

OBJECT DETECTION AND TRACKING
(LIVE DETECTION)

A Report for the Evaluation 3 of Project 2

Submitted by

SAURABH PATEL

(1613105106)

in partial fulfilment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING WITH SPECIALIZATION OF

CLOUD COMPUTING AND VIRTUALIZATION

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of
Dr. K SAMPATH KUMAR, M.E., Ph.D.,

Professor

APRIL / MAY- 2020

SCHOOL OF COMPUTING AND SCIENCE AND
ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report O BJECT DETECTION AND TRACKING (LIVE
D ETECTION) is the bonafide work of S AURABH PATEL (1613105106) who

carried out the project work under my supervision.

SIGNATURE OF HEAD

Dr. MUNISH SHABARWAL,
PhD (Management), PhD (CS)
Professor & Dean,
School of Computing Science &
Engineering

SIGNATURE OF SUPERVISOR

Dr. K SAMPATH KUMAR, M.E.,
Ph.D.,
Professor
School of Computing Science &
Engineering

1

Table of Contents
ABSTRACT .. 3

List of Figures ... 4

List of Tables .. 6

Chapter 1 ... 7

1. Introduction ... 7

1.1 Problem Statement ... 7

1.2 Scope and Objective ... 8

1.3 Applications ... 9

1.4 Thesis Outline .. 9

Chapter 2 ... 10

2. Object Detection .. 10

2.1 Introduction of Object Detection .. 10

2.2 Background Subtraction ... 11

2.3 Conclusion ... 16

Chapter 3 ... 17

3. Object Tracking ... 17

3.1 Object Tracking Introduction .. 17

3.2 Model of Tracking System ... 17

3.3 Different Approaches for Object Tracking .. 18

3.4 Design Considerations in Object Tracking .. 20

3.5 Conclusion ... 21

Chapter 4 ... 22

4. Object Tracking Modus Operandi .. 22

4.1 Template Matching .. 22

4.2 Mean Shift ... 28

Chapter 5 ... 43

5. Kalman Filter... 43

5.1 Why Kalman Filter? ... 43

5.2 Models for Kalman Filter ... 44

5.3 Experimental Results .. 51

5.4 Comparison between Techniques Implemented .. 56

5.5 Conclusion ... 57

Chapter 6 ... 58

6. Other Methods for Object Detection and Tracking ... 58

6.1 Texture Analysis .. 58

2

6.2 Focusing Analysis .. 65

6.3 3D face Algorithm .. 70

6.4 Hurestic Algorithm ... 73

6.5 Conclusion ... 75

Chapter 7 ... 76

7. GUI (Graphical User Interface) .. 76

7.1 What is liveness detection and why do we need it? ... 76

7.1.1 Project structure ... 78

7.1.2 Detecting and extracting face ROIs from our training (video) dataset 80

7.1.3 Building our liveness detection image dataset ... 84

7.1.4 Creating the liveness detector training script ... 89

7.1.5 Training our liveness detector ... 95

7.1.6 Putting the pieces together: Liveness detection with OpenCV 97

7.2 Conclusion ... 103

Chapter 8 ... 104

8. Conclusion and Future Work ... 104

8.1 Conclusion ... 104

8.2 Future Work ... 105

References... 108

3

ABSTRACT

Object detection and tracking are important and challenging tasks in many

computer vision applications such as surveillance, vehicle navigation, and

autonomous robot navigation. Video surveillance in a dynamic environment,

especially for humans and vehicles, is one of the current challenging research

topics in computer vision. It is a key technology to fight against terrorism,

crime, public safety and for efficient management of traffic. The work involves

designing of the efficient video surveillance system in complex environments.

In video surveillance, detection of moving objects from a video is important for

object detection, target tracking, and behavior understanding. Detection of

moving objects in video streams is the first relevant step of information and

background subtraction is a very popular approach for foreground segmentation.

In this thesis, we have simulated different background subtraction methods to

overcome the problem of illumination variation, background clutter and

shadows. Detecting and tracking of human body parts is important in

understanding human activities. Intelligent and automated security surveillance

systems have become an active research area in recent time due to an increasing

demand for such systems in public areas such as airports, underground stations

and mass events. In this context, tracking of stationary foreground regions is

one of the most critical requirements for surveillance systems based on the

tracking of abandoned or stolen objects or parked vehicles. Object tracking

based techniques is the most popular choice to detect stationary foreground

objects because they work reasonably well when the camera is stationary and

the change in ambient lighting is gradual, and they also represent the most

popular choice to separate foreground objects from the current frame.

Surveillance networks are typically monitored by a few people, viewing several

monitors displaying the camera feeds. It is very difficult for a human operator to

effectively detect events as they happen. Recently computer vision research has

to address ways to automatically some of this data, to assist human operators.

The techniques studied, implemented and presented are all premeditated in

detail and then put into practice in this thesis.

4

List of Figures

Figure 1-1 Block Diagram of system ... 8

Figure 2-1: Application in Visual Surveillance: Optical Flow computed on Carthe Hamburg taxi

sequence .. 12

Figure 2-2 : Shows the color confidence maps for a certain frame in the sequence used 13

Figure 2-3: Gradient based background subtraction in a certain frame ... 14

Figure 2-4: The video results showing background subtraction in Frame 10 and 15 15

Figure 2-5: The video results showing background subtraction in Frame 42 and 45 15

Figure 2-6: The video results showing background subtraction in Frame 86 and 92 16

Figure 2-7: Video Results showing high illumination in the background in frame 56 and 58 23

Figure 4-1: Flow chart representation of Template based Target Tracking 24

Figure 4-2: Video results showing Target tracking using template matching in frame 7 and 11 24

Figure 4-3: Video results showing Target tracking using template matching in frame 52 and 75 25

Figure4-4: Change in orientation of the object .. 25

Figure 4-5: Template selected for Tracking .. 26

Figure 4-6: Tracker losing the object ... 27

Figure 4-7: Template selected for tracking .. 32

Figure 4-8: Integral Image .. 34

Figure 4-9: Flow Chart representation of Fast Mean Shift Algorithm ... 35

Figure 4-11: Flow Chart representation of Fast Mean Shift Algorithm (cont-II) 36

Figure 4-12: Results of Fast Mean Shift based tracking in Frame number 45 and 56 37

Figure 4-13 : Results of Fast Mean Shift based tracking in Frame number 67 and 113 37

Figure 4-14: Results of Fast Mean Shift based tracking in frame number 13 and 25 38

Figure 4-15: Results of Fast Mean Shift based tracking in frame number 69 and 94 38

Figure 4-16: Flow Chart representation of Fast Mean Shift Algorithm ... 39

Figure 4-17: Flow Chart representation of Fast Mean Shift Algorithm (cont-I) 40

Figure 4-18: Flow Chart representation of Fast Mean Shift Algorithm (cont-II) 41

Figure 5-1Constant Velocity Model .. 46

Figure 5-2 Random Walk Model ... 46

Figure 5-3 Constant Acceleration Model .. 48

Figure 5-4 Constant Acceleration Model with Random Walk ... 49

Figure 5-5 Random Velocity Random Acceleration Model ... 49

Figure 5-6 Tracking Results using Kalman Filter Showing frame number 10 and 20 51

Figure 5-7 Tracking Results using Kalman Filter Showing frame number 42 and 43 52

Figure 5-8 Tracking Results using Kalman Filter Showing frame number 45 and 52 53

Figure 5-9 Orientation changes and Kalman Filter s Tracking ability shown in frame number 143

and 150 .. 54

Figure 5-10 Orientation changes in frame number 179 .. 55

Figure 5-11 Tracking Results using Kalman Filter Showing frame number 155 55

Figure 6-1 The components of a typical computer vision system ... 58

Figure 6-2 Textures and their corresponding texton distributions ... 61

Figure 6-3 Segmentation of an aerial image by texture properties .. 62

Figure 6-4 Texture synthesis by example ... 65

Figure 6-5 A flowchart of an algorithm for focusing analysis .. 66

Figure 6-6 Common-offset data derived from a constant-velocity earth model consisting of six point

scatterers beneath midpoint.. 66

Figure 6-7 Image planes corresponding to midpoints 1 and 5 as indicated .. 66

Figure 6-8 The υ – τ planes corresponding to midpoints 1 and 5 derived from the image planes 66

Figure 6-9 Common-offset data based on a horizontally layered earth model containing

5

three point scatterers located beneath midpoint 1 on the boundaries between constant 66

Figure 6-10 Image planes corresponding to midpoints 1 and 5 as indicated 67

Figure 6-11 The υ – τ planes corresponding to midpoints 1 and 5 derived from the image planes 67

Figure 6-12 CMP gather at location 1 as indicated in Figure 6-7; (b) and (c) are velocity spectra

derived from this gather by the methods .. 67

Figure 6-13 Ring Element Output ... 70

Figure 6-14 (a) Blur 2D image (b) Perfect 3D image ... 71

Figure 6-15 Coke false positive .. 74

Figure 7.1 Liveness detection with OpenCV. On the left is a live (fake) video of me with

my brother and on the right we can see I am holding my Phone (real) ... 76

Figure 7.2 Detecting face ROIs in video for the purposes of building a liveness detection dataset ... 80

Figure 7-3 Our OpenCV face liveness detection dataset. We’ll use Keras and OpenCV to train and

demo a liveness model ... 84

Figure 7-4 Deep learning architecture for LivenessNet, a CNN designed to detect face liveness in

images and videos .. 85

Figure 7-5 The process of training LivenessNet. Using both “real” and “spoofed/fake” images as our

dataset, we can train a liveness detection model with OpenCV, Keras, and deep learning 89

Figure 7-6 A plot of training a face liveness model using OpenCV, Keras, and deep learning. As our

results show, we are able to obtain 99% liveness detection accuracy on our validation set 96

Figure 7-7 Face liveness detection with OpenCV and deep learning ... 97

Figure 7-8 Detection on Live Camera ... 102

6

List of Tables

Table 5-1 Difference between Implemented techniques... 58

7

Chapter 1

1. Introduction

1.1 Problem Statement
The basic concept behind object detection in videos engrosses the verification of the

presence of an object in image sequences and possibly locating it in particular for

recognition. Object tracking is to monitor an objects spatial and temporal changes during a

video sequence, including its presence, position, size, shape, etc. This is done by solving

the temporal correspondence problem, the problem of matching the target region in

successive frames of a sequence of images taken at closely spaced time intervals. These

two processes are closely related. Detection is the basis for tracking and it usually starts

with detecting objects, while detecting an object repeatedly in subsequent image

sequence is often necessary to help and verify tracking. The general problem of motion

understanding and tracking of the moving objects is one of the most interestingly used

areas of computer vision. Tracking is the problem of generating an inference about the

motion of an object, given a sequence of images. Several image-based motion tracking

systems have been developed in the past. These systems include one from the MIT AI lab

[1] [2], the W4 System of UMCP [3], and one from CMU [4]. However, these systems

are computationally intensive and generally require very high performance computers to

achieve real-time tracking. For instance, the tracking system of MIT AI lab used an SGI

O2 workstation with R10000 processor to process images of 160x120 pixels at a frame

rate up to 13 frames per second. Some systems used multiple cameras, each covering a

fixed field of view. Some other systems used adaptive and model-based algorithms that

required extensive training for recognizing specific objects and/or scenes. Digital video

dispensation is becoming widely used in many aspects of our nowadays life. The

availability of high-computation-power systems make it possible the processing of huge

amount of raw data to achieve substance based functionalities, such as search and

manipulation of objects, semantic description of scenes, detection of unusual events,

and recognition of objects. Video tracking is a vital and active research area in computer

vision.In its simplest form, tracking can be defined as the problem of estimating the

trajectory of an object in the image plane as it moves around a scene. In other words, a

tracker assigns consistent labels to the objects in question in different frames. Object

tracking no doubt is an exigent problem. Impenetrability in tracking can arise due to

abrupt motion of object, changing directions and appearances of the object and the scene,

non rigid or articulated object structures as birds and human beings, object- to-object and

object-to-scene occlusions, and camera motion [5]. Tracking is generally performed in

the milieu of higher-level applications that require the location and/or shape of the object

in every frame. Normally, assumptions are made to constrict and lessen the tracking

problems.

8

1.2 Scope and Objective
Moving object detection is important in many real-time image processing applications

such as autonomous robotics, traffic control, and driver assistance and surveillance

systems. Usually high resolution gray-scale images must be processed; since each image

pixel may belong to a moving object, pixel-wise processing is required.

Now days, video surveillance is an important and challenging field in computer vision for

both indoor and outdoor environments. Organizations which need a surveillance system

can easily get low priced surveillance cameras but they still need many security agents to

keep a constant watch on all monitors. This approach is not efficient, and in fact most of

the time video tapes or files are replayed a number of times to check on a particular event

after it has happened thus the automation of this system is highly desired.The project

Moving object tracking from video sequences is an attempt to study some algorithms,

which are robust for the tracking of mobile but non rigid objects from the image

sequences precisely called video. The Figure 1-1 shows the basic working grid of the

processes involved in the system as Figure 1-1 also includes pre and post processing

sequences as well which includes noise removal, image enhancement issues,

organization and classification etc. but these issues are not of primary importance as far

as this project is concerned so are not addressed in detail in this project.

Figure 1-1- Block Diagram of system

9

1.3 Applications
Object detecting and tracking has a wide variety of applications in computer vision such

as video compression, video surveillance, vision-based control, human-computer

interfaces, medical imaging, augmented reality, military applications, traffic monitoring

and robotics. Bayesian classification methods have been broadly used in an assortment of

image processing applications, including medical image analysis. The basic procedure is

to combine data-driven knowledge in the likelihood terms with clinical knowledge in the

prior terms to classify an image into a pre-determined number of classes. Major

relevance lies in tissue tracking and for Brain MRI classifications [6]. Moreover,

augmented reality also offers diverse application fields for tracking yet accurate and real

time tracking problem is not solved still this field is emerging day by day .Most

commonly known application is Amines which work on the principle of virtual reality

.Another such system developed on the basis of tracking usage in Augmented reality is

Knowledge-based Augmented Reality for Maintenance Assistance (KARMA)[7] and A

Mobile Augmented Reality Systems for Exploring the Urban Environment (MARS)[8].

Additionally, it provides input to higher level vision tasks, such as 3D reconstruction and

3D representation. It also plays an important role in video database such as content-based

indexing and retrieval. In today s technologically emerging world this very technology of

moving object detection is used for the movement assistance of disables in their homes.

Video tracking is also used in automated digital recordings of animal behavior which

includes conditional training/reward or punishment based on position in arena (e.g.

demand-feeders, shuttle box etc.) such kind of system in practice is recently developed

by Qubit Systems as Video tracking software . Video Tracking is usually taken in context

of Real-time tracking of x, y coordinates and it is one of the most widely applicable

usages of tracking draw on the control of experiments in addition to many other

conventions.

1.4 Thesis Outline
Chapter 1 includes the introduction of the problem with its objective and scope along

with applications. The concept of object detection and its methods along with the method

studied and implemented which is background subtraction is all engrossed in Chapter 2.

Object tracking in detail and its techniques are described in chapter 3. Similarly, chapter

4 depicts the modus operandi used for object tracking during this project along with their

experimental results including Template matching and Fast Mean Shift. The Kalman

filter and it necessary details along with implementation complexities, algorithm and

results are described in chapter 5 .It also includes the comprehensive comparison of

techniques used. In the end whole of the work is concluded and few future work aspects

are mentioned in chapter 6.

