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ABSTRACT 
 

Object detection and tracking are important and challenging tasks in many 

computer vision applications such as surveillance, vehicle navigation, and 

autonomous robot navigation. Video surveillance in a dynamic environment, 

especially for humans and vehicles, is one of the current challenging research 

topics in computer vision. It is a key technology to fight against terrorism, 

crime, public safety and for efficient management of traffic. The work involves 

designing of the efficient video surveillance system in complex environments. 

In video surveillance, detection of moving objects from a video is important for 

object detection, target tracking, and behavior understanding. Detection of 

moving objects in video streams is the first relevant step of information and 

background subtraction is a very popular approach for foreground segmentation. 

In this thesis, we have simulated different background subtraction methods to 

overcome the problem of illumination variation, background clutter and 

shadows. Detecting and tracking of human body parts is important in 

understanding human activities. Intelligent and automated security surveillance 

systems have become an active research area in recent time due to an increasing 

demand for such systems in public areas such as airports, underground stations 

and mass events. In this context, tracking of stationary foreground regions is 

one of the most critical requirements for surveillance systems based on the 

tracking of abandoned or stolen objects or parked vehicles. Object tracking 

based techniques is the most popular choice to detect stationary foreground 

objects because they work reasonably well when the camera is stationary and 

the change in ambient lighting is gradual, and they also represent the most 

popular choice to separate foreground objects from the current frame. 

Surveillance networks are typically monitored by a few people, viewing several 

monitors displaying the camera feeds. It is very difficult for a human operator to 

effectively detect events as they happen. Recently computer vision research has 

to address ways to automatically some of this data, to assist human operators. 

The techniques studied, implemented and presented are all premeditated in 

detail and then put into practice in this thesis. 
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Chapter 1 
 

1. Introduction 
 

1.1 Problem Statement 
The basic concept behind object detection in videos engrosses the verification of the 

presence of an object in image sequences and possibly locating it in particular for 

recognition. Object tracking is to monitor an objects spatial and temporal changes during a 

video sequence, including its presence, position, size, shape, etc. This is done by solving 

the temporal correspondence problem, the problem of matching the target region in 

successive frames of a sequence of images taken at closely spaced time intervals. These 

two processes are closely related. Detection is the basis for tracking and it usually starts 

with detecting objects, while detecting an object repeatedly in subsequent image 

sequence is often necessary to help and verify tracking. The general problem of motion 

understanding and tracking of the moving objects is one of the most interestingly used 

areas of computer vision. Tracking is the problem of generating an inference about the 

motion of an object, given a sequence of images. Several image-based motion tracking 

systems have been developed in the past. These systems include one from the MIT AI lab 

[1] [2], the W4 System of UMCP [3], and one from CMU [4]. However, these systems 

are computationally intensive and generally require very high performance computers to 

achieve real-time tracking. For instance, the tracking system of MIT AI lab used an SGI 

O2 workstation with R10000 processor to process images of 160x120 pixels at a frame 

rate up to 13 frames per second. Some systems used multiple cameras, each covering a 

fixed field of view. Some other systems used adaptive and model-based algorithms that 

required extensive training for recognizing specific objects and/or scenes. Digital video 

dispensation is becoming widely used in many aspects of our nowadays life. The 

availability of high-computation-power systems make it possible the processing of huge 

amount of raw data to achieve substance based functionalities, such as search and 

manipulation of objects, semantic description of scenes, detection of unusual events, 

and recognition of objects. Video tracking is a vital and active research area in computer 

vision.In its simplest form, tracking can be defined as the problem of estimating the 

trajectory of an object in the image plane as it moves around a scene. In other words, a 

tracker assigns consistent labels to the objects in question in different frames. Object 

tracking no doubt is an exigent problem. Impenetrability in tracking can arise due to 

abrupt motion of object, changing directions and appearances of the object and the scene, 

non rigid or articulated object structures as birds and human beings, object- to-object and 

object-to-scene occlusions, and camera motion [5]. Tracking is generally performed in 

the milieu of higher-level applications that require the location and/or shape of the object 

in every frame. Normally, assumptions are made to constrict and lessen the tracking 

problems. 
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1.2 Scope and Objective 
Moving object detection is important in many real-time image processing applications 

such as autonomous robotics, traffic control, and driver assistance and surveillance 

systems. Usually high resolution gray-scale images must be processed; since each image 

pixel may belong to a moving object, pixel-wise processing is required. 

Now days, video surveillance is an important and challenging field in computer vision for 

both indoor and outdoor environments. Organizations which need a surveillance system 

can easily get low priced surveillance cameras but they still need many security agents to 

keep a constant watch on all monitors. This approach is not efficient, and in fact most of 

the time video tapes or files are replayed a number of times to check on a particular event 

after it has happened thus the automation of this system is highly desired.The project 

Moving object tracking from video sequences is an attempt to study some algorithms, 

which are robust for the tracking of mobile but non rigid objects from the image 

sequences precisely called video. The Figure 1-1 shows the basic working grid of the 

processes involved in the system as Figure 1-1 also includes pre and post processing 

sequences as well which includes noise removal, image enhancement issues, 

organization and classification etc. but these issues are not of primary importance as far 

as this project is concerned so are not addressed in detail in this project. 

Figure 1-1- Block Diagram of system 
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1.3 Applications 
Object detecting and tracking has a wide variety of applications in computer vision such 

as video compression, video surveillance, vision-based control, human-computer 

interfaces, medical imaging, augmented reality, military applications, traffic monitoring 

and robotics. Bayesian classification methods have been broadly used in an assortment of 

image processing applications, including medical image analysis. The basic procedure is 

to combine data-driven knowledge in the likelihood terms with clinical knowledge in the 

prior terms to classify an image into a pre-determined number of classes. Major 

relevance lies in tissue tracking and for Brain MRI classifications [6]. Moreover, 

augmented reality also offers diverse application fields for tracking yet accurate and real 

time tracking problem is not solved still this field is emerging day by day .Most 

commonly known application is Amines which work on the principle of virtual reality 

.Another such system developed on the basis of tracking usage in Augmented reality is 

Knowledge-based Augmented Reality for Maintenance Assistance (KARMA)[7] and A 

Mobile Augmented Reality Systems for Exploring the Urban Environment (MARS )[8]. 

Additionally, it provides input to higher level vision tasks, such as 3D reconstruction and 

3D representation. It also plays an important role in video database such as content-based 

indexing and retrieval. In today s technologically emerging world this very technology of 

moving object detection is used for the movement assistance of disables in their homes. 

