

Expain the defferntiability of a funtion.

Α[OMISSI	ON NU	MBE	3		

K2 (2)

School of University Polytechnic

Diploma in Civil Engineering Mid Term Examination - May 2024

Duration: 90 Minutes Max Marks: 50

1)

Sem II - N1DF201T - Applied Mathematics II

General Instructions

Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

-	Expain the denominability of a familiarit.	
2)	Find $y = \sin(5x^2 + x - 2)$ Then find find $\frac{dy}{dx}$	K1 (3)
3)	Show that If $f(x) = \frac{1-x}{1+x}$, then $f(\cos\theta) = \tan^2\left(\frac{\theta}{2}\right)$.	K2 (4)
4)	Show that slop of the normal to the curve $y = x^2 + 7x$ at the point (1, 8) is -1/9.	K2 (6)
5)	Solve Differentiate w.r.t. x, the function, $e^{\sec^2 x} + 3\cos^{-1}x$.	K3 (6)
6)	Solve the maxima minima of function $f(x) = 3x^3 - 6x^2 - 5x + 7$.	K3 (9)
7)	Classify Differentiate w.r.t. $x : sin^{-1} \left(\frac{1-x^2}{1+x^2} \right)$	K4 (8)
8)	Examine If $y = (\cos x)^{(\cos x)^{(\cos x)_{moo}}}$, show that $\frac{dy}{dx} = \frac{y^2 \tan x}{y \log \cos x - 1}$	K4 (12)

OR

Examine the function $f(x) = 4x^3 - 18x^2 + 27x - 7$ has neither maxima nor minima.