10

Chapter 2

2. Object Detection

One of the most difficult problems in image processing is detecting particular objects in

an image. For a human observer it is very easy to identify any object, however it is far

more difficult for a machine. Numerous methods exist for detecting objects of known

type in a particular environment or image. However, in many cases, the visual

characteristics of the objects are unknown, or it is necessary to detect objects that are

very different from each other. This kind of method has applications in the domain of

robotics, particularly for robots that are designed to operate in a hostile or unknown

environment.

2.1 Introduction of Object Detection

Videos are the sequences of frames that run fast enough to give an effect of continuity as

human eye perceives the frame sequences moving with a particular speed as a video. As

far as object detection is concerned techniques of image processing are applied to the

frames in order to identify any change so as to state the motion of object detected through

the change observed in the two consecutive frames after attaining the results of the image

processing techniques used for identification purpose. A surveillance system can be

implemented in three steps. The first step consists of detecting the objects in motion

.Then tracking them and finally High-level interpretation of the ongoing events. First

step of detecting the object in question is described in detail with the experimental results

in order to elaborate the mechanism in Chapter 2. Object detection is the first step in the

motion tracking phenomena. The object detection is performed through background

subtraction algorithm in this project though many other detection methods have been

already developed and are widely in use.

11

2.2 Background Subtraction

Identification of moving objects from a sequence of frames is a primary and critical task

in many computer-vision applications. A common approach is to carry out background

subtraction, which identifies the specific moving objects from the segment of a video

frame that differs distinctly from a background model. There are a number of challenges

in developing a good background subtraction algorithm. First, it must be robust against

changes in illumination. Second, it should avoid detecting non- stationary background

objects such as moving leaves, rain, snow, and shadows cast by moving objects. Other

object detection methods include:

1. Pixels based method

2. Optical Flow method

3. Color based method

4. Gradient based method

5. Frame differencing

6. Median filter

7. Linear predictive

8. Non parametric method

9. Mixture of Gaussian

2.2.1 Pixels-based Method

One of the first methods described in literature was from Nagasaka et al [9] in 1991. Shot

changes are detected using a simple global inter frame difference measure, defined as:

Detection if:

 (2.1)

resulting in operations O(P) per frame (as the second term of the difference has been

already obtained after the processing of the previous frame I t 1).

Frame difference method has been studied and used in this project.

12

2.2.2 Optical Flow

The optical flow is the disarticulation field allied to each of the pixels in a sequence.

Such displacement field results from the apparent motion of the image brightness in

time. For the computation of optical flow it is assumed that image brightness is

continuous and differentiable as many times as needed in both the spatial and temporal

domain. Estimating the optical flow is fundamental problem in low- level vision, and can

be undoubtedly serve for many applications in image sequence processing. Most of the

algorithms for the estimation of the optical flow concentrate on the goal of estimating the

motion field between succeeding images in a sequence, disregarding the estimates

obtained for the previous image pair.

If the apparent brightness of moving objects remain constant then the image brightness

E over time is given by

Figure 2-1: Application in Visual Surveillance: Optical Flow computed on Carthe Hamburg taxi sequence

Since image brightness E is regarded as a function of both spatial coordinates of the

image plane, x and y, and of time, that is,

13

2.2.3 Color based Method

This method is based on background modeling and subtraction using both color and

edge information. Both the color and edge models and subtraction are computed

separately [10]. For storage of results confidence maps are used representing how

confident the method is in recognizing that a pixel is a foreground object. Color and

intensities of the previous image are compared with every new coming image and this

difference signifies the motion. Background subtraction is done by performing the

color-based subtraction and the edge-based subtraction separately and then combining

the results [10].

Color-based subtraction is performed by subtracting the current image from the mean

image in each color channel. For each pixel, the confidence is computed as

A significant change in any color channel indicates motion and thus a foreground

region is detected.

50

100

150

200

50 100 150 200 250 300

Figure 2-2 : Shows the color confidence maps for a certain frame in the sequence used

14

2.2.4 Gradient based method

As the back ground subtraction method has some recognized problems for instance

quick illumination changes, shadows, reflection of the objects and orientation of the

moving bodies .The gradients of image are moderately less perceptive to abrupt

changes in illumination and thus can easily be combined with color information to

perform background subtraction.

2.2.5 Frame Differencing

Frame differencing method is used for this purpose results after applying the simple

algorithm for subtraction of successive frames from the previous one. Frame

differencing questionably the simplest background modeling technique, frame

differencing uses the video frame at time t - 1 as the background model for the frame

at time t. Since it uses only a single previous frame, frame differencing may not be

able to identify the result.

15

2.2.6 Experimental Results

The results achieved after applying the background subtraction algorithm using Frame

Differencing technique are illustrated as under.

Figure 2-4: The video results showing background subtraction in Frame 10 and 15

Figure 2-5: The video results showing background subtraction in Frame 42 and 45

 Figure 2-6: The video results showing background subtraction in Frame 86 and 92

16

In few cases where the background illumination or brightness becomes higher up to a

certain level that it becomes detectable after subtraction like the object it also appears

as shown in figure 2-4.

Figure 2-7: Video Results showing high illumination in the background in frame 56 and 58

So, the experimental results shown in Figure 2-1,2-2,2-3 show the object in question

which is a plane clearly detected from the background .Similarly, Figure 2-4 shows

another dimension of the background subtraction algorithm that it has to be robust

enough in order to overcome the raising illumination and brightness factors .

2.3 Conclusion
Object detection is the lying at the start in the hierarchy of motion based tracking

mechanism. It basically deducts the background and focuses the object of interest

from the scene. Many methods can be used for background subtraction depending on

color, edge and such kind of features .Some of the methods are described in brief in

the preceding chapter .It is effectively used in real time applications as well .It is also

feasible in correcting images deserts caused by inappropriate illumination and

brightness effects .Thus background subtraction is one of the widely used and

important technique as far as object detection in concerned.

17

Chapter 3

3. Object Tracking

The aim of object tracking is to establish a correspondence between objects or object

parts in consecutive frames and to extract temporal information about objects such as

trajectory, posture, speed and direction. Tracking detected objects frame by frame in

video is a significant and difficult task. It is a crucial part of smart surveillance

systems since without object tracking the system could not extract cohesive temporal

information about objects and higher level behavior analysis steps would not be

possible [12].

3.1 Object Tracking Introduction

The detection and classification of moving objects is an important area of research in

computer vision. The problem assumes immense importance because of the fact that

our visual world is dynamic and we constantly come across video scenes that contain

a finitely large number of moving objects. To segment, detect, and track these objects

from a video sequence of images is possibly the most important challenge that the

vision experts confront today.

3.2 Model of Tracking System

A tracking system may be modeled as a three-state sequential machine. The

functional hierarchy goes as Locking state, Tracking State and Recovery State.

3.2.1 Locking state

Initially the system is in locking state, when the camera is in search mode, i.e.,

searching for targets. During this state the processing is carried out on the whole

image frame. The system will partition the image frame captured by camera into a

number of moving objects. The history of these objects is extracted by checking the

trajectory followed by the objects, and confirmation of the moving object is carried

out in automatic mode. Once the target is confirmed the control of the system is

transferred to tracking state.

18

3.2.2 Tracking state

This stage should use computationally inexpensive techniques. Current location

extracted by locking state is used for processing. Next position of the target is

identified, and that positional information is stored in history database. If the target

does not exist in the predicted window area, then the system control is transferred to

recovery state.

3.2.3 Recovery state

Quite often the moving object of interest may be lost temporarily or permanently. In

this state if the target is lost, the system will try to recover the target from low-

resolution image. If the target is recovered in a few frames, then the system will

transfer control to tracking state; otherwise it remains in recovery state till its

predefined time expires. After the time is elapsed, control transfers to locking state.

3.3 Different Approaches for Object Tracking

Different methods have been used for moving object tracking given as under.

1. Correlation based method

2. Feature based method

3. Histograms method

4. Gradient based method

5. Contour based method

6. Kernel based method

7. Kalman Filter

8. Extended Kalman Filter

9. Particle Filter

19

3.3.1 Correlation based method

The correlation based method simply operates on the principal of intriguing

correspondence between the previous frame and every up coming frame. This

mechanism finally results in the correlation vector of the previous and new frame

which in fact gives the measure of relationship between both frames. Thus the

difference indicates the motion and determines the new direction for the object of

interest. Relatively similar approach is followed in template matching which is

described in detail in chapter 3.In template matching the correlation is taken between

the template and every up coming frame in the sequence which gives the similarity

ratio in the form of a single point which is then resolved by plummeting the

components around it to make it template for the next frame. Correlation value differs

between -1 to 1 so whenever correlation methods is used in tracking some threshold is

set by the .This threshold servers as a reference as how much the images of previous

ad current frame match each other or differ from each other which finally determines

the motion of the object if interest.

3.3.2 Feature-based Methods

In feature-based object detection, standardization of image features and registration

(alignment) of reference points are important. The images may need to be

transformed to another space for handling changes in illumination, orientation and

size. One or more features are extracted and the objects of interest are modeled in

terms of these features. Object detection and recognition then can be transformed in to

a graph-matching problem.

All the methods we have already presented were using features, but they can be

qualified of trivial features. This method considers more sophisticated ones. We

consider:

 The moments computed on the image

 The contour lines extracted from the image

20

3.3.3 Histogram-based Method

It is also possible to compare two images based on global features instead of local

features (pixels). Histogram is a global image feature widely used in image

processing. The main advantage of histogram-based methods is their global aspect. So

These methods are more robust to camera or object motion. The main drawback

appears when we compare two different images having a similar histogram. It will

often results in missing a shot change. Different uses of the histogram can be

distinguished. Some methods only compute differences between histograms and then

the quality of the result is linked to the kind of histogram considered. A first extension

is the use of weighted differences between histograms. Another approach consists in

the definition of an intersection operator between histograms or the definition of

different distances or similarity measures.

Object tracking is a wide field in which many methods can be implemented to achieve

results some of the other methods studied and implemented during this project tenure

are described in forth coming chapters.

3.4 Design Considerations in Object Tracking
The following design considerations may be incorporated in an object tracking

system.

3.4.1 Stationary Background

When the scene contains multiple objects, the background is stationary while all or

part of the objects in the foreground may be in motion.

3.4.2 Target size variation

The target size reduces as the target moves further away from the camera. Thus a

scaling mechanism needs to be incorporated during the process of tracking.

3.4.3 Occlusion or Temporary loss of target

During the tracking phase the target may be temporarily lost as it goes behind another

object. This is known as occlusion. In such cases the system will recover the target

automatically.

3.4.4 Target Model

The model of the target needs to be incorporated. In case of human tracking, for

example, a human figure may be modeled as an ensemble of several ellipses, where

each ellipse represents the individual body parts like head, torso, hands, and legs, etc.

The color, shape, intensity, and other attributes of the object may vary while the

object is in motion, and yet the tracker should be able to track correctly.

3.4.5 Automatic Target detection

21

The tracker should be able to detect all the new targets automatically and start

tracking them.

3.4.6 Real time

The tracking algorithm should be computationally simple and optimum so that the

tracking can be implemented in real time.

3.4.7 Target trajectory

The target may or may not follow a particular trajectory. There may be abrupt

changes in the target path.

3.4.8 Target speed

Speed of the target can change abruptly; it may be constant, increasing, or

decreasing.

3.5 Conclusion
Object tracking is described in this chapter along with a introduction to several

methods in use. Object tracking is meant to follow the position and direction of the

object of interest in a sequence .Many multipurpose applications are there in present

day world regarding object tracking which makes it a flourishing field in research and

development .It is equally applicable for the systems based on real time estimations as

in defense sector and surveillance systems .

22

Chapter 4

4. Object Tracking Modus Operandi

Object Tracking methodologies vary from mathematics to applications to a wide

extent. This variation offers a wide spectrum of ample techniques to be used for

object tracking .This is one of the most flourishing fields of research in computer

vision specifically from surveillance and defense point of view. As the applications of

tracking are in highly sensitive domains which require extreme accuracy and

precision .This demand of accurateness increases when real time scenarios are under

consideration as in defense sector missile tracking, jet tracking etc is concerned.

4.1 Template Matching
Template matching is a simple task of performing a normalized cross-correlation

between a template image (object in training set) and a new image to classify.

Template-based tracking using the sum-of-squared differences (SSD) is a classic

technique for maintaining the location of a target throughout an image sequence.

The idea of template-based tracking is to track a moving object by defining a region

of pixels belonging to that object and, using local optimization methods, to estimate

the transformation parameters of that region between the reference image and the new

image. The reference image can be fixed as the first frame or chosen to be the

previous frame.

The goal of template-based tracking is to maintain a model of the target in terms of a

2D template of image intensities and compute the target location in a new image

frame by comparing the new data with that of the template. The data are usually

compared using a low-order parametric motion model such as translation or affine,

and the optimal location is computed using either discrete correlation search or non-

linear function optimization. Template-based matching algorithm is usually simple,

effective and computationally efficient.

23

4.1.1 Flow Chart representation

Figure 4-1: Flow chart representation of Template based Target Tracking

24

4.1.2 Experimental Results

After applying the algorithm of template based tracking the results achieved are as

following:

Figure 4-2: Video results showing Target tracking using template matching in frame 7 and 11

Figure 4-3: Video results showing Target tracking using template matching in frame 52

and 75

25

4.1.3 Complications using Template Matching Technique

There is a possibility, especially in air borne objects, that there may be significant

change in target shape or orientation in very next frame as shown in following Figure

4-4. In this case, tracker starts futile tracking and correlation value drops due to which

template is not updated and in next 2 or 3 frames tracker completely looses the object.

Figure4-4: Change in orientation of the object

The template selected for tracking purpose through template based tracking using

correlation approach is shown in figure 4-5.

Figure 4-5: Template selected for Tracking

Hence, in such a condition when the orientation changes are gigantic for the tracking

algorithms to keep pace with results in occlusions. Occlusion is a very common

problem in tracking domain regarding directional changes. Here in Template

matching technique used the template is updated by every next frame (image) .In such

a situation one other problem may arise when the object in question leaves the screen

area for sometimes and enters back after few frames .During that time in the absence

of object the algorithm keeps on selecting template from the background and when

the object re enters the area of concern it doesn t match with that previously selected

template and thus the system fails.

26

 Some results have been taken from a video in order to show this phenomenon shown

in Figure 4-6

Figure 4-6: Tracker losing the object

4.1.4 Template Selection

A critical question in template-based tracking is how to select the template. One

approach is to use the appearance of the target in the first image frame, with the

template remaining constant throughout the sequence. The advantage of this approach

is that the tracker always uses data, which is known to be trustworthy. However, the

drawback is that the algorithm does not adapt to changes in the appearance of the

target over time. The target is likely to be lost when it rotates out of plane or

undergoes non-rigid transformations. An alternative approach is to use the appearance

of the target in the previous image frame, so that the tracker always adapts to changes

in appearance. The disadvantage of this approach is that the tracker tends to drift

away from the original target over time, since there is no guarantee that the newly

computed location of the target is without error.

This reference frame dilemma is not limited to template-based tracking: Histogram

trackers are also faced with the choice of which image to use as a reference, with

many of them selecting the first frame. The template used for experimentation is

shown in Figure 4-7. Now this template is selected in a position when it is evidently

visible and enlarged from the normal view which serves positively while using

template based tracking. It helps the algorithm not to fail when in instances during the

video the camera enlarges an object though it s not the mere solution to deal with

zooming but it is an edge to let the algorithm work successfully in such conditions.

