

ADMISSION NUMBER

School of University Polytechnic Diploma in Civil Engineering

Mid Term Examination - May 2024

Duration: 90 Minutes Max Marks: 50

Sem IV - N1DB403B - Strength of Material

General Instructions Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain the elasticity.	K2 (2)
2)	What is volumetric strain?	K1 (3)
3)	Explain Hook's Law.	K2 (4)
4)	Explain the different types of strains.	K2 (6)
5)	Identify the different types of beams.	K3 (6)
6)	Draw the Shear Force(S.F.) and Bending Moment(B.M.) diagram of a 15m long simply supported beam acted upon by a UDL of 10kN/m at mid span upto 5 m.	K3 (9)
7)	Explain the relationship between modulus of elasticity and modulus of rigidity.	K4 (8)
8)	Find the minimum diameter of a steel wire, which is used to raise a load of 4000 N if the stress in the rod is not to exceed 95 MN/m*2.	K4 (12)
OR		
	Find the young's modulus of a brass rod of diameter 25 mm and of length 250 mm which is subjected to a tensile load of 50 kN when the extension of the rod is equal to 0.3 mm.	K4 (12)