and variance 16.                                                                                                                            |         |  |  |  |  |
| 6) | If the mgf of a random variable X is $(\frac{1}{3} + \frac{2}{3}e^t)^5$ , then solve P(X=2) for binomial distribution.                                                                         |         |  |  |  |  |
| 7) | The nine items of a sample had the following values:<br>45, 47, 50, 52, 48, 47, 49, 53, 51<br>Examine the mean of nine items differ significantly from the assumed<br>population mean of 47.5. |         |  |  |  |  |
| 8) | If the sum of the mean and the variance of binomial distribution of 5 trials is 4.8. Analyze the consistent value of p and q for a given binomial distribution.                                |         |  |  |  |  |
|    | OR                                                                                                                                                                                             |         |  |  |  |  |
|    | Analyze the value of $(n)$ in binomial distribution if $n-6$ and $0$                                                                                                                           | K4 (12) |  |  |  |  |

Analyze the value of 'p' in binomial distribution if n=6 and 9  $^{\rm K4\ (12)}$  P(X=4)=P(X=2) .