Figure 4-7: Template selected for tracking

27

Thus template selection is an issue which holds prime importance while implementing

and template based tracking .The algorithm used in this project works on adaptive

Template selection means every previous frame becomes template for the next frame

to be matched with still it needs a previously selected template to instigate the

process. Success of the progression largely depends on the kind of template selected

for the very first time .Template matching is weaker in this case to deal with rapidly

altering orientations and gives rise to occlusion and one major factor responsible for

the phenomenon can also be template selection. As, any absurd value of cross

correlation obtained can head the algorithm to failure. It also varies a lot for rigid and

non rigid bodies as here only rigid bodies are of prime concern but if human or birds

is to be tracked using template based method it becomes very critical when it comes

to template selection. As, non rigid bodies change their shape and orientation at every

next move for example a human walks and moves his arms which changes his

posture and orientation similarly birds flutter all the time to keep their balance

maintained in the air which makes them vary their shape at each flutter .

So, overall template selection is a core concern while dealing with template based

tracking methodology.

4.1.5 Advantages of Template Matching

Some advantages of template matching are its simplicity and its suppleness. Its

correlation-based algorithm is uncomplicated to implement and it allows us to use

templates that have either been produced using a segment of the image or derived.

4.1.6 Disadvantages of Template Matching

On the other hand, one of the main disadvantages of template matching is its

computational cost since correlating requires the "scrutiny" of each pixel in the

template over several windows in the image. Another disadvantage of template-based

tracking is that if shape or orientation of target is changed then tracker starts loosing

target and eventually results in futile tracking.

4.1.7 Conclusion

Template Matching serves as a vigorous motion detection technique unless the

intrusion of any occlusion phenomena or target loss from the region of interest .It

serves as a technique which can be used effectively in present day tracking systems by

making the template adaptive. Though there are complications in the methodology

still template matching is a widely used and accepted technique. This technique is

growing.

28

4.2 Mean Shift

The Mean shift algorithm is a nonparametric technique to locate density extrema or

modes of a given distribution by an iterative procedure. The method was originally

proposed by Fukunaga and Hostetler [13]. Cheng [14] generalized the method and

pointed out, that the mean shift algorithm is a mode-seeking process on the density

function surface. Comaniciu and Meer [15] proved the convergence of the iterated

mean shift procedure on discrete data, proposed several extensions and presented its

benefits for practical applications. Belenzai and Bernhard [16] stretch the

conservative step of mean shift method and introduced fast mean shift method.

4.2.1 Mean Shift Tracking
mean shift vector for discrete data can be represented in general by the difference

between the weighted mean computed with kernel profile g(x) and x (the kernel or

window center)

Where n is the number of data points and h is the size of the kernel [15]. The

difference image is the outcome of a change detection process by forming the

difference between the current image and next image of an image sequence. The

difference image generated from given image sequence is contains large number of

high-intensity peaks or modes. Our principal objective is to find modes representing

our desired object. The search process is facilitated by information of expected

scaling of object {H(yi),W(yi)} at a given vertical image location yi, which can be

obtain by a rough calibration of the image sequence. H and W are the height and the

width of the object in pixels. Mode detection within the difference image I is

performed by the following steps. The difference image intensity maximum is

mapped to unit intensity and its entire range is scaled proportionally. A sample set

of n points is defined by locating local maxima. Local maxima are found by:

 Locating the global intensity maximum and adding it to the list of sample set

 Resetting the difference image intensity around the found matrix within a window of

size {0.5H (yi), 0.5W (yi)}

 Repeating the maximum search of step (1) until the found maximum drops below a

threshold T1.

The points of the sample set are subsequently used in a mean shift procedure. The

final result does not depend critically on T1. A very low value just increase the run

time and generate more outliers, which have to be eliminated after computation of

29

k k

mean shift vector component.The mean shift procedure is applied to the points of the

sample set with a window size of {H (yi), W (yi)} according to the local scaling. For

the two-dimensional probability distribution in the difference image, the mean shift

vector (mx,my) computation using uniform kernel can be defined as:

Starting out from the points of the sample set, the mean shift vector is computed

repeatedly until convergence, locating the closest mode typically within 3 to 4

iterations. Note that the mean shift vector computation requires the computation of the

zeroth and first moments of the distribution within the window. The computed zeroth

moment can be interpreted as the probability density sampled at distinct locations

(x,y) of the convergence path:

The above formula yields a relative measure for the presence of an object-moving

region.

The set of probability measures { p(x , y),........ p(x , y)} computed for the points of

the convergence path is used later on to validate object location. The size of the

sample set is usually on the order of several hundred points, which represents

considerable computational complexity when targeting real-time operation. To

achieve faster mode seeking fast variant of mean shift computation using integral

images is described in next section. The convergence points of individual mean shift

procedures are linked together forming the centers of detected clusters. Linking is

carried out analogously by merging all points, which are closer in x- and y-direction.

30

4.2.2 Fast Shift Method

31

4.2.3 Fast shift means Calculation

32

33

34

4.2.4 Flow Chart Representation

Figure 4-9: Flow Chart representation of Fast Mean Shift Algorithm

35

Figure 4-10 : Flow Chart representation of Fast Mean Shift Algorithm (cont-I)

36

Figure 4-11: Flow Chart representation of Fast Mean Shift Algorithm (cont-II)

37

4.2.5 Experimental Results

Tracking Results of fast mean shift algorithm for two video sequences are shown

below in Figure 4-12 and Figure 4-13. Tracked object is illustrated by a rectangle.

Stable results are obtained using fast mean shift algorithm, which shows excellent

mode sensitivity of the method even in the case of change of size of image.

Tracking Results with Video Sequence 1

Figure 4-12: Results of Fast Mean Shift based tracking in Frame number 45 and 56

Figure 4-13 : Results of Fast Mean Shift based tracking in Frame number 67 and 113

38

Tracking Results with Video Sequence 2

These are the results of Tracking with Fast Mean Shift technique using video

sequence 2.

Figure 4-14: Results of Fast Mean Shift based tracking in frame number 13 and 25

Figure 4-15: Results of Fast Mean Shift based tracking in frame number 69 and 94

39

4.2.6 Flow Chart Representation of Fast Mean shift

Figure 4-16: Flow Chart representation of Fast Mean Shift Algorithm

40

Figure 4-17: Flow Chart representation of Fast Mean Shift Algorithm (cont-I)

41

Figure 4-18: Flow Chart representation of Fast Mean Shift Algorithm (cont-II)

42

4.2.7 Advantages

Mean shift offers following advantages

4.2.7.1 It is application sovereign tool.

4.2.7.2 Mean shift is also appropriate for real data analysis.

4.2.7.3 It does not presume any former shape on data clusters.

4.2.7.4 It can easily handle random feature spaces.

4.2.8 Limitations

Though mean shift algorithm is an efficient approach to track objects but also it has

some limitations.

4.2.8.1 The window sizing is not trivial.

4.2.8.2 Inappropriate window size can cause modes to be amalgamated or generate some

additional shallow modes.

4.2.9 Conclusion

The Fast Mean Shift is no doubt an encroachment in methodology of Mean shift

technique .The mathematical variations in the sequence of derivatives and integrals

makes the algorithm robust and reduces the time aspect .Fast Mean shift algorithm

with all its complex mathematics with stands the occlusion and target loss problem

concretely .Whereas, complete disappearance of target from the region of interest may

lead to the use of template support so as to retain the robustness of this system.

43

Chapter 5
5. Kalman Filter

The Kalman filter provides a recursive solution to the linear optimal filtering problem.

It applies to motionless as well as active environments and can be used for prediction

of next state/states, optimal state estimation, and noise filtering problems and data

fusion. . Kalman filter is basically a deposit of mathematical equations that puts into

practice a predictor-corrector type estimator that is optimal in the sense that it

minimizes the estimated error covariance as when some presumed conditions are met.

The solution provided by the Kalman filter is recursive that each updated estimate of

the state is computed from the previous estimate and the new input data, so only the

previous estimate requires storage. In addition to eliminating the need for storing the

entire past observed data, the Kalman filter is computationally more efficient than

computing the estimate directly from the entire past observed data at each step of the

filtering process.

5.1 Why Kalman Filter?

Although, Kalman filter is computationally somewhat more multifarious than the

other filters still there are reasons to use it. As far as the computational complexity is

concerned, recent advancements in computer technology has nullified this drawback

of the Kalman filter. Kalman has certain distinct features that are not provided by

any other tracking filter. Some of these features are listed below.

5.1.1 Prediction Accuracy

In the process of computing filter weights, calculations for the accuracy of Kalman

filter prediction are made [20]. The priori covariance matrix of the Kalman filter

provides this information. This prediction information is needed in weapon delivery

system. If predicted position of the target is known accurately then it is enough to

kill the target [13]. It is also needed to accurately predict where a SCUD or any other

ballistic missile would land. It is also used to determine that from where artillery

shell was launched and then same information is used to destroy the attacker as well.

5.1.2 Optimal Filtering

Kalman filter make optimal use of the target measurements by adjusting the filter

weights to take into account the accuracy of the nth measurement [20]. If the target

measurement was more accurate, then weights will be automatically adjusted in such

a way that more weight will be given to measurement than prediction.

44

5.1.3 Priori Information

Kalman filter optimally make use of prior information [20]. This is especially useful

when using two separate devices for searching and tracking. Data from the searching

devices can be optimally used to initialize the filter weights that will result in small

transient in tracking filter.

5.1.4 Target Dynamics

Kalman filter is model-based predictor. It uses target dynamic model to predict the

next state of the target. Target dynamic model allows direct filter update rate [20]. It

is also possible to use more than one dynamic model in the filter. This helps to track

the more complex maneuvers made by the target. Now days, it has been widely

accepted that accurate targeting tracking requires multiple target models. Interacting

Multiple Model (IMM) has become a generally accepted best method for multiple

models filtering [21]. By probabilistically combining predictions of these models

(typically by Kalman), a best guesstimate of target state can be made.

5.2 Models for Kalman Filter

There are two types of tracking models for Kalman filter

 Constant velocity model

 Constant Acceleration model

5.2.1 Constant velocity model

45

This model is known as Constant Velocity Model. Since, there is no input that can

influence the target motion, input coupling matrix is not present in this model. Only

possible input for this model can be a random noise. This random noise is introduced

in the velocity variable of the target. Model that incorporates this random component

in velocity variable is known as Constant Velocity Model with Random Walk.

With the help of the above discretized state space model, it is possible to generate the

state of the target after T units of time. Trajectories shown Fig 5-1 was generated

using the constant velocity model for the target s range and range rate.

46

From Fig 5-1, it can be observed that range of the target is linearly increasing with

time but the velocity of the target does not change and remain constant at a fixed

value. This model of the target range is applicable in many situations e.g. a emissary

aero-plane on surveillance or an underwater mole vehicle will follow a linear range

model. Constant velocity assumption is somewhat more simplified. This model can be

improved by introducing a random change in the velocity of the target. This model is

known as constant velocity model with a random walk . Trajectories shown in Fig 5-

2 were generated using constant velocity with random walk model for the target s

range and range rate. A random variable was generated between 0.5 and +0.5 using

MATLAB. This random value was added to the target velocity to introduce a

random change in target s range rate or velocity.

47

Again, it can be seen that still the range of the target is changing linearly but now the

velocity or range rate of this is not constant. Range rate is having random variation

between 100 and 95. This model is more realistic than the previous one as velocity of

an object seldom remains constant. There is always a fluctuation in velocity. This

random walk model was used, most of the time, to generate the data for the target

azimuth and elevation angles.

5.2.2 Constant Acceleration Model

This model assumes the acceleration of the target to be constant during the sampling

time only and not the entire duration of time. Velocity of the target is taken to be

variable. This model is good for accelerating bodies. This is a third order model that

introduces one additional variable.

This model can be represented by the following equations.

48

It can be observed from the Fig 5-3 that range of target is curving up. This parabolic

trend in the range is due to the fact that target is moving with an acceleration. It is also

apparent that velocity of the target is linearly increasing with time. This linear

behavior velocity shows that target is moving with a constant acceleration. Finally, in

the graph for acceleration of the body, a straight line is observed. This is obvious that

straight line is also a sign of constant acceleration. In real world, it is almost

impossible for a target to move with a constant acceleration.

A more realistic model would be to use a random acceleration, rather than a constant

one. This model in which acceleration was not held constant; instead, a random

variable was added to the acceleration component is called constant acceleration

model with a random walk . Trajectories shown in Fig 5-4 have been produce using

the random wall model. A 10% random variation was introduced into the acceleration

variable while velocity variable was kept intact.

49

From Fig 5-4, again a parabolic trend is observed in the range. This is due to the

acceleration of the target. However, range rate now is not as linear as before, though

trend is still increasing. Major deviation from the previous model is in range

acceleration. Rather than being constant, now it is fluctuating about a constant value.

It is also possible to randomly introduce variation both in velocity and acceleration

simultaneously. Fig 5-4 shows the scenario where 10% variation in acceleration and

20% random change was incorporated.

In Fig 5-5, negative values of velocity and acceleration can be seen. This represents

the case when the target is moving towards the sensor. In that case, velocity and

acceleration of the target will have negative values. This is obvious from the range. It

50

can be seen that first, range is increasing when velocity and acceleration were

positive. When velocity became negative, then target range decreases which shows

the target s motion towards the sensor. It also indicates a circular motion of the target.

51

5.3 Experimental Results

The experimental results shown below in figure 5-6 onwards prove the accuracy of

the algorithm followed and implemented in Matlab 7.0.

Figure 5-6 Tracking Results using Kalman Filter Showing frame number 10 and 20

52

Here in figure 5-7 the frames shown depict very precise tracking in which object is

completely engrossed by the tracker.

Figure 5-7 Tracking Results using Kalman Filter Showing frame number 42 and 43

53

Similarly in figure 5-8 the tracking sequence is shown where as in frame number 45

its just about to be grabbed by the tracker.

Figure 5-8 Tracking Results using Kalman Filter Showing frame number 45 and 52

54

Figure 5-9 shows the orientation changes of the air borne object used and Kalman

filter s ability to deal with such sudden directional changes.

Figure 5-9 Orientation changes and Kalman Filter s Tracking ability shown in frame

number 143 and 150

55

Such orientation changes as shown in figure 5-10 are a little difficult to handle by the

tracking techniques as we are not dealing with such maneuvers in this very project so

tracking algorithm works well.

Figure 5-10 Orientation changes in frame number 179

Figure 5-11 Tracking Results using Kalman Filter Showing frame number 155

Thus these experimental results make it clear that Kalman Filter is predictive in nature

and predicts the next move of the object of interest even if the object suffers obstacles.

This property makes Kalman Filter worth implementation.

56

5.4 Comparison between Techniques Implemented

Moving object tracking is one of the most fertile areas in research sector. Techniques

available so far are competent still new methods are searched for to enhance the

features, reduce time, and improve efficiency and augment precision. Tracking is

widely used in many industries now a days but most of its usage is in defense and

surveillance sectors .Both of these fields are highly sensitive and receptive and require

high accuracy .For improving these features new methods are developed and their

competence level is compared .

The techniques used in this very project are described in detail in chapter 4 and 5. All

the techniques used show appropriate results which are also shown in experimental

results session in each chapter. Now a detailed comparison of features and results is

presented as under in order to make the difference clearer.

The techniques are compared below in Table 5-1 showing their major differences.

The methods differ from each other in mathematical background and implementation

method .Kalman Filter is a set of equations which are known as predictor corrector

equations where as fast mean shift is a convolution between the double derivative of

kernel and double integral of image .Where as template matching has a template in

.jpeg format which is an image of object in question and used for comparison with the

very first frame and later on every previous frame serves as template for the next one.