Video tracking is also used in automated digital recordings of animal behavior which 

includes conditional training/reward or punishment based on position in arena (e.g. 

demand-feeders, shuttle box etc.) such kind of system in practice is recently developed 

by Qubit Systems as Video tracking software . Video Tracking is usually taken in context 

of Real-time tracking of x, y coordinates and it is one of the most widely applicable 

usages of tracking draw on the control of experiments in addition to many other 

conventions. 

 

1.4 Thesis Outline 
Chapter 1 includes the introduction of the problem with its objective and scope along 

with applications. The concept of object detection and its methods along with the method 

studied and implemented which is background subtraction is all engrossed in Chapter 2. 

Object tracking in detail and its techniques are described in chapter 3. Similarly, chapter 

4 depicts the modus operandi used for object tracking during this project along with their 

experimental results including Template matching and Fast Mean Shift. The Kalman 

filter and it necessary details along with implementation complexities, algorithm and 

results are described in chapter 5 .It also includes the comprehensive comparison of 

techniques used. In the end whole of the work is concluded and few future work aspects 

are mentioned in chapter 6. 
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Chapter 2 
 

 

2. Object Detection 
 

One of the most difficult problems in image processing is detecting particular objects in 

an image. For a human observer it is very easy to identify any object, however it is far 

more difficult for a machine. Numerous methods exist for detecting objects of known 

type in a particular environment or image. However, in many cases, the visual 

characteristics of the objects are unknown, or it is necessary to detect objects that are 

very different from each other. This kind of method has applications in the domain of 

robotics, particularly for robots that are designed to operate in a hostile or unknown 

environment. 

 

2.1 Introduction of Object Detection 
 

Videos are the sequences of frames that run fast enough to give an effect of continuity as 

human eye perceives the frame sequences moving with a particular speed as a video. As 

far as object detection is concerned techniques of image processing are applied to the 

frames in order to identify any change so as to state the motion of object detected through 

the change observed in the two consecutive frames after attaining the results of the image 

processing techniques used for identification purpose. A surveillance system can be 

implemented in three steps. The first step consists of detecting the objects in motion 

.Then tracking them and finally High-level interpretation of the ongoing events. First 

step of detecting the object in question is described in detail with the experimental results 

in order to elaborate the mechanism in Chapter 2. Object detection is the first step in the 

motion tracking phenomena. The object detection is performed through background 

subtraction algorithm in this project though many other detection methods have been 

already developed and are widely in use. 
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2.2 Background Subtraction 
 

Identification of moving objects from a sequence of frames is a primary and critical task 

in many computer-vision applications. A common approach is to carry out background 

subtraction, which identifies the specific moving objects from the segment of a video 

frame that differs distinctly from a background model. There are a number of challenges 

in developing a good background subtraction algorithm. First, it must be robust against 

changes in illumination. Second, it should avoid detecting non- stationary background 

objects such as moving leaves, rain, snow, and shadows cast by moving objects. Other 

object detection methods include: 

1. Pixels based method 

2. Optical Flow method 

3. Color based method 

4. Gradient based method 

5. Frame differencing 

6. Median filter 

7. Linear predictive 

8. Non parametric method 

9. Mixture of Gaussian 

 

2.2.1 Pixels-based Method 

One of the first methods described in literature was from Nagasaka et al [9] in 1991. Shot 

changes are detected using a simple global inter frame difference measure, defined as: 

 

Detection if: 

 

  (2.1) 

resulting in operations O(P) per frame (as the second term of the difference has been 

already obtained after the processing of the previous frame I t 1). 

Frame difference method has been studied and used in this project. 
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2.2.2 Optical Flow 

The optical flow is the disarticulation field allied to each of the pixels in a sequence. 

Such displacement field results from the apparent motion of the image brightness in 

time. For the computation of optical flow it is assumed that image brightness is 

continuous and differentiable as many times as needed in both the spatial and temporal 

domain. Estimating the optical flow is fundamental problem in low- level vision, and can 

be undoubtedly serve for many applications in image sequence processing. Most of the 

algorithms for the estimation of the optical flow concentrate on the goal of estimating the 

motion field between succeeding images in a sequence, disregarding the estimates 

obtained for the previous image pair. 

If the apparent brightness of moving objects remain constant then the image brightness 

E over time is given by 

 

                                           
 

  
 

Figure 2-1: Application in Visual Surveillance: Optical Flow computed on Carthe Hamburg taxi sequence 

 

Since image brightness E is regarded as a function of both spatial coordinates of the 

image plane, x and y, and of time, that is, 
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2.2.3 Color based Method 

 
This method is based on background modeling and subtraction using both color and 

edge information. Both the color and edge models and subtraction are computed 

separately [10]. For storage of results confidence maps are used representing how 

confident the method is in recognizing that a pixel is a foreground object. Color and 

intensities of the previous image are compared with every new coming image and this 

difference signifies the motion. Background subtraction is done by performing the 

color-based subtraction and the edge-based subtraction separately and then combining 

the results [10]. 

Color-based subtraction is performed by subtracting the current image from the mean 

image in each color channel. For each pixel, the confidence is computed as 

 

                           

A significant change in any color channel indicates motion and thus a foreground 

region is detected. 

50 

100 

150 

200 

50 100 150 200 250 300 

Figure 2-2 : Shows the color confidence maps for a certain frame in the sequence used 
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2.2.4 Gradient based method 

 
As the back ground subtraction method has some recognized problems for instance 

quick illumination changes, shadows, reflection of the objects and orientation of the 

moving bodies .The gradients of image are moderately less perceptive to abrupt 

changes in illumination and thus can easily be combined with color information to 

perform background subtraction. 

 

 

 

 

 

2.2.5 Frame Differencing 
 

Frame differencing method is used for this purpose results after applying the simple 

algorithm for subtraction of successive frames from the previous one. Frame 

differencing questionably the simplest background modeling technique, frame 

differencing uses the video frame at time t - 1 as the background model for the frame 

at time t. Since it uses only a single previous frame, frame differencing may not be 

able to identify the result. 
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2.2.6 Experimental Results 
 

The results achieved after applying the background subtraction algorithm using Frame 

Differencing technique are illustrated as under. 

