

ADMISSION NUMBER												

K2 (4)

School of Basic Sciences

Master of Science in Physics Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

6)

Sem II - C1PO203T - Solid State Physics

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain grains and grain boundaries with the help of diagram in	K2 (2)
	crystals.	
2)	Express the properties of Miller Indices.	K1 (3)

- ³⁾ Write some postulates of Drude theory of metals.
- 4) Show that the c/a ratio for an ideal hexagonal close-packed (hcp) K^{2} ⁽⁶⁾ structure is $\sqrt{(8/3)}$.
- 5) Distinguish between continuous and characteristic X-ray spectra. K3 (6)
 - If the potential energy function is expressed as K3 (9)

$$U(r) = -\frac{\alpha}{r^6} + \frac{\beta}{r^{12}}$$

Show that the minimum potential energy is given by, $U_{\min} = -\frac{\alpha^2}{4\beta}$.

- The energy required to remove a pair of ions, Na+ and Cl-, from NaCl K4 (8) is ~2 eV. Calculate the approximate number of Schottky imperfections present in the NaCl crystal at 300K temperature. Consider the volume of one mole of the crystal 26.83 cm³
- 8) The potential energy of a diatomic molecule is given by the following relation.
 K4 (12)

$$U(R) = -\frac{a}{R^2} + \frac{b}{R^{10}}$$

Where, a and b are constants, and R the separation between the molecules. Estimate the separation between molecules for a stable compound.

OR

Define the atomic packing fraction and density of materials. Determine ^{K4 (12)} the atomic packing fraction for SC, BCC and FCC unit cell.