This makes the template matching technique adaptive and also drives it closer to

occlusion problem.

Fast Mean shift is a faster and better technique, far more robust than template

matching .In spite of all these differences all these methods are still prevalent and

used in many fields. The comprehensive difference is listed below in Table 5-1. So,

there were few differences mentioned above in table 5-1 .All these techniques in

their place serve the purpose of moving object tracking very appropriately. Several

short comings of template matching are removed by mean shift and similarly to attain

perfection and accuracy Kalman filter is implemented next .Use of Kalman filter

ensures the predictive behavior which serves as an important feature for tracking

field. As in case of any kind of collision of objects or distraction of objects or any

sudden change in directional attributes Predictive behavior saves the technique from

being failed.

57

Table 5.1 Difference between Implemented techniques

5.5 Conclusion

Kalman filter is correctly called a predictor and corrector as it predicts the next moves

of the object in question and that is why it is also used to identify the flood s course

which is highly unexpected phenomena. The comparison described also represents the

accuracy level of the techniques implemented and their differences as well.

58

Chapter 6

6. Other Methods for Object Detection and Tracking

6.1 Texture Analysis

Major goals of texture research in computer vision are to understand, model and process

texture, and ultimately to simulate human visual learning process using computer

technologies.

A typical computer vision system can be divided into components such as the ones show

in Fig 4.7. Texture analysis might be applied to various stages of the process. At the

preprocessing stage, images could be segmented into contiguous regions based on

texture properties of each region; At the feature extraction and the classification stages,

texture features could provide cues for classifying patterns or identifying objects.

Figure 6-1: The components of a typical computer vision system.

As a fundamental basis for all other texture-related applications, texture analysis seeks to

derive a general, efficient and compact quantitative description of textures so that

various mathematical operations can be used to alter, compare and transform textures.

Most available texture analysis algorithms involve extracting texture features and

deriving an image coding scheme for presenting selected features. These algorithms

might differ in either which texture features are extracted or how they are presented in

https://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node7.html#fig:visionsystem

59

the description. For example, a statistical approach describes a texture via image signal

statistics which reflect nondeterministic properties of spatial distribution of image

signals. A spectral method extracts texture features from the spectral domain . A

structural approach considers a texture as a hierarchy of spatial arrangements of well-

defined texture primitives. A probability model describes the underlying stochastic

process that generates textures. Several representative works on texture analysis.

Four major application domains related to texture analysis are texture classification,

texture segmentation, shape from texture, and texture synthesis . Below, each domain is

described briefly.

6.1.1 Texture Classification

Texture classification assigns a given texture to some texture classes [Two main

classification methods are supervised and unsupervised classification.

Supervised classification is provided examples of each texture class as a training set. A

supervised classifier is trained using the set to learn a characterisation for each texture

class. Unsupervised classification does not require prior knowledge, which is able to

automatically discover different classes from input textures. Another class is semi-

supervised with only partial prior knowledge being available.

The majority of classification methods involve a two-stage process. The first stage is

feature extraction, which yields a characterisation of each texture class in terms of

feature measures. It is important to identify and select distinguishing features that are

invariant to irrelevant transformation of the image, such as translation, rotation, and

scaling. Ideally, the quantitative measures of selected features should be very close for

similar textures. However, it is a difficult problem to design a universally applicable

feature extractor, and most present ones are problem dependent and require more or less

domain knowledge.

The second stage is classification, in which classifiers are trained to determine the

classification for each input texture based on obtained measures of selected features. In

this case, a classifier is a function which takes the selected features as inputs and texture

classes as outputs.

In the case of supervised classification, a -nearest neighbour (-NN) classifier is

usually applied ,which determines the classification of a texture by computing distances

to the nearest training cases. The distances are computed in a multi-

dimensional feature space constructed by selected texture features. Euclidean distance,

Chi-square distance, and Kullback-Leibler distance are mostly used as distance metrics

for distributions and thus similarity metrics for textures. A Bayesian classifier that

60

performs classification via probabilistic inference is also frequently used. A general two-

class Bayesian classifier can be specified by the following Bayes formula ,

Here, wj;j =1,2 denote two categories; the prior Pr(wj) is the unconditional probability

of the category w; the prior P(f|w) is called the likelihood of w with respect to a set of

feature measures . The formula leads to a posterior P(w|f) that gives the probability of

a category w given the feature measures . Essentially, this Bayesian classifier converts

the prior knowledge, i.e. P(w) and P(F|w), into a posterior P(w|f) that describes the

probability of classifying a texture into a particular class w given the evidence (observed

features). For instance, based on the classifier, a texture could be assigned to a

particular category, if the posterior probability is greater than some threshold . A

Bayesian classifier needs prior knowledge about textures and is based on a probability

model, while a classifier makes no assumption on textures and is a non-

parametric approach.

Leung and Malik developed a state-of-the-art feature-based method for classifying 3D

textures under varying viewpoint and illumination. In feature extraction, the method

applies a filter bank onto the training textures for each material with known viewpoints

and illumination. A k-mean clustering algorithm is exploited to identify k clusters from

the vector space concatenating all filter responses. Cluster centres are the

representative textons of each material and act as feature descriptors. The textons of all

materials together create a global texton dictionary, so that each material is represented

by a particular probability density function,i.e. the distribution of texton frequencies,

with respect to the dictionary. For a novel texture to be classified, the distribution of

texton frequencies with respect to the texton dictionary is computed, for a

 classifier to assign the texture to a class with the nearest distribution of texton

frequencies. Figure 4.3.1 shows examples of textures and their corresponding texton

distribution with respect to a texton dictionary .

https://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node7.html#fig:varma-texton

61

Figure 6-2: Textures and their corresponding texton distributions .

Texture classification can sort image data into more readily interpretable information,

which is used in a wide range of applications such as industrial inspection, image

retrieval , medical imaging and remote sensing .

(a) (b)

62

(c) (d)

Figure 6-3: Segmentation of an aerial image by texture properties . (a) input aerial

photo; (b) region map:`field'; (c) region map: `residential area'; (d) region

map: `vegetation area'.

6.1.2 Texture Segmentation

Texture segmentation partitions an image into a set of disjoint regions based on texture

properties, so that each region is homogeneous with respect to certain texture

characteristics. Results of segmentation can be applied to further image processing and

analysis, for instance, to object recognition. Similar to classification, segmentation of

texture also involves extracting features and deriving metrics to segregate textures.

However, segmentation is generally more difficult than classification, since boundaries

that separate different texture regions have to be detected in addition to recognising

texture in each region.

Texture segmentation could also be supervised or unsupervised depending on if prior

knowledge about the image or texture class is available. Supervised texture segmentation

identifies and separates one or more regions that match texture properties shown in the

training textures. Unsupervised segmentation has to first recover different texture classes

from an image before separating them into regions. Compared to the supervised case, the

unsupervised segmentation is more flexible for real world applications despite that it is

generally more computationally expensive.

Partitioning an image into homogeneous regions is very useful in a variety of

applications of pattern recognition and machine leaning. For example, in remote sensing

and GIS analysis, texture segmentation could be applied to detect landscape change from

an aerial photo. Figure 4.9 illustrates such an application of texture segmentation which

finds different ground objects, such as rural, industrial residential areas, based on their

distinct texture properties appeared in the image

https://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node7.html#fig:Linjiang

63

6.1.3 Shape from Texture

Shape from texture is the problem of estimating a 3D surface shape by analysing texture

property of a 2D image. Weak homogeneity or isotropy of a texture is likely to provide a

shape cue . For instance, texture gradient is usually resulted from perspective projection

when the surface is viewed from a slant, which infers the parameters of surface shape or

the underlying perspective transformation. Therefore, via a proper measure of texture

gradient, a depth map and the object shape could be recovered.

Shape from texture have been used for recovering true surface orientation, reconstructing

surface shape, and inferring the 3D layout of objects, in many applications . For

example, the plane vanish line could be computed from texture deformation in an image ,

which could be used to affine rectify the image.

6.1.4 Texture Synthesis

In computer graphics, texture synthesis is a common technique to create large textures

from usually small texture samples, for the use of texture mapping in surface or scene

rendering applications. A synthetic texture should differ from the samples, but should

have perceptually identical texture characteristics . The main advantage of texture

synthesis in this case is that it can naturally handle boundary condition and avoid

verbatim repetitions. In computer vision, texture synthesis is of interest also because it

provides an empirical way to test texture analysis. Because a synthesis algorithm is

usually based on texture analysis, the result justifies effectiveness of the underlying

models. Compared to texture classification and segmentation, texture synthesis poses a

bigger challenge on texture analysis because it requires a more detailed texture

description and also reproducing textures is generally more difficult than discriminating

them.

Other applications of texture synthesis include image editing , image completion , and

video synthesis etc.

64

Sample Image Synthetic texture

Figure 6-4: Texture synthesis by example: Given a sample texture, to generate a new image

having the same visual textural appearance. The synthetic texture is generated using the method

described in this thesis.

65

6.2 Focusing Analysis

The method discussed here[3] operates in the Fourier transform domain using the exact

form of the double-square-root (DSR) operator. Mathematical details of this method are

found in Section E.7. Figure 6-5 summarizes the main computational steps involved in

this migration velocity analysis based on wavefield extrapolation.

1. Starting with the prestack data in midpoint y, off-set h, and two-way event

time t in the unmigrated position, represented by the wavefield P(y, h, τ = 0, t) at

the surface τ = 0, perform 3-D Fourier transform. The variable τ is associated

with the direction of wave extrapolation, and is related to depth z by τ = 2z/υ,

where υ is the medium velocity.

2. Specify an extrapolation velocity function that only varies vertically, υ(τ) and

apply the extrapolation operator exp(–iωDSRτ/2) to compute the extrapolated

wavefield in the transform domain P(ky,kh,τ,ω) from the surface wavefield in the

transform domain P(ky,kh,τ = 0,ω).

3. To obtain the zero-offset image, sum over the offset wavenumber, and thus

obtain P(ky,h = 0, τ, ω).

4. Apply 2-D inverse Fourier transform to obtain the zero-offset image P(y, h =

0,τ,t). The image below a midpoint y is contained in the t – τ plane.

5. Perform mapping of the variables as described in Section E.6 from τ to υ. The

velocity information is given by the envelope of the velocity volume of data P(y,

h =0, τ = t, υ).

We now demonstrate the procedure outlined in Figure 6-5 using a synthetic data set.

Figure 6-6 shows two common-offset sections over a number of point scatterers buried

in a constant-velocity earth, where υ = 3000 m/s. Using a constant velocity for

extrapolation, υe = 3000 m/s, the t – τ image plane was produced for each midpoint. Two

such planes corresponding to midpoints 1 and 5 denoted in Figure 6-6 are shown in

Figure 6-7. The υ–τ planes (Figure 6-8) then were generated from the t – τ image planes

by the mapping procedure described in Section E.7. Peak amplitudes for all events occur

at the correct medium velocity (3000 m/s). We expect the diffraction events in Figure 6-

5 to migrate to the apexes beneath midpoint 1, where the point scatterers are located.

Note that in Figure 6-7, almost all the energy is in the image plane corresponding to

midpoint 1; just five midpoints away, at midpoint 5, the migrated energy is very low.

How do we interpret the t – τ image planes? If we used the true medium velocity in

downward extrapolation, then, according to the imaging principle, we would see all the

events along the diagonal τ = t, the image line, on the image plane. This happens in

Figure 6-7, because a 3000-m/s extrapolation velocity was used, which is just the

velocity used in generating the model in Figure 6-5. Any displacement of peak energy

from the t = τ image line means that the velocity value used for downward extrapolation

https://wiki.seg.org/wiki/Focusing_analysis#cite_note-ch05r5-3
https://wiki.seg.org/wiki/Topics_in_Dip-Moveout_Correction_and_Prestack_Time_Migration#E.7_Velocity_analysis_by_wavefield_extrapolation
https://wiki.seg.org/wiki/Topics_in_Dip-Moveout_Correction_and_Prestack_Time_Migration#E.6_Prestack_frequency-wavenumber_migration
https://wiki.seg.org/wiki/Topics_in_Dip-Moveout_Correction_and_Prestack_Time_Migration#E.7_Velocity_analysis_by_wavefield_extrapolation

66

differs from that of the event. This displacement is also the basis for mapping from

the t – τ image plane to the υ – τ plane by equation (E-77).

Figure 6-5 A flowchart of an algorithm for focusing analysis.

Figure 6-6 Common-offset data derived from a constant-velocity earth model consisting

of six point scatterers beneath midpoint 1, where (a) is zero-offset and (b) is far offset.

Figure 6-7 Image planes corresponding to midpoints 1 and 5 as indicated in Figure 6-6,

where (a) is CMP 5 and (b) is CMP 1.

Figure 6-8 The υ – τ planes corresponding to midpoints 1 and 5 derived from the image

planes in Figure 6-7, where (a) is CMP 5 and (b) is CMP 1.

https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-23.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-24.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-25.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-26.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-27.png

67

Figure 6-9 Common-offset data based on a horizontally layered earth model containing

three point scatterers located beneath midpoint 1 on the boundaries between constant-

velocity layers, where (a) is zero-offset and (b) is far offset.

Figure 6-10 Image planes corresponding to midpoints 1 and 5 as indicated in Figure 6-

9, where (a) is CMP 5 and (b) is CMP 1.

Figure 6-11 The υ – τ planes corresponding to midpoints 1 and 5 derived from the

image planes in Figure 6-10, where (a) is CMP 5 and (b) is CMP 1.

Figure 6-12 (a) CMP gather at location 1 as indicated in Figure 6-7; (b) and (c) are

velocity spectra derived from this gather by the methods of Figures 6-4 and 6-5,

respectively.

This mapping is investigated further with the modeled data set shown in Figure 5.4-27,

in which velocity increases with depth. In Figure 6-10, note that the top and middle

events fall to the left of the image line suggesting that the velocity used in extrapolation

(υe = 3000 m/s) is greater than the velocities associated with these events. The bottom

event falls on the image line, implying that its velocity is nearly the same as the

extrapolation velocity. These observations are confirmed in the corresponding υ –

τ planes in Figure 6-10. While true stacking velocity values for the three events are 2700,

2850, and 3000 m/s, the velocities interpreted from Figure 6-10 are about 2500, 2800,

and 3000 m/s. Thus, the migration-based velocity estimate for the shallow event is in

error by approximately 8 percent.

https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-28.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-29.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-30.png

68

To determine the reason for the velocity error, we will consider a migration-based

velocity analysis of our synthetic data example that does not involve the approximate

mapping step. Figure 6-11 shows a CMP gather from midpoint 1 in the zero-dip region

of the depth-variable velocity model associated with the constant-offset sections in

Figure 6-10. The migration velocity analysis on this gather (Figure 6-12) was done by

extrapolating the surface wavefield P(kh, ω, τ = 0) repeatedly with different constant

velocities in steps of Δτ = Δt (the sampling rate). The zero-offset trace from each attempt

was collected after this effort, abandoning the rest of the migrated CMP gather.

Interpretation of the velocity analysis in Figure 6-12 reveals correct stacking velocities

for the three events, including the shallowest. Clearly the error observed in Figure 6-9 is

attributable to the mapping (equation (E-100). Note that the error does not occur because

of depth variability of velocity, but instead, because the single extrapolation velocity

used differed from the medium velocity. The conventional velocity analysis for midpoint

1 of this model data set is shown in Figure 6-12 for comparison. Note the familiar NMO

stretching that is apparent in the shallow event. In other respects, both the results

(Figures 6-11 and 6-12) are comparable.