 

 

Figure 2-4: The video results showing background subtraction in Frame 10 and 15 

 

 

 

Figure 2-5: The video results showing background subtraction in Frame 42 and 45 

 

 

 

 Figure 2-6: The video results showing background subtraction in Frame 86 and 92 
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In few cases where the background illumination or brightness becomes higher up to a 

certain level that it becomes detectable after subtraction like the object it also appears 

as shown in figure 2-4. 

 

Figure 2-7: Video Results showing high illumination in the background in frame 56 and 58 

 

So, the experimental results shown in Figure 2-1,2-2,2-3 show the object in question 

which is a plane clearly detected from the background .Similarly, Figure 2-4 shows 

another dimension of the background subtraction algorithm that it has to be robust 

enough in order to overcome the raising illumination and brightness factors . 

 

2.3 Conclusion 
Object detection is the lying at the start in the hierarchy of motion based tracking 

mechanism. It basically deducts the background and focuses the object of interest 

from the scene. Many methods can be used for background subtraction depending on 

color, edge and such kind of features .Some of the methods are described in brief in 

the preceding chapter .It is effectively used in real time applications as well .It is also 

feasible in correcting images deserts caused by inappropriate illumination and 

brightness effects .Thus background subtraction is one of the widely used and 

important technique as far as object detection in concerned. 
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Chapter 3 
 

3. Object Tracking 
 

The aim of object tracking is to establish a correspondence between objects or object 

parts in consecutive frames and to extract temporal information about objects such as 

trajectory, posture, speed and direction. Tracking detected objects frame by frame in 

video is a significant and difficult task. It is a crucial part of smart surveillance 

systems since without object tracking the system could not extract cohesive temporal 

information about objects and higher level behavior analysis steps would not be 

possible [12]. 

 

3.1 Object Tracking Introduction 
 

The detection and classification of moving objects is an important area of research in 

computer vision. The problem assumes immense importance because of the fact that 

our visual world is dynamic and we constantly come across video scenes that contain 

a finitely large number of moving objects. To segment, detect, and track these objects 

from a video sequence of images is possibly the most important challenge that the 

vision experts confront today. 

 

3.2 Model of Tracking System 

 

A tracking system may be modeled as a three-state sequential machine. The 

functional hierarchy goes as Locking state, Tracking State and Recovery State. 

 

3.2.1 Locking state 

 

Initially the system is in locking state, when the camera is in search mode, i.e., 

searching for targets. During this state the processing is carried out on the whole 

image frame. The system will partition the image frame captured by camera into a 

number of moving objects. The history of these objects is extracted by checking the 

trajectory followed by the objects, and confirmation of the moving object is carried 

out in automatic mode. Once the target is confirmed the control of the system is 

transferred to tracking state. 
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3.2.2 Tracking state 

 

This stage should use computationally inexpensive techniques. Current location 

extracted by locking state is used for processing. Next position of the target is 

identified, and that positional information is stored in history database. If the target 

does not exist in the predicted window area, then the system control is transferred to 

recovery state. 

3.2.3 Recovery state 

 

Quite often the moving object of interest may be lost temporarily or permanently. In 

this state if the target is lost, the system will try to recover the target from low- 

resolution image. If the target is recovered in a few frames, then the system will 

transfer control to tracking state; otherwise it remains in recovery state till its 

predefined time expires. After the time is elapsed, control transfers to locking state. 

 

 

3.3 Different Approaches for Object Tracking 
 

Different methods have been used for moving object tracking given as under. 

1. Correlation based method 

2. Feature based method 

3. Histograms method 

4. Gradient based method 

5. Contour based method 

6. Kernel based method 

7. Kalman Filter 

8. Extended Kalman Filter 

9. Particle Filter 
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3.3.1 Correlation based method 

 

The correlation based method simply operates on the principal of intriguing 

correspondence between the previous frame and every up coming frame. This 

mechanism finally results in the correlation vector of the previous and new frame 

which in fact gives the measure of relationship between both frames. Thus the 

difference indicates the motion and determines the new direction for the object of 

interest. Relatively similar approach is followed in template matching which is 

described in detail in chapter 3.In template matching the correlation is taken between 

the template and every up coming frame in the sequence which gives the similarity 

ratio in the form of a single point which is then resolved by plummeting the 

components around it to make it template for the next frame. Correlation value differs 

between -1 to 1 so whenever correlation methods is used in tracking some threshold is 

set by the .This threshold servers as a reference as how much the images of previous 

ad current frame match each other or differ from each other which finally determines 

the motion of the object if interest. 

 

3.3.2 Feature-based Methods 

 

In feature-based object detection, standardization of image features and registration 

(alignment) of reference points are important. The images may need to be 

transformed to another space for handling changes in illumination, orientation and 

size. One or more features are extracted and the objects of interest are modeled in 

terms of these features. Object detection and recognition then can be transformed in to 

a graph-matching problem. 

All the methods we have already presented were using features, but they can be 

qualified of trivial features. This method considers more sophisticated ones. We 

consider: 

 The moments computed on the image 

 The contour lines extracted from the image 
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3.3.3 Histogram-based Method 

It is also possible to compare two images based on global features instead of local 

features (pixels). Histogram is a global image feature widely used in image 

processing. The main advantage of histogram-based methods is their global aspect. So 

These methods are more robust to camera or object motion. The main drawback 

appears when we compare two different images having a similar histogram. It will 

often results in missing a shot change. Different uses of the histogram can be 

distinguished. Some methods only compute differences between histograms and then 

the quality of the result is linked to the kind of histogram considered. A first extension 

is the use of weighted differences between histograms. Another approach consists in 

the definition of an intersection operator between histograms or the definition of 

different distances or similarity measures. 

Object tracking is a wide field in which many methods can be implemented to achieve 

results some of the other methods studied and implemented during this project tenure 

are described in forth coming chapters. 
 

3.4 Design Considerations in Object Tracking 
The following design considerations may be incorporated in an object tracking 

system. 
 

3.4.1 Stationary Background 

When the scene contains multiple objects, the background is stationary while all or 

part of the objects in the foreground may be in motion. 
 

3.4.2 Target size variation 

The target size reduces as the target moves further away from the camera. Thus a 

scaling mechanism needs to be incorporated during the process of tracking. 

3.4.3 Occlusion or Temporary loss of target 

During the tracking phase the target may be temporarily lost as it goes behind another 

object. This is known as occlusion. In such cases the system will recover the target 

automatically. 