The departure of an event on the t – τ image plane from the t = τ image line is measured

by the quantity Δτ as depicted in Figure 5.4-31a. In some practical implementations,

the t – τ image plane is mapped onto the plane of Δτ versus τ as depicted in Figure 6-12

to determine the rms velocity υ(τ) for time migration from the extrapolation

velocity υe (τ). An event with a velocity error υ (τ) – υe (τ) is represented by an energy

maximum either to the left or to the right of the Δτ = 0 line. The δτ(τ) trend can be

picked and translated into a velocity trend as depicted in Figure 6-12. This type of

analysis has come to be called focusing analysis in the industry (Faye and Jeannaut,

1986). It has been used in some cases erroneously to estimate and update velocity-depth

models used for depth migration. The method can only provide plausable velocity update

within the framework of time migration.

Figure 6-10 is a CMP stack from offshore Texas. A 7000-ft portion (64 midpoints each

with 48 offset traces) of the profile was used for migration velocity analysis. For

computational efficiency, the data were windowed into 1024-ms time gates with 50

percent overlap. The image planes for one particular midpoint are shown in Figure 6-11.

Different extrapolation velocities picked from a specified regional velocity function are

used in each time gate. The velocity scan used in mapping is then carried out within a

corridor around this function. Because different extrapolation velocities are used in

successive segments, a given event appears at different values of τ in adjacent time

segments.

The resulting velocity analysis for the central midpoint is shown in Figure 6-12. In

conventional practice, to improve the quality of velocity picks, velocity analyses from a

number of neighboring CMP gathers often are summed. Figure 6-12 shows the result of

stacking velocity analysis for data from the six adjacent CMP gathers indicated in Figure

6-12. For the migration-based method, the υ – τ planes corresponding to these gathers

69

were summed. The result is shown in Figure 6-12. The most obvious difference between

the two results is the lack of shallow information in the migration-based υ – τ plane. This

shortcoming is attributed to spatial aliasing and lack of long-offset data in the shallow

time gate. The problem can be eliminated partly by increasing the length of the time gate

used in the velocity analysis. With the shortcut time-windowing approach described

above, the shallowest time segment did not include the large-offset data necessary for

velocity resolution. Because the events have dip, the derived migration velocities are

lower (by up to 4.5 percent) than the velocities derived from the stacking velocity

analysis.

The velocity analysis described in this section does not handle lateral variations in

velocity. It is based on a Fourier-transform domain formulation with only vertically

varying velocity used in extrapolation. This method may be particularly efficient for the

dip-corrected velocity estimate needed for time migration.

70

6.3 3D face Algorithm

The estimation of 3D face shape from a single image must be robust to variations in lighting,

head pose, expression, facial hair, makeup, and occlusions. Robustness requires a large

training set of in-the-wild images, which by construction, lack ground truth 3D shape.”

(MPIIS).

In a new paper accepted at CVPR 2019, researchers from the Max Planck Institute for

Intelligent Systems introduce RingNet, an end-to-end trainable network which learns to

compute 3D face shape from a single face image without 3D supervision. The researchers also

built a new benchmark dataset and a 3D reconstruction benchmark challenge, NoW, both of

which have been open-sourced on Github.

The Max Planck Institute responded to Synced questions regarding their new paper, RingNet

and the open challenge.

How would you describe RingNet?

RingNet is an end-to-end trainable network that enforces shape consistency across face images

of the subject with varying viewing angles, light conditions, resolution, and occlusion. It is

able to learn 3D face geometry from 2D images, but it only need single image for inference.

Figure 6-13 Ring Element Output

Why does this research matter?

The idea of RingNet is quite general even if it is only used for faces. One can potentially use

this idea for other 3D reconstruction purposes. In this work, our researchers also introduce a

3D reconstruction benchmark challenge NoW and an evaluation metric to provide the research

community with quantitative feedback which was lacking in this field. The aim is to

encourage other researchers to participate in this challenge and go beyond visual comparisons.

Since people can reconstruct a 3D face from single images with neck and full head, the

technique can potentially be used for the animation industry or different face apps. There

could be many interesting applications by combining RingNet and VOCA project (voice

https://github.com/soubhiksanyal/RingNet
https://voca.is.tue.mpg.de/

71

driven face animation model), for example, Using RingNet to prepare a template mesh for

VOCA, then animate it with audio, i.e., a talking head from a face image.

Could you describe the Challenge NoW in more detail?

The goal of this benchmark is to measure the accuracy and robustness of 3D face

reconstruction methods under variations in viewing angle, lighting, and common occlusions

by a standard evaluation metric.

The NoW Dataset introduced to run the challenge contains 2054 2D images of 100 subjects,

captured with an iPhone X, and a separate 3D head scan for each subject. The head scans

serve as ground truth for the evaluation. The subjects were selected to contain variations in

age, BMI, and sex (55 female, 45 male).

The challenge for all categories is to reconstruct a neutral 3D face given a single monocular

image. Note that facial expressions are present in several images, which requires methods to

disentangle identity and expression to evaluate the quality of the predicted identity.

Figure 6-14 (a) Blur 2D image (b) Perfect 3D image

Can you identify any bottlenecks in the research?

A bottleneck of the research topic is people tend to rely on only 2D landmarks. This certainly

constrains the quality of the 3D reconstruction to some extent. Using dense correspondences

should be able to push the limit to a new level.

Why do we need 3D when 2D is already looking good?

https://ringnet.is.tue.mpg.de/challenge

72

People may find some 2D face animations (like the Obama lip sync, Kumar, Rithesh, et al

2017) are already quite realistic. Although their results can look good by learning from huge

datasets, we are lacking the ability to manipulate these 2D models accurately. Additionally,

looking good is not enough, we need to understand what’s really going on. We live in a 3D

world, this is what’s really behind every 2D picture and movie frame. So without 3D

information, we can’t ask a GAN which is only trained with 2D images and landmarks to

maintain the face shape in each frame when it’s rotating. A 3D model also gets more

correspondence than 2D for example regarding each pixel’s relevance. Nowadays, face

tracking by 2D landmark localization performs pretty well, but landmarks alone can’t provide

the dense correspondence between frames. This is the key motivation for making 3D

reconstruction more accurate and robust.

73

6.4 Hurestic Algorithm

6.4.1 The “no machine learning” challenge

Inspired by Nick’s post, I decided to challenge myself to explore if similar results could be

achieved without the use of machine learning. It struck me that the bottles used in the original

demo could be detected based on their colour or other characteristics along with some simple

matching rules. This is known as an heuristic approach to problem solving.

Potential advantages of this include:

 Ease of development and conceptualisation

 Lower CPU and memory use

 Fewer dependencies

In terms of CPU and memory, on my i5 MacBook Pro, the IBM Cloud Annotations demo uses

over 100% CPU and more than 1.5 Gigabytes of RAM. It also relies on a web browser and

some heavy dependencies including Tensorflow, React.js, node.js and COCO-SSD itself.

The rules I set myself are:

1. Coke, Pepsi and Mountain Dew bottles must be labelled correctly

2. A rectangle should be drawn around each bottle as it moves

3. Minimal code

4. No machine learning techniques!

The original demo claims to use only 10 lines of code, however including boilerplate,

the current demo is 107 lines of JavaScript. I think under 100 lines is a good aim for this task.

6.4.2 Approach and solution
Firstly, I decided to base my project in OpenCV since I have previously used it for work

projects, it has relatively easy setup and is designed specifically for computer vision. OpenCV

is written in C++ and has bindings in Python and JavaScript. I decided to go with the Python

version for convenience.

I started with just recognising a Coke bottle. For this, a naïve solution would be to analyse the

colours in a video frame and place a label where coke red is found. One problem here is that

depending on the lighting conditions and camera colour accuracy, the bottle label is unlikely

to be exactly RGB 244 0 0.

To solve this, we can use a HSV colour representation along with cv::inRange to find colours

within the image that are within a given range. Think “shades of red”. This gives us an image

mask with all the red coloured areas white and everything else black. We can then

use cv::findContours to supply a list of points that define each “red area” within the frame.

https://en.wikipedia.org/wiki/Heuristic
https://codesandbox.io/s/z364noozrm
https://opencv.org/
https://docs.opencv.org/3.4/d5/d10/tutorial_js_root.html
https://usbrandcolors.com/coca-cola-colors/
https://en.wikipedia.org/wiki/HSL_and_HSV
https://docs.opencv.org/trunk/d2/de8/group__core__array.html#ga48af0ab51e36436c5d04340e036ce981
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a

74

The basic code will look something like this:

mask = cv2.inRange(hsv, colour.lower, colour.upper)

conts, heirarchy = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL,

cv2.CHAIN_APPROX_NONE)

biggest = sorted(conts, key=cv2.contourArea, reverse=True)[0]

The third line of code sorts the detected “red” contours and returns the largest one. Done!

…right? Well unfortunately not. Left like this, the program often finds Coke in the image even

when there is none.

Figure 6-15 Coke false positive

To deal with this we need an additional heuristic. I found simply excluding any contour

smaller than 50×50 worked well enough.

if w < 50 or h < 50:

 continue

Finally, for our detection system to work well, we need to exclude colours that are found

“inside” other colours. For example both the Pepsi and Mountain Dew labels contain red,

which will get detected as Coke unless we exclude it. So we add a special heuristic for Coke

that ignores detection if it is within the vertical bounds of another bottle.

if name == "Coke":

 if any([contains_vertical(rects[n], rect) for n in rects]):

 continue

75

6.4.3 Demonstration
Putting it all together, here is a working demonstration of the final system.On my i5 MacBook

Pro this runs smoothly at around 45% CPU with just over 50MB RAM. The full source code

comes to 85 lines and is available here.

6.4.4 Limitations
One of the limitations of this colour-based approach is that it doesn’t place the bounding box

around the bottle but only the coloured area. We could define additional rules to consider the

colour above or below the detected region, or attempt to guess where the bounding box should

be, but the code would quickly become complicated.

Another limitation is that whilst our system can recognise a Coke and a Pepsi bottle at the

same time, it can’t detect two Coke bottles. We could add further heuristics to deal with this

but I would question if an heuristic approach is the right choice if so much complexity needs

to be added.

6.4.5 Deep learning vs heuristics
I have shown that it’s straightforward to build a heuristic detector with accuracy comparable to

that of a deep learning-based system for a highly constrained task. Furthermore, the heuristic

object detector is conceptually simpler, has fewer dependencies, takes significantly less CPU

and uses an order-of-magnitude less memory.

However, the heuristic approach is not as robust or accurate as using deep learning. A deep

learning system can trivially recognise multiple instances of the same object at different scales

and rotations, depending on how it is trained. It can also do things like recognise partial

objects even if key features are missing.

6.5 Conclusion
For me, this isn’t a clear win for deep learning and I think there still is a place for an heuristic

approach. The more assumptions that can be made about the detection conditions (consistent

background and / or scale, constrained object types, distinguishing features such as colour) the

more appeal heuristics have. As a developer, I would consider a heuristic based solution if

time and resources were tight and the input constraints were clearly defined. If I wanted

increased robustness and flexibility, I would opt for machine learning. Both approaches

definitely have their place, and it’s a question of choosing the right tool for the job.

https://github.com/jamiebullock/heuristic-bottle-detection

76

Chapter 7

7. GUI (Graphical User Interface)

7.1 What is liveness detection and why do we need it?

Figure 7.1: Liveness detection with OpenCV. On the left is a live (fake) video of me with my

brother and on the right we can see I am holding my Phone (real).

Face recognition systems are becoming more prevalent than ever. From face recognition on

our iPhone/smartphone, to face recognition for mass surveillance in China, face recognition

systems are being utilized everywhere.

However, face recognition systems are easily fooled by “spoofing” and “non-real” faces.

Face recognition systems can be circumvented simply by holding up a photo of a person

(whether printed, on a smartphone, etc.) to the face recognition camera. In order to make face

recognition systems more secure, we need to be able to detect such fake/non-real faces —

 liveness detection is the term used to refer to such algorithms.

There are a number of approaches to liveness detection, including:

77

 Texture analysis, including computing Local Binary Patterns (LBPs) over face regions

and using an SVM to classify the faces as real or spoofed.

 Frequency analysis, such as examining the Fourier domain of the face.

 Variable focusing analysis, such as examining the variation of pixel values between two

consecutive frames.

 Heuristic-based algorithms, including eye movement, lip movement, and blink

detection. These set of algorithms attempt to track eye movement and blinks to ensure

the user is not holding up a photo of another person (since a photo will not blink or move

its lips).

 Optical Flow algorithms, namely examining the differences and properties of optical

flow generated from 3D objects and 2D planes.

 3D face shape, similar to what is used on Apple’s iPhone face recognition system,

enabling the face recognition system to distinguish between real faces and

printouts/photos/images of another person.

 Combinations of the above, enabling a face recognition system engineer to pick and

choose the liveness detections models appropriate for their particular application.

A full review of liveness detection algorithms can be found in Chakraborty and Das’ 2014

paper, An Overview of Face liveness Detection. For the purposes of today’s tutorial, we’ll

be treating liveness detection as a binary classification problem. Given an input image,

we’ll train a Convolutional Neural Network capable of distinguishing real

faces from fake/spoofed faces. But before we get to training our liveness detection model,

let’s first examine our dataset.

Our liveness detection videos

To keep our example straightforward, the liveness detector we are building in this blog post

will focus on distinguishing real faces versus spoofed faces on a screen. This algorithm can

easily be extended to other types of spoofed faces, including print outs, high-resolution prints,

etc.

In order to build the liveness detection dataset, I:

1. Took my iPhone and put it in portrait/selfie mode.

2. Recorded a ~25-second video of myself walking around my office.

3. Replayed the same 25-second video, this time facing my Phone towards my

desktop where I recorded the video replaying.

4. This resulted in two example videos, one for “real” faces and another for “fake/spoofed”

faces.

https://pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
https://pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/
https://pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/
https://arxiv.org/pdf/1405.2227.pdf

78

5. Finally, I applied face detection to both sets of videos to extract individual face ROIs for

both classes.

I have provided with both my real and fake video files in the “Downloads” section of the

post.

We can use these videos as a starting point for our dataset but I would

recommend gathering more data to help make our liveness detector more robust and

accurate. With testing, I determined that the model is slightly biased towards my own face

which makes sense because that is all the model was trained on. And furthermore, since I am

white/Caucasian I wouldn’t expect this same dataset to work as well with other skin tones.

Ideally, we would train a model with faces of multiple people and include faces of multiple

ethnicities. Be sure to refer to the “Limitations and further work“section below for

additional suggestions on improving our liveness detection models. In the rest of the tutorial,

we will learn how to take the dataset I recorded it and turn it into an actual liveness detector

with OpenCV and deep learning.

7.1.1 Project structure

Go ahead and grab the code, dataset, and liveness model using the “Downloads” section of

this post and then unzip the archive.Once we navigate into the project directory, we’ll notice

the following structure:

liveness Detection with OpenCV

$ tree --dirsfirst --filelimit 10

.

├── dataset

│ ├── fake [150 entries]

│ └── real [161 entries]

├── face_detector

│ ├── deploy.prototxt

│ └── res10_300x300_ssd_iter_140000.caffemodel

├── pyimagesearch

│ ├── __init__.py

│ └── livenessnet.py

├── videos

│ ├── fake.mp4

│ └── real.mov

├── gather_examples.py

├── train_liveness.py

├── liveness_demo.py

├── le.pickle

├── liveness.model

└── plot.png

6 directories, 12 files

79

There are four main directories inside our project:

 dataset/

 : Our dataset directory consists of two classes of images:

 Fake images of me from a camera aimed at my screen while playing a video of my

face.