 

3.4.4 Target Model 

The model of the target needs to be incorporated. In case of human tracking, for 

example, a human figure may be modeled as an ensemble of several ellipses, where 

each ellipse represents the individual body parts like head, torso, hands, and legs, etc. 

The color, shape, intensity, and other attributes of the object may vary while the 

object is in motion, and yet the tracker should be able to track correctly. 
 

3.4.5 Automatic Target detection 
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The tracker should be able to detect all the new targets automatically and start 

tracking them. 
 

3.4.6 Real time 

The tracking algorithm should be computationally simple and optimum so that the 

tracking can be implemented in real time. 

3.4.7 Target trajectory 

The target may or may not follow a particular trajectory. There may be abrupt 

changes in the target path. 
 

3.4.8 Target speed 

Speed of the target can change abruptly; it may be constant, increasing, or 

decreasing. 

 

3.5 Conclusion 
Object tracking is described in this chapter along with a introduction to several 

methods in use. Object tracking is meant to follow the position and direction of the 

object of interest in a sequence .Many multipurpose applications are there in present 

day world regarding object tracking which makes it a flourishing field in research and 

development .It is equally applicable for the systems based on real time estimations as 

in defense sector and surveillance systems . 
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Chapter 4 
 

4. Object Tracking Modus Operandi 
 

Object Tracking methodologies vary from mathematics to applications to a wide 

extent. This variation offers a wide spectrum of ample techniques to be used for 

object tracking .This is one of the most flourishing fields of research in computer 

vision specifically from surveillance and defense point of view. As the applications of 

tracking are in highly sensitive domains which require extreme accuracy and 

precision .This demand of accurateness increases when real time scenarios are under 

consideration as in defense sector missile tracking, jet tracking etc is concerned. 

 

 

4.1 Template Matching 
Template matching is a simple task of performing a normalized cross-correlation 

between a template image (object in training set) and a new image to classify. 

Template-based tracking using the sum-of-squared differences (SSD) is a classic 

technique for maintaining the location of a target throughout an image sequence. 

The idea of template-based tracking is to track a moving object by defining a region 

of pixels belonging to that object and, using local optimization methods, to estimate 

the transformation parameters of that region between the reference image and the new 

image. The reference image can be fixed as the first frame or chosen to be the 

previous frame. 

The goal of template-based tracking is to maintain a model of the target in terms of a 

2D template of image intensities and compute the target location in a new image 

frame by comparing the new data with that of the template. The data are usually 

compared using a low-order parametric motion model such as translation or affine, 

and the optimal location is computed using either discrete correlation search or non- 

linear function optimization. Template-based matching algorithm is usually simple, 

effective and computationally efficient. 
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4.1.1 Flow Chart representation 
 

 

 

 

 

 

 

 

Figure 4-1: Flow chart representation of Template based Target Tracking 
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4.1.2 Experimental Results 

After applying the algorithm of template based tracking the results achieved are as 

following: 

 

 

 

Figure 4-2: Video results showing Target tracking using template matching in frame 7 and 11 

 

 

 

 

Figure 4-3: Video results showing Target tracking using template matching in frame 52 

and 75 
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4.1.3 Complications using Template Matching Technique 

 

There is a possibility, especially in air borne objects, that there may be significant 

change in target shape or orientation in very next frame as shown in following Figure 

4-4. In this case, tracker starts futile tracking and correlation value drops due to which 

template is not updated and in next 2 or 3 frames tracker completely looses the object. 

 

Figure4-4: Change in orientation of the object 

 

The template selected for tracking purpose through template based tracking using 

correlation approach is shown in figure 4-5. 

 

 

Figure 4-5: Template selected for Tracking 

 

Hence, in such a condition when the orientation changes are gigantic for the tracking 

algorithms to keep pace with results in occlusions. Occlusion is a very common 

problem in tracking domain regarding directional changes. Here in Template 

matching technique used the template is updated by every next frame (image) .In such 

a situation one other problem may arise when the object in question leaves the screen 

area for sometimes and enters back after few frames .During that time in the absence 

of object the algorithm keeps on selecting template from the background and when 

the object re enters the area of concern it doesn t match with that previously selected 

template and thus the system fails. 
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 Some results have been taken from a video in order to show this phenomenon shown 

in Figure 4-6 

 

Figure 4-6: Tracker losing the object 

4.1.4 Template Selection 

A critical question in template-based tracking is how to select the template. One 

approach is to use the appearance of the target in the first image frame, with the 

template remaining constant throughout the sequence. The advantage of this approach 

is that the tracker always uses data, which is known to be trustworthy. However, the 

drawback is that the algorithm does not adapt to changes in the appearance of the 

target over time. The target is likely to be lost when it rotates out of plane or 

undergoes non-rigid transformations. An alternative approach is to use the appearance 

of the target in the previous image frame, so that the tracker always adapts to changes 

in appearance. The disadvantage of this approach is that the tracker tends to drift 

away from the original target over time, since there is no guarantee that the newly 

computed location of the target is without error. 

This reference frame dilemma is not limited to template-based tracking: Histogram 

trackers are also faced with the choice of which image to use as a reference, with 

many of them selecting the first frame. The template used for experimentation is 

shown in Figure 4-7. Now this template is selected in a position when it is evidently 

visible and enlarged from the normal view which serves positively while using 

template based tracking. It helps the algorithm not to fail when in instances during the 

video the camera enlarges an object though it s not the mere solution to deal with 

zooming but it is an edge to let the algorithm work successfully in such conditions. 

 

Figure 4-7: Template selected for tracking 
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Thus template selection is an issue which holds prime importance while implementing 

and template based tracking .The algorithm used in this project works on adaptive 

Template selection means every previous frame becomes template for the next frame 

to be matched with still it needs a previously selected template to instigate the 

process. Success of the progression largely depends on the kind of template selected 

for the very first time .Template matching is weaker in this case to deal with rapidly 

altering orientations and gives rise to occlusion and one major factor responsible for 

the phenomenon can also be template selection. As, any absurd value of cross 

correlation obtained can head the algorithm to failure. It also varies a lot for rigid and 

non rigid bodies as here only rigid bodies are of prime concern but if human or birds 

is to be tracked using template based method it becomes very critical when it comes 

to template selection. As, non rigid bodies change their shape and orientation at every 

next move for example a human walks and moves his arms which changes his 

posture and orientation similarly birds flutter all the time to keep their balance 

maintained in the air which makes them vary their shape at each flutter . 

So, overall template selection is a core concern while dealing with template based 

tracking methodology. 

 

4.1.5 Advantages of Template Matching 

Some advantages of template matching are its simplicity and its suppleness. Its 

correlation-based algorithm is uncomplicated to implement and it allows us to use 

templates that have either been produced using a segment of the image or derived. 

 

4.1.6 Disadvantages of Template Matching 

On the other hand, one of the main disadvantages of template matching is its 

computational cost since correlating requires the "scrutiny" of each pixel in the 

template over several windows in the image. Another disadvantage of template-based 

tracking is that if shape or orientation of target is changed then tracker starts loosing 

target and eventually results in futile tracking. 

 

4.1.7 Conclusion 

 

Template Matching serves as a vigorous motion detection technique unless the 

intrusion of any occlusion phenomena or target loss from the region of interest .It 

serves as a technique which can be used effectively in present day tracking systems by 

making the template adaptive. Though there are complications in the methodology 

still template matching is a widely used and accepted technique. This technique is 

growing.   
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4.2 Mean Shift 
 

The Mean shift algorithm is a nonparametric technique to locate density extrema or 

modes of a given distribution by an iterative procedure. The method was originally 

proposed by Fukunaga and Hostetler [13]. Cheng [14] generalized the method and 

pointed out, that the mean shift algorithm is a mode-seeking process on the density 

function surface. Comaniciu and Meer [15] proved the convergence of the iterated 

mean shift procedure on discrete data, proposed several extensions and presented its 

benefits for practical applications. Belenzai and Bernhard [16] stretch the 

conservative step of mean shift method and introduced fast mean shift method. 

 

4.2.1 Mean Shift Tracking 
mean shift vector for discrete data can be represented in general by the difference 

between the weighted mean computed with kernel profile g(x) and x (the kernel or 

window center) 

 

 
 

Where n is the number of data points and h is the size of the kernel [15]. The 

difference image is the outcome of a change detection process by forming the 

difference between the current image and next image of an image sequence. The 

difference image generated from given image sequence is contains large number of 

high-intensity peaks or modes. Our principal objective is to find modes representing 

our desired object. The search process is facilitated by information of expected 

scaling of object {H(yi),W(yi)} at a given vertical image location yi, which can be 

obtain by a rough calibration of the image sequence. H and W are the height and the 

width of the object in pixels. Mode detection within the difference image I is 

performed by the following steps. The difference image intensity maximum is 

mapped to unit intensity and its entire range is scaled proportionally. A  sample  set  

of  n points is defined by locating local maxima. Local maxima are found by: 

 Locating the global intensity maximum and adding it to the list of sample set 

 Resetting the difference image intensity around the found matrix within a window of 

size {0.5H (yi), 0.5W (yi)} 

 Repeating the maximum search of step (1) until the found maximum drops below a 

threshold T1. 

The points of the sample set are subsequently used in a mean shift procedure. The 

final result does not depend critically on T1. A very low value just increase the run 

time and generate more outliers, which have to be eliminated after computation of 
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k k 

mean shift vector component.The mean shift procedure is applied to the points of the 

sample set with a window size of {H (yi), W (yi)} according to the local scaling. For 

the two-dimensional probability distribution in the difference image, the mean shift 

vector (mx,my) computation using uniform kernel can be defined as: 

 
Starting out from the points of the sample set, the mean shift vector is computed 

repeatedly until convergence, locating the closest mode typically within 3 to 4 

iterations. Note that the mean shift vector computation requires the computation of the 

zeroth and first moments of the distribution within the window. The computed zeroth 

moment can be interpreted as the probability density sampled at distinct locations 

(x,y) of the convergence path: 

  
 

The above formula yields a relative measure for the presence of an object-moving 

region. 

The set of probability measures { p(x , y ),........ p(x , y )} computed for the points of 

the convergence path is used later on to validate object location. The size of the 

sample set is usually on the order of several hundred points, which represents 

considerable computational complexity when targeting real-time operation. To 

achieve faster mode seeking fast variant of mean shift computation using integral 

images is described in next section. The convergence points of individual mean shift 

procedures are linked together forming the centers of detected clusters. Linking is 

carried out analogously by merging all points, which are closer in x- and y-direction. 
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4.2.2 Fast Shift Method 
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4.2.3 Fast shift means Calculation 
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4.2.4 Flow Chart Representation 
 

 

 
 

 

 
 

Figure 4-9: Flow Chart representation of Fast Mean Shift Algorithm 
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Figure 4-10 : Flow Chart representation of Fast Mean Shift Algorithm (cont-I) 
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Figure 4-11: Flow Chart representation of Fast Mean Shift Algorithm (cont-II) 
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4.2.5 Experimental Results 

 

Tracking Results of fast mean shift algorithm for two video sequences are shown 

below in Figure 4-12 and Figure 4-13. Tracked object is illustrated by a rectangle. 

Stable results are obtained using fast mean shift algorithm, which shows excellent 

mode sensitivity of the method even in the case of change of size of image. 

 

 
Tracking Results with Video Sequence 1 
 
 

 

 

Figure 4-12: Results of Fast Mean Shift based tracking in Frame number 45 and 56 

 

 

 

 
 

 

 

Figure 4-13 : Results of Fast Mean Shift based tracking in Frame number 67 and 113 
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Tracking Results with Video Sequence 2 
 

 

These are the results of Tracking with Fast Mean Shift technique using video 

sequence 2. 

 

 

 
 

 

 
 

 

 
 

Figure 4-14: Results of Fast Mean Shift based tracking in frame number 13 and 25 

 

 

 

 

 
 

 

 

 
 

Figure 4-15: Results of Fast Mean Shift based tracking in frame number 69 and 94 
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4.2.6 Flow Chart Representation of Fast Mean shift 
 

 

 

 

 

 

 

 
 

Figure 4-16: Flow Chart representation of Fast Mean Shift Algorithm 
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Figure 4-17: Flow Chart representation of Fast Mean Shift Algorithm (cont-I) 
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Figure 4-18: Flow Chart representation of Fast Mean Shift Algorithm (cont-II) 
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4.2.7 Advantages 

 

Mean shift offers following advantages 

4.2.7.1 It is application sovereign tool. 

4.2.7.2 Mean shift is also appropriate for real data analysis. 

4.2.7.3 It does not presume any former shape on data clusters. 

4.2.7.4 It can easily handle random feature spaces. 

 

4.2.8 Limitations 

 

Though mean shift algorithm is an efficient approach to track objects but also it has 

some limitations. 