 Real images of me captured from a selfie video with my phone.

 face_detector/

 : Consists of our pretrained Caffe face detector to locate face ROIs.

 pyimagesearch/

 : This module contains our LivenessNet class.

 videos/

 : I’ve provided two input videos for training our LivenessNet classifier.

Today we’ll be reviewing three Python scripts in detail. By the end of the post we’ll be able

to run them on our own data and input video feeds as well. In order of appearance in this

tutorial, the three scripts are:

1. gather_examples.py

 : This script grabs face ROIs from input video files and helps us to create a deep learning

face liveness dataset.

2. train_liveness.py

 : As the filename indicates, this script will train our LivenessNet classifier. We’ll use Keras

and TensorFlow to train the model. The training process results in a few files:

 le.pickle

 : Our class label encoder.

 liveness.model

 : Our serialized Keras model which detects face liveness.

 plot.png

 : The training history plot shows accuracy and loss curves so we can assess our model

(i.e. over/underfitting).

3. liveness_demo.py

 : Our demonstration script will fire up our webcam to grab frames to conduct face liveness

detection in real-time.

80

7.1.2 Detecting and extracting face ROIs from our training (video) dataset

Figure 7.2: Detecting face ROIs in video for the purposes of building a liveness detection

dataset.

Now that we’ve had a chance to review both our initial dataset and project structure, let’s see

how we can extract both real and fake face images from our input videos.

The end goal if this script will be to populate two directories:

1. dataset/fake/ : Contains face ROIs from the fake.mp4 file.

2. dataset/real/ : Holds face ROIs from the real.mov file.

Given these frames, we’ll later train a deep learning-based liveness detector on the images.

Open up the gather_examples.py file and insert the following code:

1 # import the necessary packages

2 import numpy as np

3 import argparse

4 import cv2

5 import os

6

7 # construct the argument parse and parse the arguments

8 ap = argparse.ArgumentParser()

9 ap.add_argument("-i", "--input", type=str, required=True,

10 help="path to input video")

11 ap.add_argument("-o", "--output", type=str, required=True,

12 help="path to output directory of cropped faces")

13 ap.add_argument("-d", "--detector", type=str, required=True,

14 help="path to OpenCV's deep learning face detector")

15 ap.add_argument("-c", "--confidence", type=float, default=0.5,

16 help="minimum probability to filter weak detections")

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_detect_faces.png

81

17 ap.add_argument("-s", "--skip", type=int, default=16,

18 help="# of frames to skip before applying face detection")

19 args = vars(ap.parse_args())

Lines 2-5 import our required packages. This script only requires OpenCV and NumPy in

addition to built-in Python modules.

From there Lines 8-19 parse our command line arguments:

 --input

 : The path to our input video file.

 --output

 : The path to the output directory where each of the cropped faces will be stored.

 --detector

 : The path to the face detector. We’ll be using OpenCV’s deep learning face detector.

This Caffe model is included with today’s “Downloads” for our convenience.

 --confidence

 : The minimum probability to filter weak face detections. By default, this value is 50%.

 --skip

 : We don’t need to detect and store every image because adjacent frames will be similar.

Instead, we’ll skip N frames between detections. We can alter the default of 16 using this

argument.

Let’s go ahead and load the face detector and initialize our video stream:

21 # load our serialized face detector from disk

22 print("[INFO] loading face detector...")

23 protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])

24 modelPath = os.path.sep.join([args["detector"],

25 "res10_300x300_ssd_iter_140000.caffemodel"])

26 net = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

27

28 # open a pointer to the video file stream and initialize the total

29 # number of frames read and saved thus far

30 vs = cv2.VideoCapture(args["input"])

31 read = 0

32 saved = 0

https://pyimagesearch.com/2018/03/12/python-argparse-command-line-arguments/
https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/

82

Lines 23-26 load OpenCV’s deep learning face detector.

From there we open our video stream on Line 30. We also initialize two variables for the

number of frames read as well as the number of frames saved while our loop executes (Lines

31 and 32). Let’s go ahead create a loop to process the frames:

34 # loop over frames from the video file stream

35 while True:

36 # grab the frame from the file

37 (grabbed, frame) = vs.read()

38

39 # if the frame was not grabbed, then we have reached the end

40 # of the stream

41 if not grabbed:

42 break

43

44 # increment the total number of frames read thus far

45 read += 1

46

47 # check to see if we should process this frame

48 if read % args["skip"] != 0:

49 continue

Our while loop begins on Lines 35. From there we grab and verify a frame (Lines 37-42).At

this point, since we’ve read a frame, we’ll increment our readcounter (Line 48). If we are

skipping this particular frame, we’ll continue without further processing (Lines 48 and 49).

Let’s go ahead and detect faces:

51 # grab the frame dimensions and construct a blob from the frame

52 (h, w) = frame.shape[:2]

53 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,

54 (300, 300), (104.0, 177.0, 123.0))

55

56 # pass the blob through the network and obtain the detections and

57 # predictions

58 net.setInput(blob)

59 detections = net.forward()

60

61 # ensure at least one face was found

62 if len(detections) > 0:

63 # we're making the assumption that each image has only ONE

64 # face, so find the bounding box with the largest probability

65 i = np.argmax(detections[0, 0, :, 2])

66 confidence = detections[0, 0, i, 2]

https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/

83

In order to perform face detection, we need to create a blob from the image (Lines 53 and

54). This blob has a 300×300 width and height to accommodate our Caffe face detector.

Scaling the bounding boxes will be necessary later, so Line 52, grabs the frame dimensions.

Lines 58 and 59 perform a forward pass of the blob through the deep learning face detector.

Our script makes the assumption that there is only one face in each frame of the video (Lines

62-65). This helps prevent false positives. If We’re working with a video containing more

than one face, I recommend that we adjust the logic accordingly. Thus, Line 65 grabs the

highest probability face detection index. Line 66 extracts the confidence of the detection

using the index.

Let’s filter weak detections and write the face ROI to disk:

68 # ensure that the detection with the largest probability also

69 # means our minimum probability test (thus helping filter out

70 # weak detections)

71 if confidence > args["confidence"]:

72 # compute the (x, y)-coordinates of the bounding box for

73 # the face and extract the face ROI

74 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])

75 (startX, startY, endX, endY) = box.astype("int")

76 face = frame[startY:endY, startX:endX]

77

78 # write the frame to disk

79 p = os.path.sep.join([args["output"],

80 "{}.png".format(saved)])

81 cv2.imwrite(p, face)

82 saved += 1

83 print("[INFO] saved {} to disk".format(p))

84

85 # do a bit of cleanup

86 vs.release()

87 cv2.destroyAllWindows()

Line 71 ensures that our face detection ROI meets the minimum threshold to reduce false

positives.From there we extract the face ROI bounding box coordinates and face ROI itself

(Lines 74-76). We generate a path + filename for the face ROI and write it to disk on Lines

79-81. At this point, we can increment the number of saved faces. Once processing is

complete, we’ll perform cleanup on Lines 86 and 87.

https://pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/

84

7.1.3 Building our liveness detection image dataset

 Figure 7.3: Our OpenCV face liveness detection dataset. We’ll use Keras and OpenCV

to train and demo a liveness model.

Now that we’ve implemented the gather_examples.py script, let’s put it to work. Make sure

we use the “Downloads” section of this tutorial to grab the source code and example input

videos.

From there, open up a terminal and execute the following command to extract faces for

our “fake/spoofed” class:

liveness Detection with OpenCV

$ python gather_examples.py --input videos/fake.mp4 --output dataset/fake \

--detector face_detector --skip 1

[INFO] loading face detector...

[INFO] saved datasets/fake/0.png to disk

[INFO] saved datasets/fake/1.png to disk

[INFO] saved datasets/fake/2.png to disk

[INFO] saved datasets/fake/3.png to disk

[INFO] saved datasets/fake/4.png to disk

[INFO] saved datasets/fake/5.png to disk

...

[INFO] saved datasets/fake/145.png to disk

[INFO] saved datasets/fake/146.png to disk

[INFO] saved datasets/fake/147.png to disk

[INFO] saved datasets/fake/148.png to disk

[INFO] saved datasets/fake/149.png to disk

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_dataset.png

85

Similarly, we can do the same for the “real” class as well:

liveness Detection with OpenCV

$ python gather_examples.py --input videos/real.mov --output dataset/real \

--detector face_detector --skip 4

[INFO] loading face detector...

[INFO] saved datasets/real/0.png to disk

[INFO] saved datasets/real/1.png to disk

[INFO] saved datasets/real/2.png to disk

[INFO] saved datasets/real/3.png to disk

[INFO] saved datasets/real/4.png to disk

...

[INFO] saved datasets/real/156.png to disk

[INFO] saved datasets/real/157.png to disk

[INFO] saved datasets/real/158.png to disk

[INFO] saved datasets/real/159.png to disk

[INFO] saved datasets/real/160.png to disk

Since the “real” video file is longer than the “fake” video file, we’ll use a longer skip frames

value to help balance the number of output face ROIs for each class. After executing the

scripts we should have the following image counts:

 Fake: 150 images

 Real: 161 images

 Total: 311 images

Implementing “LivenessNet”, our deep learning liveness detector

Figure 7.4: Deep learning architecture for LivenessNet, a CNN designed to detect face

liveness in images and videos.

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_arch.png

86

The next step is to implement “LivenessNet”, our deep learning-based liveness detector. At

the core, LivenessNet is actually just a simple Convolutional Neural Network.

We’ll be purposely keeping this network as shallow and with as few parameters as

possible for two reasons:

1. To reduce the chances of overfitting on our small dataset.

2. To ensure our liveness detector is fast, capable of running in real-time (even on resource-

constrained devices, such as the Raspberry Pi).

Let’s implement LivenessNet now — open up

1 # import the necessary packages

2 from keras.models import Sequential

3 from keras.layers.normalization import BatchNormalization

4 from keras.layers.convolutional import Conv2D

5 from keras.layers.convolutional import MaxPooling2D

6 from keras.layers.core import Activation

7 from keras.layers.core import Flatten

8 from keras.layers.core import Dropout

9 from keras.layers.core import Dense

10 from keras import backend as K

11

12 class LivenessNet:

13 @staticmethod

14 def build(width, height, depth, classes):

15 # initialize the model along with the input shape to be

16 # "channels last" and the channels dimension itself

17 model = Sequential()

18 inputShape = (height, width, depth)

19 chanDim = -1

20

21 # if we are using "channels first", update the input shape

22 # and channels dimension

23 if K.image_data_format() == "channels_first":

24 inputShape = (depth, height, width)

25 chanDim = 1

All of our imports are from Keras (Lines 2-10). For an in-depth review of each of these

layers and functions, be sure to refer to Deep Learning for Computer Vision with Python.

Our LivenessNet class is defined on Line 12. It consists of one static method, build (Line

14). The build method accepts four parameters:

https://pyimagesearch.com/deep-learning-computer-vision-python-book/

87

 width

 : How wide the image/volume is.

 height

 : How tall the image is.

 depth

 : The number of channels for the image (in this case 3 since we’ll be working with RGB

images).

 classes

 : The number of classes. We have two total classes: “real” and “fake”.

Our model is initialized on Line 17.

The inputShape to our model is defined on Line 18 while channel ordering is determined

on Lines 23-25.

Let’s begin adding layers to our CNN:

27 # first CONV => RELU => CONV => RELU => POOL layer set

28 model.add(Conv2D(16, (3, 3), padding="same",

29 input_shape=inputShape))

30 model.add(Activation("relu"))

31 model.add(BatchNormalization(axis=chanDim))

32 model.add(Conv2D(16, (3, 3), padding="same"))

33 model.add(Activation("relu"))

34 model.add(BatchNormalization(axis=chanDim))

35 model.add(MaxPooling2D(pool_size=(2, 2)))

36 model.add(Dropout(0.25))

37

38 # second CONV => RELU => CONV => RELU => POOL layer set

39 model.add(Conv2D(32, (3, 3), padding="same"))

40 model.add(Activation("relu"))

41 model.add(BatchNormalization(axis=chanDim))

42 model.add(Conv2D(32, (3, 3), padding="same"))

43 model.add(Activation("relu"))

44 model.add(BatchNormalization(axis=chanDim))

45 model.add(MaxPooling2D(pool_size=(2, 2)))

46 model.add(Dropout(0.25))

Our CNN exhibits VGGNet-esque qualities. It is very shallow with only a few learned filters.

Ideally, we won’t need a deep network to distinguish between real and spoofed faces.

88

The first CONV => RELU => CONV => RELU => POOL layer set is specified on Lines

28-36 where batch normalization and dropout are also added. Another CONV => RELU =>

CONV => RELU => POOL layer set is appended on Lines 39-46. Finally, we’ll add our FC

=> RELU layers:

48 # first (and only) set of FC => RELU layers

49 model.add(Flatten())

50 model.add(Dense(64))

51 model.add(Activation("relu"))

52 model.add(BatchNormalization())

53 model.add(Dropout(0.5))

54

55 # softmax classifier

56 model.add(Dense(classes))

57 model.add(Activation("softmax"))

58

59 # return the constructed network architecture

60 return model

Lines 49-57 consist of fully connected and ReLU activated layers with a softmax classifier

head. The model is returned to the training script on Line 60.

89

7.1.4 Creating the liveness detector training script

Figure 7.5: The process of training LivenessNet. Using both “real” and “spoofed/fake”

images as our dataset, we can train a liveness detection model with OpenCV, Keras, and

deep learning.

Given our dataset of real/spoofed images as well as our implementation of LivenessNet,

we are now ready to train the network.

Open up the train_liveness.py file and insert the following code:

1 # set the matplotlib backend so figures can be saved in the background

2 import matplotlib

3 matplotlib.use("Agg")

4

5 # import the necessary packages

6 from pyimagesearch.livenessnet import LivenessNet

7 from sklearn.preprocessing import LabelEncoder

8 from sklearn.model_selection import train_test_split

9 from sklearn.metrics import classification_report

10 from keras.preprocessing.image import ImageDataGenerator

11 from keras.optimizers import Adam

12 from keras.utils import np_utils

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_training_process.png

90

13 from imutils import paths

14 import matplotlib.pyplot as plt

15 import numpy as np

16 import argparse

17 import pickle

18 import cv2

19 import os

20

21 # construct the argument parser and parse the arguments

22 ap = argparse.ArgumentParser()

23 ap.add_argument("-d", "--dataset", required=True,

24 help="path to input dataset")

25 ap.add_argument("-m", "--model", type=str, required=True,

26 help="path to trained model")

27 ap.add_argument("-l", "--le", type=str, required=True,

28 help="path to label encoder")

29 ap.add_argument("-p", "--plot", type=str, default="plot.png",

30 help="path to output loss/accuracy plot")

31 args = vars(ap.parse_args())

Our face liveness training script consists of a number of imports (Lines 2-19). Let’s

review them now:

 matplotlib

 : Used to generate a training plot. We specify the "Agg" backend so we can easily

save our plot to disk on Line 3.

 LivenessNet

 : The liveness CNN that we defined in the previous section.

 train_test_split

 : A function from scikit-learn which constructs splits of our data for training and

testing.

 classification_report

 : Also from scikit-learn, this tool will generate a brief statistical report on our

model’s performance.

 ImageDataGenerator

 : Used for performing data augmentation, providing us with batches of randomly

mutated images.