4.2.8.1 The window sizing is not trivial. 

4.2.8.2 Inappropriate window size can cause modes to be amalgamated or generate some 

additional shallow modes. 

 

4.2.9 Conclusion 

 

The Fast Mean Shift is no doubt an encroachment in methodology of Mean shift 

technique .The mathematical variations in the sequence of derivatives and integrals 

makes the algorithm robust and reduces the time aspect .Fast Mean shift algorithm 

with all its complex mathematics with stands the occlusion and target loss problem 

concretely .Whereas, complete disappearance of target from the region of interest may 

lead to the use of template support so as to retain the robustness of this system. 
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Chapter 5 
5. Kalman Filter 
 

The Kalman filter provides a recursive solution to the linear optimal filtering problem. 

It applies to motionless as well as active environments and can be used for prediction 

of next state/states, optimal state estimation, and noise filtering problems and data 

fusion. . Kalman filter is basically a deposit of mathematical equations that puts into 

practice a predictor-corrector type estimator that is optimal in the sense that it 

minimizes the estimated error covariance as when some presumed conditions are met. 

The solution provided by the Kalman filter is recursive that each updated estimate of 

the state is computed from the previous estimate and the new input data, so only the 

previous estimate requires storage. In addition to eliminating the need for storing the 

entire past observed data, the Kalman filter is computationally more efficient than 

computing the estimate directly from the entire past observed data at each step of the 

filtering process. 

 

5.1 Why Kalman Filter? 
 

Although, Kalman filter is computationally somewhat more multifarious than the 

other filters still there are reasons to use it. As far as the computational complexity is 

concerned, recent advancements in computer technology has nullified this drawback 

of the Kalman filter. Kalman has certain distinct features that are not provided by 

any other tracking filter. Some of these features are listed below. 

 

5.1.1 Prediction Accuracy 

 

In the process of computing filter weights, calculations for the accuracy of Kalman 

filter prediction are made [20]. The priori covariance matrix of the Kalman filter 

provides this information. This prediction information is needed in weapon delivery 

system. If predicted position of the target is known accurately then it is enough to 

kill the target [13]. It is also needed to accurately predict where a SCUD or any other 

ballistic missile would land. It is also used to determine that from where artillery 

shell was launched and then same information is used to destroy the attacker as well. 

 

5.1.2 Optimal Filtering 

 

Kalman filter make optimal use of the target measurements by adjusting the filter 

weights to take into account the accuracy of the nth measurement [20]. If the target 

measurement was more accurate, then weights will be automatically adjusted in such 

a way that more weight will be given to measurement than prediction. 
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5.1.3 Priori Information 

 

Kalman filter optimally make use of prior information [20]. This is especially useful 

when using two separate devices for searching and tracking. Data from the searching 

devices can be optimally used to initialize the filter weights that will result in small 

transient in tracking filter. 

 

5.1.4 Target Dynamics 

 

Kalman filter is model-based predictor. It uses target dynamic model to predict the 

next state of the target. Target dynamic model allows direct filter update rate [20]. It 

is also possible to use more than one dynamic model in the filter. This helps to track 

the more complex maneuvers made by the target. Now days, it has been widely 

accepted that accurate targeting tracking requires multiple target models. Interacting 

Multiple Model (IMM) has become a generally accepted best method for multiple 

models filtering [21]. By probabilistically combining predictions of these models 

(typically by Kalman), a best guesstimate of target state can be made. 

 

5.2 Models for Kalman Filter 
 

There are two types of tracking models for Kalman filter 

 Constant velocity model 

 Constant Acceleration model 

 

5.2.1 Constant velocity model 
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This model is known as Constant Velocity Model. Since, there is no input that can 

influence the target motion, input coupling matrix is not present in this model. Only 

possible input for this model can be a random noise. This random noise is introduced 

in the velocity variable of the target. Model that incorporates this random component 

in velocity variable is known as Constant Velocity Model with Random Walk. 

With the help of the above discretized state space model, it is possible to generate the 

state of the target after T units of time. Trajectories shown Fig 5-1 was generated 

using the constant velocity model for the target s range and range rate. 
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From Fig 5-1, it can be observed that range of the target is linearly increasing with 

time but the velocity of the target does not change and remain constant at a fixed 

value. This model of the target range is applicable in many situations e.g. a emissary 

aero-plane on surveillance or an underwater mole vehicle will follow a linear range 

model. Constant velocity assumption is somewhat more simplified. This model can be 

improved by introducing a random change in the velocity of the target. This model is 

known as constant velocity model with a random walk . Trajectories shown in Fig 5- 

2 were generated using constant velocity with random walk model for the target s 

range and range rate. A random variable was generated between 0.5 and +0.5 using 

MATLAB. This random value was added to the target velocity to introduce a 

random change in target s range rate or velocity. 
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Again, it can be seen that still the range of the target is changing linearly but now the 

velocity or range rate of this is not constant. Range rate is having random variation 

between 100 and 95. This model is more realistic than the previous one as velocity of 

an object seldom remains constant. There is always a fluctuation in velocity. This 

random walk model was used, most of the time, to generate the data for the target 

azimuth and elevation angles. 

5.2.2 Constant Acceleration Model 

 

This model assumes the acceleration of the target to be constant during the sampling 

time only and not the entire duration of time. Velocity of the target is taken to be 

variable. This model is good for accelerating bodies. This is a third order model that 

introduces one additional variable. 

This model can be represented by the following equations. 
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It can be observed from the Fig 5-3 that range of target is curving up. This parabolic 

trend in the range is due to the fact that target is moving with an acceleration. It is also 

apparent that velocity of the target is linearly increasing with time. This linear 

behavior velocity shows that target is moving with a constant acceleration. Finally, in 

the graph for acceleration of the body, a straight line is observed. This is obvious that 

straight line is also a sign of constant acceleration. In real world, it is almost 

impossible for a target to move with a constant acceleration. 

A more realistic model would be to use a random acceleration, rather than a constant 

one. This model in which acceleration was not held constant; instead, a random 

variable was added to the acceleration component is called constant acceleration 

model with a random walk . Trajectories shown in Fig 5-4 have been produce using 

the random wall model. A 10% random variation was introduced into the acceleration 

variable while velocity variable was kept intact. 
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From Fig 5-4, again a parabolic trend is observed in the range. This is due to the 

acceleration of the target. However, range rate now is not as linear as before, though 

trend is still increasing. Major deviation from the previous model is in range 

acceleration. Rather than being constant, now it is fluctuating about a constant value. 

It is also possible to randomly introduce variation both in velocity and acceleration 

simultaneously. Fig 5-4 shows the scenario where 10% variation in acceleration and 

20% random change was incorporated. 

 

 

In Fig 5-5, negative values of velocity and acceleration can be seen. This represents 

the case when the target is moving towards the sensor. In that case, velocity and 

acceleration of the target will have negative values. This is obvious from the range. It 
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can be seen that first, range is increasing when velocity and acceleration were 

positive. When velocity became negative, then target range decreases which shows 

the target s motion towards the sensor. It also indicates a circular motion of the target.
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5.3 Experimental Results 
 

The experimental results shown below in figure 5-6 onwards prove the accuracy of 

the algorithm followed and implemented in Matlab 7.0. 

 

 

 

 

 

 

 

 
 

 
 

Figure 5-6 Tracking Results using Kalman Filter Showing frame number 10 and 20 
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Here in figure 5-7 the frames shown depict very precise tracking in which object is 

completely engrossed by the tracker. 

 
 

 

 

 

 

 
 

 

 

 

Figure 5-7 Tracking Results using Kalman Filter Showing frame number 42 and 43 
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Similarly in figure 5-8 the tracking sequence is shown where as in frame number 45 

its just about to be grabbed by the tracker. 

 
 

 

 

 
 

 

 

Figure 5-8 Tracking Results using Kalman Filter Showing frame number 45 and 52 
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Figure 5-9 shows the orientation changes of the air borne object used and Kalman 

filter s ability to deal with such sudden directional changes. 

 
 

 

 

 

 

 
 

 
Figure 5-9 Orientation changes and Kalman Filter s Tracking ability shown in frame 

number 143 and 150 
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Such orientation changes as shown in figure 5-10 are a little difficult to handle by the 

tracking techniques as we are not dealing with such maneuvers in this very project so 

tracking algorithm works well. 
 

 

 
 

 
 

Figure 5-10 Orientation changes in frame number 179 

 

 

 
 

 

 

Figure 5-11 Tracking Results using Kalman Filter Showing frame number 155 
 

 

Thus these experimental results make it clear that Kalman Filter is predictive in nature 

and predicts the next move of the object of interest even if the object suffers obstacles. 

This property makes Kalman Filter worth implementation. 
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5.4 Comparison between Techniques Implemented 

 

Moving object tracking is one of the most fertile areas in research sector. Techniques 

available so far are competent still new methods are searched for to enhance the 

features, reduce time, and improve efficiency and augment precision. Tracking is 

widely used in many industries now a days but most of its usage is in defense and 

surveillance sectors .Both of these fields are highly sensitive and receptive and require 

high accuracy .For improving these features new methods are developed and their 

competence level is compared . 

 

The techniques used in this very project are described in detail in chapter 4 and 5. All 

the techniques used show appropriate results which are also shown in experimental 

results session in each chapter. Now a detailed comparison of features and results is 

presented as under in order to make the difference clearer. 

 

The techniques are compared below in Table 5-1 showing their major differences. 

The methods differ from each other in mathematical background and implementation 

method .Kalman Filter is a set of equations which are known as predictor corrector 

equations where as fast mean shift is a convolution between the double derivative of 

kernel and double integral of image .Where as template matching has a template in 

.jpeg format which is an image of object in question and used for comparison with the 

very first frame and later on every previous frame serves as template for the next one. 

This makes the template matching technique adaptive and also drives it closer to 

occlusion problem. 

 

Fast Mean shift is a faster and better technique, far more robust than template 

matching .In spite of all these differences all these methods are still prevalent and 

used in many fields. The comprehensive difference is listed below in Table 5-1. So, 

there were few differences mentioned above in table 5-1 .All these techniques in 

their place serve the purpose of moving object tracking very appropriately. Several 

short comings of template matching are removed by mean shift and similarly to attain 

perfection and accuracy Kalman filter is implemented next .Use of Kalman filter 

ensures the predictive behavior which serves as an important feature for tracking 

field. As in case of any kind of collision of objects or distraction of objects or any 

sudden change in directional attributes Predictive behavior saves the technique from 

being failed. 
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Table 5.1 Difference between Implemented techniques 

 

 

5.5 Conclusion 
 

Kalman filter is correctly called a predictor and corrector as it predicts the next moves 

of the object in question and that is why it is also used to identify the flood s course 

which is highly unexpected phenomena. The comparison described also represents the 

accuracy level of the techniques implemented and their differences as well. 
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Chapter 6 
 

6. Other Methods for Object Detection and Tracking 
 

6.1 Texture Analysis 

Major goals of texture research in computer vision are to understand, model and process 

texture, and ultimately to simulate human visual learning process using computer 

technologies. 

A typical computer vision system can be divided into components such as the ones show 

in Fig 4.7. Texture analysis might be applied to various stages of the process. At the 

preprocessing stage, images could be segmented into contiguous regions based on 

texture properties of each region; At the feature extraction and the classification stages, 

texture features could provide cues for classifying patterns or identifying objects. 

 

Figure 6-1: The components of a typical computer vision system. 

As a fundamental basis for all other texture-related applications, texture analysis seeks to 

derive a general, efficient and compact quantitative description of textures so that 

various mathematical operations can be used to alter, compare and transform textures. 

Most available texture analysis algorithms involve extracting texture features and 

deriving an image coding scheme for presenting selected features. These algorithms 

might differ in either which texture features are extracted or how they are presented in 

https://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node7.html#fig:visionsystem
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the description. For example, a statistical approach describes a texture via image signal 

statistics which reflect nondeterministic properties of spatial distribution of image 

signals. A spectral method extracts texture features from the spectral domain . A 

structural approach considers a texture as a hierarchy of spatial arrangements of well-

defined texture primitives. A probability model describes the underlying stochastic 

process that generates textures. Several representative works on texture analysis. 

Four major application domains related to texture analysis are texture classification, 

texture segmentation, shape from texture, and texture synthesis . Below, each domain is 

described briefly. 

6.1.1 Texture Classification 

Texture classification assigns a given texture to some texture classes [Two main 

classification methods are supervised and unsupervised classification.  

Supervised classification is provided examples of each texture class as a training set. A 

supervised classifier is trained using the set to learn a characterisation for each texture 

class. Unsupervised classification does not require prior knowledge, which is able to 

automatically discover different classes from input textures. Another class is semi-

supervised with only partial prior knowledge being available. 