 Adam

91

 : An optimizer that worked well for this model. (alternatives include SGD,

RMSprop, etc.).

 paths

 : From my imutils package, this module will help us to gather the paths to all of our

image files on disk.

 pyplot

 : Used to generate a nice training plot.

 numpy

 : A numerical processing library for Python. It is an OpenCV requirement as well.

 argparse

 : For processing command line arguments.

 pickle

 : Used to serialize our label encoder to disk.

 cv2

 : Our OpenCV bindings.

 os

 : This module can do quite a lot, but we’ll just be using it for it’s operating system

path separator.

That was a mouthful, but now that we know what the imports are for, reviewing the rest

of the script should be more straightforward. This script accepts four command line

arguments:

 --dataset

 : The path to the input dataset. Earlier in the post we created the dataset with

the gather_examples.py script.

 --model

 : Our script will generate an output model file — here we supply the path to it.

https://pyimagesearch.com/2018/03/12/python-argparse-command-line-arguments/

92

 --le

 : The path to our output serialized label encoder file also needs to be supplied.

 --plot

 : The training script will generate a plot. If we wish to override the default value

of "plot.png" , we should specify this value on the command line.

This next code block will perform a number of initializations and build our data:

33 # initialize the initial learning rate, batch size, and number of

34 # epochs to train for

35 INIT_LR = 1e-4

36 BS = 8

37 EPOCHS = 50

38

39 # grab the list of images in our dataset directory, then initialize

40 # the list of data (i.e., images) and class images

41 print("[INFO] loading images...")

42 imagePaths = list(paths.list_images(args["dataset"]))

43 data = []

44 labels = []

45

46 for imagePath in imagePaths:

47 # extract the class label from the filename, load the image and

48 # resize it to be a fixed 32x32 pixels, ignoring aspect ratio

49 label = imagePath.split(os.path.sep)[-2]

50 image = cv2.imread(imagePath)

51 image = cv2.resize(image, (32, 32))

52

53 # update the data and labels lists, respectively

54 data.append(image)

55 labels.append(label)

56

57 # convert the data into a NumPy array, then preprocess it by scaling

58 # all pixel intensities to the range [0, 1]

59 data = np.array(data, dtype="float") / 255.0

Training parameters including initial learning rate, batch size, and number of epochs are

set on Lines 35-37.From there, our imagePaths are grabbed. We also initialize two lists

to hold our data and class labels (Lines 42-44).The loop on Lines 46-55 builds our data

and labels lists. The data consists of our images which are loaded and resized to

be 32×32 pixels. Each image has a corresponding label stored in the labels list. All pixel

intensities are scaled to the range [0, 1] while the list is made into a NumPy array

via Line 59.

Now let’s encode our labels and partition our data:

93

61 # encode the labels (which are currently strings) as integers and then

62 # one-hot encode them

63 le = LabelEncoder()

64 labels = le.fit_transform(labels)

65 labels = np_utils.to_categorical(labels, 2)

66

67 # partition the data into training and testing splits using 75% of

68 # the data for training and the remaining 25% for testing

69 (trainX, testX, trainY, testY) = train_test_split(data, labels,

70 test_size=0.25, random_state=42)

Lines 63-65 one-hot encode the labels. We utilize scikit-learn to partition our data —

75% is used for training while 25% is reserved for testing (Lines 69 and 70). Next, we’ll

initialize our data augmentation object and compile + train our face liveness model:

72 # construct the training image generator for data augmentation

73 aug = ImageDataGenerator(rotation_range=20, zoom_range=0.15,

74 width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15,

75 horizontal_flip=True, fill_mode="nearest")

76

77 # initialize the optimizer and model

78 print("[INFO] compiling model...")

79 opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS)

80 model = LivenessNet.build(width=32, height=32, depth=3,

81 classes=len(le.classes_))

82 model.compile(loss="binary_crossentropy", optimizer=opt,

83 metrics=["accuracy"])

84

85 # train the network

86 print("[INFO] training network for {} epochs...".format(EPOCHS))

87 H = model.fit_generator(aug.flow(trainX, trainY, batch_size=BS),

88 validation_data=(testX, testY), steps_per_epoch=len(trainX) // BS,

89 epochs=EPOCHS)

Lines 73-75 construct a data augmentation object which will generate images with

random rotations, zooms, shifts, shears, and flips. To read more about data augmentation,

read my previous blog post. Our LivenessNet model is built and compiled on Lines 79-

83. We then commence training on Lines 87-89. This process will be relatively quick

considering our shallow network and small dataset. Once the model is trained we can

evaluate the results and generate a training plot:

91 # evaluate the network

92 print("[INFO] evaluating network...")

93 predictions = model.predict(testX, batch_size=BS)

94 print(classification_report(testY.argmax(axis=1),

95 predictions.argmax(axis=1), target_names=le.classes_))

96

https://pyimagesearch.com/2018/12/24/how-to-use-keras-fit-and-fit_generator-a-hands-on-tutorial/

94

97 # save the network to disk

98 print("[INFO] serializing network to '{}'...".format(args["model"]))

99 model.save(args["model"])

100

101 # save the label encoder to disk

102 f = open(args["le"], "wb")

103 f.write(pickle.dumps(le))

104 f.close()

105

106 # plot the training loss and accuracy

107 plt.style.use("ggplot")

108 plt.figure()

109 plt.plot(np.arange(0, EPOCHS), H.history["loss"], label="train_loss")

110 plt.plot(np.arange(0, EPOCHS), H.history["val_loss"], label="val_loss")

111 plt.plot(np.arange(0, EPOCHS), H.history["acc"], label="train_acc")

112 plt.plot(np.arange(0, EPOCHS), H.history["val_acc"], label="val_acc")

113 plt.title("Training Loss and Accuracy on Dataset")

114 plt.xlabel("Epoch #")

115 plt.ylabel("Loss/Accuracy")

116 plt.legend(loc="lower left")
117 plt.savefig(args["plot"])

Predictions are made on the testing set (Line 93). From there a classification_report is

generated and printed to the terminal (Lines 94 and 95). The LivenessNet model is

serialized to disk along with the label encoder on Lines 99-104. The remaining Lines

107-117 generate a training history plot for later inspection.

95

7.1.5 Training our liveness detector

We are now ready to train our liveness detector. Make sure we’ve used

the “Downloads” section of the tutorial to download the source code and dataset —

from, there execute the following command:

liveness Detection with OpenCV

$ python train.py --dataset dataset --model liveness.model --le le.pickle

[INFO] loading images...
[INFO] compiling model...

[INFO] training network for 50 epochs...

Epoch 1/50
29/29 [==============================] - 2s 58ms/step - loss: 1.0113 - acc: 0.5862 -

val_loss: 0.4749 - val_acc: 0.7436

Epoch 2/50
29/29 [==============================] - 1s 21ms/step - loss: 0.9418 - acc: 0.6127 -

val_loss: 0.4436 - val_acc: 0.7949

Epoch 3/50

29/29 [==============================] - 1s 21ms/step - loss: 0.8926 - acc: 0.6472 -
val_loss: 0.3837 - val_acc: 0.8077

...

Epoch 48/50
29/29 [==============================] - 1s 21ms/step - loss: 0.2796 - acc: 0.9094 -

val_loss: 0.0299 - val_acc: 1.0000

Epoch 49/50

29/29 [==============================] - 1s 21ms/step - loss: 0.3733 - acc: 0.8792 -
val_loss: 0.0346 - val_acc: 0.9872

Epoch 50/50

29/29 [==============================] - 1s 21ms/step - loss: 0.2660 - acc: 0.9008 -
val_loss: 0.0322 - val_acc: 0.9872

[INFO] evaluating network...

precision recall f1-score support
fake 0.97 1.00 0.99 35

real 1.00 0.98 0.99 43

micro avg 0.99 0.99 0.99 78

macro avg 0.99 0.99 0.99 78
weighted avg 0.99 0.99 0.99 78

[INFO] serializing network to 'liveness.model'...

96

Figure 7.6: A plot of training a face liveness model using OpenCV, Keras, and deep

learning. As our results show, we are able to obtain 99% liveness detection accuracy on

our validation set!

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_plot.png

97

7.1.6 Putting the pieces together: Liveness detection with OpenCV

Figure 7.7: Face liveness detection with OpenCV and deep learning.

The final step is to combine all the pieces:

1. We’ll access our webcam/video stream

2. Apply face detection to each frame

3. For each face detected, apply our liveness detector model Open up

the liveness_demo.py and insert the following code:

1 # import the necessary packages

2 from imutils.video import VideoStream

3 from keras.preprocessing.image import img_to_array

4 from keras.models import load_model

5 import numpy as np

6 import argparse

7 import imutils

8 import pickle

9 import time

10 import cv2

11 import os

12

13 # construct the argument parse and parse the arguments

14 ap = argparse.ArgumentParser()

15 ap.add_argument("-m", "--model", type=str, required=True,

98

16 help="path to trained model")

17 ap.add_argument("-l", "--le", type=str, required=True,

18 help="path to label encoder")

19 ap.add_argument("-d", "--detector", type=str, required=True,

20 help="path to OpenCV's deep learning face detector")

21 ap.add_argument("-c", "--confidence", type=float, default=0.5,

22 help="minimum probability to filter weak detections")

23 args = vars(ap.parse_args())

Lines 2-11 import our required packages. Notably, we’ll use

 VideoStream

 to access our camera feed.

 img_to_array

 so that our frame will be in a compatible array format.

 load_model

 to load our serialized Keras model.

 imutils

 for its convenience functions.

 cv2

 for our OpenCV bindings.

Let’s parse our command line arguments via Lines 14-23:

 --model

 : The path to our pretrained Keras model for liveness detection.

 --le

 : Our path to the label encoder.

 --detector

 : The path to OpenCV’s deep learning face detector, used to find the face ROIs.

 --confidence

 : The minimum probability threshold to filter out weak detections.

99

Now let’s go ahead an initialize the face detector, LivenessNet model + label encoder,

and our video stream:

25 # load our serialized face detector from disk

26 print("[INFO] loading face detector...")

27 protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])

28 modelPath = os.path.sep.join([args["detector"],

29 "res10_300x300_ssd_iter_140000.caffemodel"])

30 net = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

31

32 # load the liveness detector model and label encoder from disk

33 print("[INFO] loading liveness detector...")

34 model = load_model(args["model"])

35 le = pickle.loads(open(args["le"], "rb").read())

36

37 # initialize the video stream and allow the camera sensor to warmup

38 print("[INFO] starting video stream...")

39 vs = VideoStream(src=0).start()

40 time.sleep(2.0)

The OpenCV face detector is loaded via Lines 27-30.From there we load our serialized,

pretrained model (LivenessNet) and the label encoder (Lines 34 and

35).Our VideoStream object is instantiated and our camera is allowed two seconds to

warm up (Lines 39 and 40). At this point, it’s time to start looping over frames to detect

real versus fake/spoofed faces:

42 # loop over the frames from the video stream

43 while True:

44 # grab the frame from the threaded video stream and resize it

45 # to have a maximum width of 600 pixels

46 frame = vs.read()

47 frame = imutils.resize(frame, width=600)

48

49 # grab the frame dimensions and convert it to a blob

50 (h, w) = frame.shape[:2]

51 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,

52 (300, 300), (104.0, 177.0, 123.0))

53

54 # pass the blob through the network and obtain the detections and

55 # predictions

56 net.setInput(blob)

57 detections = net.forward()

Line 43 opens an infinite whileloop block where we begin by capturing + resizing

individual frames (Lines 46 and 47).After resizing, dimensions of the frame are grabbed

so that we can later perform scaling (Line

50)Using OpenCV’s blobFromImage function we generate a blob (Lines 51 and 52)

https://pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/

100

and then proceed to perform inference by passing it through the face detector network

(Lines 56 and 57).

59 # loop over the detections

60 for i in range(0, detections.shape[2]):

61 # extract the confidence (i.e., probability) associated with the

62 # prediction

63 confidence = detections[0, 0, i, 2]

64

65 # filter out weak detections

66 if confidence > args["confidence"]:

67 # compute the (x, y)-coordinates of the bounding box for

68 # the face and extract the face ROI

69 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])

70 (startX, startY, endX, endY) = box.astype("int")

71

72 # ensure the detected bounding box does fall outside the

73 # dimensions of the frame

74 startX = max(0, startX)

75 startY = max(0, startY)

76 endX = min(w, endX)

77 endY = min(h, endY)

78

79 # extract the face ROI and then preproces it in the exact

80 # same manner as our training data

81 face = frame[startY:endY, startX:endX]

82 face = cv2.resize(face, (32, 32))

83 face = face.astype("float") / 255.0

84 face = img_to_array(face)

85 face = np.expand_dims(face, axis=0)

86

87 # pass the face ROI through the trained liveness detector

88 # model to determine if the face is "real" or "fake"

89 preds = model.predict(face)[0]

90 j = np.argmax(preds)

91 label = le.classes_[j]

92

93 # draw the label and bounding box on the frame

94 label = "{}: {:.4f}".format(label, preds[j])

95 cv2.putText(frame, label, (startX, startY - 10),

96 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

97 cv2.rectangle(frame, (startX, startY), (endX, endY),

98 (0, 0, 255), 2)

On Line 60, we begin looping over face detections. Inside we:

 Filter out weak detections (Lines 63-66).

101

 Extract the face bounding box coordinates and ensure they do not fall outside the

dimensions of the frame (Lines 69-77).

 Extract the face ROI and preprocess it in the same manner as our training data

(Lines 81-85).

 Employ our liveness detector model to determine if the face

is “real” or “fake/spoofed” (Lines 89-91).

 Line 91 is where we would insert our own code to perform face recognition but

only on real images. The pseudo code would similar to if label == "real":

run_face_reconition() directly after Line 91).

 Finally (for this demo), we draw the label text and a rectangle around the face (Lines

94-98).

Let’s display our results and clean up:

100 # show the output frame and wait for a key press

101 cv2.imshow("Frame", frame)

102 key = cv2.waitKey(1) & 0xFF

103

104 # if the `q` key was pressed, break from the loop

105 if key == ord("q"):

106 break

107

108 # do a bit of cleanup

109 cv2.destroyAllWindows()

110 vs.stop()

The ouput frame is displayed on each iteration of the loop while keypresses are captured

(Lines 101-102). Whenever the user presses “q” (“quit”) we’ll break out of the loop and

release pointers and close windows (Lines 105-110).

Deploying our liveness detector to real-time video

To follow along with our liveness detection demo make sure we have used

the “Downloads” section of the blog post to download the source code and pre-trained

liveness detection model. From there, open up a terminal and execute the following

command:

liveness Detection with OpenCV

$ python liveness_demo.py --model liveness.model --le le.pickle \

--detector face_detector

Using TensorFlow backend.

[INFO] loading face detector...

[INFO] loading liveness detector...

[INFO] starting video stream...

https://pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/

102

Fig 7.8 (Detection on Live Camera)

103

7.2 Conclusion

Using this liveness detector we can now spot fake fakes and perform anti-face

spoofing in our own face recognition systems.

To create our liveness detector we utilized OpenCV, Deep Learning, and Python.

The first step was to gather our real vs. fake dataset. To accomplish this task, we:

1. First recorded a video of ourselves using our smartphone (i.e., “real” faces).

2. Held our smartphone up to our laptop/desktop, replayed the same video, and

then recorded the replaying using our webcam (i.e., “fake” faces).

3. Applied face detection to both sets of videos to form our final liveness detection dataset.

After building our dataset we implemented, “LivenessNet”, a Keras + Deep Learning

CNN.

This network is purposely shallow, ensuring that:

1. We reduce the chances of overfitting on our small dataset.

2. The model itself is capable of running in real-time (including on the Raspberry Pi).

Overall, our liveness detector was able to obtain 99% accuracy on our validation set.

To demonstrate the full liveness detection pipeline in action we created a Python +

OpenCV script that loaded our liveness detector and applied it to real-time video

streams. As our demo showed, our liveness detector was capable of distinguishing

between real and fake faces.

104

Chapter 8

8. Conclusion and Future Work

8.1 Conclusion
In this part of work, there is a meticulous depiction of the object detection and

tracking phenomena in addition to their mechanisms .Object tracking is considered as

the first step for tracking which actually serves to locate the temporal position of the

object in question .The tracking methods described in this piece of work do not need

any pre-locating trend of grabbing the object by object detection still the techniques

for detection are studied so far and implemented. Object tracking techniques being

implemented for this project do possess their own discrepancies in regard of motion

based tracking complications but efforts are made to make the algorithms robust

enough to withstand the impediments. In order to provide, vigorous modus operandi

for object tracking all latest concepts are used in the implementations .All the

techniques are tested on motion detection of air borne non rigid objects as jets to fully

examine the heftiness with instantly changing orientations and it cogently showed the

vigor of the algorithms implemented during this project phase by withstanding the

occlusions to a large extent. At several places tracking snags became a problem like in

template matching target loss hinders the algorithm to succeed at certain situations.

Purposefully, several other techniques are implemented then which proved to be

efficient and effective. So Fast mean shift and Kalman filter are implemented to have

a strong savor of object tracking for airborne objects, the objects for which every

next instant derives a new position varying widely from the previous one. Thus

results prove the effectiveness of the techniques implemented in this project and their

accomplishment is also obvious from the results provided in this thesis.

105

8.2 Future Work

FUTURE ENCHANCEMENTS

The object recognition system can be applied in the area of surveillance system, face

recognition, fault detection, character recognition etc. The objective of this thesis is to

develop an object recognition system to recognize the 2D and 3D objects in the image.

The performance of the object recognition system depends on the features used and the

classifier employed for recognition. This research work attempts to propose a novel

feature extraction method for extracting global features and and obtaining local features

from the region of interest. Also the research work attempts to hybrid the traditional

classifiers to recognize the object. The object recognition system developed in this

research was tested with the benchmark datasets like COIL100, Caltech 101, ETH80 and

MNIST. The object recognition system is implemented in MATLAB 7.5

It is important to mention the difficulties observed during the experimentation of the

object recognition system due to several features present in the image. The research work

suggests that the image is to be preprocessed and reduced to a size of 128 x 128. The

proposed feature extraction method helps to select the important feature. To improve the

efficiency of the classifier, the number of features should be less in number. Specifically,

the contributions towards this research work are as follows,

1. An object recognition system is developed, that recognizes the two-dimensional

and three dimensional objects.

2. The feature extracted is sufficient for recognizing the object and marking the

location of the object. X The proposed classifier is able to recognize the object in

less computational cost.

3. The proposed global feature extraction requires less time, compared to the

traditional feature extraction method.

4. The performance of the SVM-kNN is greater and promising when compared with

the BPN and SVM.

5. The performance of the One-against-One classifier is efficient.

6. Global feature extracted from the local parts of the image.

7. Local feature PCA-SIFT is computed from the blobs detected by the Hessian-

Laplace detector.

8. Along with the local features, the width and height of the object computed

through projection method is used.

The methods presented for feature extraction and recognition are common and can be

applied to any application that is relevant to object recognition.

The proposed object recognition method combines the state-of-art classifier SVM and k-

NN to recognize the objects in the image. The multiclass SVM is used to hybridize with

the k-NN for the recognition. The feature extraction method proposed in this research

work is efficient and provides unique information for the classifier.

106

The image is segmented into 16 parts, from each part the Hu’s Moment invariant is

computed and it is converted into Eigen component. The local feature of the image is

obtained by using the Hessian-Laplace detector. This helps to obtain the objects feature

easily and mark the object location without much difficulty.

As a scope for future enhancement,

1. Features either the local or global used for recognition can be increased, to

increase the efficiency of the object recognition system.

2. Geometric properties of the image can be included in the feature vector for

recognition. 150

3. Using unsupervised classifier instead of a supervised classifier for recognition of

the object.

4. The proposed object recognition system uses grey-scale image and discards the

color information. The color information in the image can be used for recognition

of the object. Color based object recognition plays vital role in Robotics

Although the visual tracking algorithm proposed here is robust in many of the

conditions, it can be made more robust by eliminating some of the limitations as

listed below:

i. In the Single Visual tracking, the size of the template remains fixed for tracking.

If the size of the object reduces with the time, the background becomes more

dominant than the object being tracked. In this case the object may not be

tracked.

ii. Fully occluded object cannot be tracked and considered as a new object in the

next frame.

iii. Foreground object extraction depends on the binary segmentation which is

carried out by applying threshold techniques. So blob extraction and tracking

depends on the threshold value.

iv. Splitting and merging cannot be handled very well in all conditions using the

single camera due to the loss of information of a 3D object projection in 2D

images.

v. For Night time visual tracking, night vision mode should be available as an

inbuilt feature in the CCTV camera.

To make the system fully automatic and also to overcome the above limitations, in

future, multi- view tracking can be implemented using multiple cameras. Multi view

tracking has the obvious advantage over single view tracking because of wide coverage

range with different viewing angles for the objects to be tracked.

107

In this thesis, an effort has been made to develop an algorithm to provide the base for

future applications such as listed below:

In this research work, the object Identification and Visual Tracking has been done

through the use of ordinary camera. The concept is well extendable in applications like

Intelligent Robots, Automatic Guided Vehicles, Enhancement of Security Systems to

detect the suspicious behavior along with detection of weapons, identify the suspicious

movements of enemies on boarders with the help of night vision cameras and many such

applications. In the proposed method, background subtraction technique has been used

that is simple and fast. This technique is applicable where there is no movement of

camera. For robotic application or automated vehicle assistance system, due to the

movement of camera, backgrounds are continuously changing leading to implementation

of some different segmentation techniques like single Gaussian mixture or multiple

Gaussian mixture models. Object identification task with motion estimation needs to be

fast enough to be implemented for the real time system. Still there is a scope for

developing faster algorithms for object identification. Such algorithms can be

implemented using FPGA or CPLD for fast execution

An accurate and efficient object detection system has been developed which achieves

comparable metrics with the existing state-of-the-art system. This project uses recent

techniques in the elder of computer vision and deep learning. Custom dataset was created

using labelling and the evaluation was consistent. This can be used in real-time

applications which require object detection for pre-processing in their pipeline. An

important scope would be to train the system on a video sequence for usage in tracking

applications. Addition of a temporally consistent network would enable smooth detection

and more optimal than per-frame detection. Object detection is a key ability for most

computer and robot vision system. Although great progress has been observed in the last

years, and some existing techniques are now part of many consumer electronics (e.g.,

face detection for auto-focus in smartphones) or have been integrated in assistant driving

technologies, we are still far from achieving human-level performance, in particular in

terms of open-world learning. It should be noted that object detection has not been used

much in many areas where it could be of great help. As mobile robots, and in general

autonomous machines, are starting to be more widely deployed (e.g., quad-copters,

drones and soon service robots), the need of object detection systems is gaining more

importance. Finally, we need to consider that we will need object detection systems for

nano-robots or for robots that will explore areas that have not been seen by humans, such

as depth parts of the sea or other planets, and the detection systems will have to learn to

new object classes as they are encountered. In such cases, a real-time open-world

learning ability will be critical.

108

References

[1] Xiao Wang, Forward backward correlation for template based tracking , Thesis,

Graduate School of Clemson University, (May 2006).

[2] Rafik Bourezak and Guillaume-Alexander Bilodeau, Object detection and tracking

using iterative division and correlograms , IEEE 3rd Canadian Conference on

Computer and Robotics Vision, (2006).

[3] Cheung, S.-C. and C. Kamath, "Robust Background Subtraction with Foreground

Validation for Urban Traffic Video," EURASIP Journal on Applied Signal

Processing, vol. 14, pp 1-11,(2005).

[4] Y. Caron, N. Vincent, P. Makris, Artificial object detection in natural environments ,

RFAI Team Publication, First Annual Meeting on Health, Science and Technology,

Ecole Doctorale SST, Tours (France), (May 2002).

[5]. Alper Yilmaz , Ohio State University , Omar Javed ,Object Video, Inc and Mubarak

, Shah University of Central Florida Object Tracking: A Survey

,(2006)

[6] John Melonakosa and Yi Gaoa and Allen Tannenbauma, Tissue Tracking:

Applications for Brain MRI Classification , Georgia Institute of Technology, 414

Ferst Dr, Atlanta, GA, USA;

[7] KARMA, Computer Graphics and UI Lab, Columbia University, (Jan 2000)

URL: http://www.cs.columbia.edu/graphics/projects/karma/karma.html

[8] Feiner, S., MacIntyre, B., Höllerer, T., and Webster, T., A touring machine:

Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban

Environment, In Proc. ISWC '97 (Int. Symposium on Wearable Computers),

Cambridge MA, (Oct 1997)

[9] A. Nagasaka and Y. Tanaka, Automatic video indexing and full-video search for

object appearances .In IFIP Working Conference on Visual Database Systems, pages

113 127, Budapest,Hungary, (October 1991).

http://www.cs.columbia.edu/graphics/projects/karma/karma.html

109

[10] Thuan D. Vong , Background Subtraction Using Color and Gradient Information

,Department of Electrical and Computer Engineering Clemson,University Clemson,

SC 29632,(2004) .

[11] Omar Javed, Khurram Shafique and Mubarak Shah , A Hierarchical Approach to

Robust Background Subtraction using Color and Gradient Information , Computer

Vision Lab, School of Electrical Engineering and Computer Science, University of

Central Florida ,(2002).

[12] Y. Dedeoglu, Moving object detection, tracking and classification for smart video

surveillance , Bilkent University.

[13] K. Fukunaga and L. D. Hostetler, The estimation of the gradient of a density

function, with applications in pattern recognition , IEEE Transactions on

Information Theory, vol.21, pp. 32-40, (1975).

[14] Y. Cheng, Mean shift, mode seeking and clustering , IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol.17, no.8, pp. 790-799, (1995).

[15] D. Comaniciu and P. Meer, Mean shift: A robust approach toward feature space

analysis , IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24,

no.5, pp. 603-619, (2002).

[16] C. Belenzai, B. Fruhstuck and H. Bischof, in Proceedings of IEEE International

Conference on Image Processing, (2004).

[17] P. Y. Simard, L. Bottou, P. Haffner and Y. LeCun, Boxlets: a Fast Convolution

Algorithm for Signal Processing and Neural Networks , Advances in Neural

Information Processing Systems, vol. 11, pp. 571 577, (1999).

[18] F. Crow, Summed-area tables for texture mapping , in Proceedings of SIGGRAPH,

vol. 18, pp. 207-212, (1984).

[19] P. Viola and M. Jones, Rapid object detection using a boosted cascade of simple

features , in IEEE Conference on Computer Vision and Pattern Recognition, Kauai,

Hawaii, 2001, vol. 1, pp. 511-518.

[20] Eli Brookner, Consultant Scientist, Raytheon Comp. Sudbury, MA, Tracking and

Kalman Filtering Made Easy , John Wiley & Sons, Inc.

110

[21] Samuel S. Blackman, Raytheon, Multiple Hypothesis Tracking for Multiple Target

Tracking , IEEE A&E Systems Magazines, Vol. 19, No.1, (January 2004)

[22] Mikhel E. Hawkins, High Speed Target Tracking Using Kalman Filter and Partial

Window Imaging , George Woodruff f School of Mechanical Engineering, Georgia

Institute of Technology, (April 2002)

[23] H. L. Van Trees, "Detection, Estimation and Modulation Theory- Part I ", New

York, Wiley, (1968).

[24] Erik Cuevas, Daniel Zaldivar and Raul Rojas, "Kalman Filter for Vision Tracking",

Technical Report, Freie Universität Berlin, Institut für Informatik, Berlin, Germany

111

	ABSTRACT
	List of Figures
	List of Tables
	Chapter 1
	1. Introduction
	1.1 Problem Statement
	1.2 Scope and Objective
	1.3 Applications
	1.4 Thesis Outline

	Chapter 2
	2. Object Detection
	2.1 Introduction of Object Detection
	2.2 Background Subtraction
	2.2.1 Pixels-based Method
	2.2.2 Optical Flow
	2.2.3 Color based Method
	2.2.4 Gradient based method
	2.2.5 Frame Differencing
	2.2.6 Experimental Results

	2.3 Conclusion

	Chapter 3
	3. Object Tracking
	3.1 Object Tracking Introduction
	3.2 Model of Tracking System
	3.2.1 Locking state
	3.2.2 Tracking state
	3.2.3 Recovery state

	3.3 Different Approaches for Object Tracking
	3.3.1 Correlation based method
	3.3.2 Feature-based Methods
	3.3.3 Histogram-based Method

	3.4 Design Considerations in Object Tracking
	3.4.1 Stationary Background
	3.4.2 Target size variation
	3.4.3 Occlusion or Temporary loss of target
	3.4.4 Target Model
	3.4.5 Automatic Target detection
	3.4.6 Real time
	3.4.7 Target trajectory
	3.4.8 Target speed

	3.5 Conclusion

	Chapter 4
	4. Object Tracking Modus Operandi
	4.1 Template Matching
	4.1.1 Flow Chart representation
	4.1.2 Experimental Results
	4.1.3 Complications using Template Matching Technique
	4.1.4 Template Selection
	4.1.5 Advantages of Template Matching
	4.1.6 Disadvantages of Template Matching
	4.1.7 Conclusion

	4.2 Mean Shift
	4.2.1 Mean Shift Tracking
	4.2.2 Fast Shift Method
	4.2.3 Fast shift means Calculation
	4.2.4 Flow Chart Representation
	4.2.5 Experimental Results
	4.2.6 Flow Chart Representation of Fast Mean shift
	4.2.7 Advantages
	4.2.8 Limitations
	4.2.9 Conclusion

	Chapter 5
	5. Kalman Filter
	5.1 Why Kalman Filter?
	5.1.1 Prediction Accuracy
	5.1.2 Optimal Filtering
	5.1.3 Priori Information
	5.1.4 Target Dynamics

	5.2 Models for Kalman Filter
	5.2.1 Constant velocity model
	5.2.2 Constant Acceleration Model

	5.3 Experimental Results
	5.4 Comparison between Techniques Implemented
	5.5 Conclusion

	Chapter 6
	6. Other Methods for Object Detection and Tracking
	6.1 Texture Analysis
	6.1.1 Texture Classification
	6.1.2 Texture Segmentation
	6.1.3 Shape from Texture
	6.1.4 Texture Synthesis

	6.2 Focusing Analysis
	6.3 3D face Algorithm
	6.4 Hurestic Algorithm
	6.4.1 The “no machine learning” challenge
	6.4.2 Approach and solution
	6.4.3 Demonstration
	6.4.4 Limitations
	6.4.5 Deep learning vs heuristics

	6.5 Conclusion

	Chapter 7
	7. GUI (Graphical User Interface)
	7.1 What is liveness detection and why do we need it?
	7.1.1 Project structure
	7.1.2 Detecting and extracting face ROIs from our training (video) dataset
	7.1.3 Building our liveness detection image dataset
	7.1.4 Creating the liveness detector training script
	7.1.5 Training our liveness detector
	7.1.6 Putting the pieces together: Liveness detection with OpenCV

	7.2 Conclusion

	Chapter 8
	8. Conclusion and Future Work
	8.1 Conclusion
	8.2 Future Work

	References