The majority of classification methods involve a two-stage process. The first stage is 

feature extraction, which yields a characterisation of each texture class in terms of 

feature measures. It is important to identify and select distinguishing features that are 

invariant to irrelevant transformation of the image, such as translation, rotation, and 

scaling. Ideally, the quantitative measures of selected features should be very close for 

similar textures. However, it is a difficult problem to design a universally applicable 

feature extractor, and most present ones are problem dependent and require more or less 

domain knowledge. 

The second stage is classification, in which classifiers are trained to determine the 

classification for each input texture based on obtained measures of selected features. In 

this case, a classifier is a function which takes the selected features as inputs and texture 

classes as outputs. 

In the case of supervised classification, a -nearest neighbour ( -NN) classifier is 

usually applied ,which determines the classification of a texture by computing distances 

to the  nearest training cases. The distances are computed in a multi-

dimensional feature space constructed by selected texture features. Euclidean distance, 

Chi-square distance, and Kullback-Leibler distance  are mostly used as distance metrics 

for distributions and thus similarity metrics for textures. A Bayesian classifier that 
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performs classification via probabilistic inference is also frequently used. A general two-

class Bayesian classifier can be specified by the following Bayes formula , 

 
Here,  wj;j =1,2 denote two categories; the prior  Pr(wj) is the unconditional probability 

of the category w; the prior P(f|w) is called the likelihood of w with respect to a set of 

feature measures . The formula leads to a posterior P(w|f)  that gives the probability of 

a category w given the feature measures . Essentially, this Bayesian classifier converts 

the prior knowledge, i.e. P(w) and P(F|w), into a posterior P(w|f)  that describes the 

probability of classifying a texture into a particular class w given the evidence (observed 

features  ). For instance, based on the classifier, a texture could be assigned to a 

particular category, if the posterior probability is greater than some threshold . A 

Bayesian classifier needs prior knowledge about textures and is based on a probability 

model, while a  classifier makes no assumption on textures and is a non-

parametric approach. 

Leung and Malik  developed a state-of-the-art feature-based method for classifying 3D 

textures under varying viewpoint and illumination. In feature extraction, the method 

applies a filter bank onto the training textures for each material with known viewpoints 

and illumination. A k-mean clustering algorithm is exploited to identify k clusters from 

the vector space concatenating all filter responses. Cluster centres are the 

representative textons of each material and act as feature descriptors. The textons of all 

materials together create a global texton dictionary, so that each material is represented 

by a particular probability density function,i.e. the distribution of texton frequencies, 

with respect to the dictionary. For a novel texture to be classified, the distribution of 

texton frequencies with respect to the texton dictionary is computed, for a 

 classifier to assign the texture to a class with the nearest distribution of texton 

frequencies. Figure 4.3.1 shows examples of textures and their corresponding texton 

distribution with respect to a texton dictionary . 

https://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node7.html#fig:varma-texton
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Figure 6-2: Textures and their corresponding texton distributions . 

Texture classification can sort image data into more readily interpretable information, 

which is used in a wide range of applications such as industrial inspection, image 

retrieval , medical imaging and remote sensing . 

     

(a) (b) 
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(c) (d) 
 

Figure 6-3: Segmentation of an aerial image by texture properties . (a) input aerial 

photo; (b) region map:`field'; (c) region map: `residential area'; (d) region 

map: `vegetation area'. 

 

6.1.2 Texture Segmentation 

Texture segmentation partitions an image into a set of disjoint regions based on texture 

properties, so that each region is homogeneous with respect to certain texture 

characteristics. Results of segmentation can be applied to further image processing and 

analysis, for instance, to object recognition. Similar to classification, segmentation of 

texture also involves extracting features and deriving metrics to segregate textures. 

However, segmentation is generally more difficult than classification, since boundaries 

that separate different texture regions have to be detected in addition to recognising 

texture in each region. 

Texture segmentation could also be supervised or unsupervised depending on if prior 

knowledge about the image or texture class is available. Supervised texture segmentation 

identifies and separates one or more regions that match texture properties shown in the 

training textures. Unsupervised segmentation has to first recover different texture classes 

from an image before separating them into regions. Compared to the supervised case, the 

unsupervised segmentation is more flexible for real world applications despite that it is 

generally more computationally expensive. 

Partitioning an image into homogeneous regions is very useful in a variety of 

applications of pattern recognition and machine leaning. For example, in remote sensing 

and GIS analysis, texture segmentation could be applied to detect landscape change from 

an aerial photo. Figure 4.9 illustrates such an application of texture segmentation which 

finds different ground objects, such as rural, industrial residential areas, based on their 

distinct texture properties appeared in the image  

https://www.cs.auckland.ac.nz/~georgy/research/texture/thesis-html/node7.html#fig:Linjiang
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6.1.3 Shape from Texture 

Shape from texture is the problem of estimating a 3D surface shape by analysing texture 

property of a 2D image. Weak homogeneity or isotropy of a texture is likely to provide a 

shape cue . For instance, texture gradient is usually resulted from perspective projection 

when the surface is viewed from a slant, which infers the parameters of surface shape or 

the underlying perspective transformation. Therefore, via a proper measure of texture 

gradient, a depth map and the object shape could be recovered. 

Shape from texture have been used for recovering true surface orientation, reconstructing 

surface shape, and inferring the 3D layout of objects, in many applications . For 

example, the plane vanish line could be computed from texture deformation in an image , 

which could be used to affine rectify the image. 

6.1.4 Texture Synthesis 

In computer graphics, texture synthesis is a common technique to create large textures 

from usually small texture samples, for the use of texture mapping in surface or scene 

rendering applications. A synthetic texture should differ from the samples, but should 

have perceptually identical texture characteristics . The main advantage of texture 

synthesis in this case is that it can naturally handle boundary condition and avoid 

verbatim repetitions. In computer vision, texture synthesis is of interest also because it 

provides an empirical way to test texture analysis. Because a synthesis algorithm is 

usually based on texture analysis, the result justifies effectiveness of the underlying 

models. Compared to texture classification and segmentation, texture synthesis poses a 

bigger challenge on texture analysis because it requires a more detailed texture 

description and also reproducing textures is generally more difficult than discriminating 

them. 

Other applications of texture synthesis include image editing , image completion , and 

video synthesis  etc. 
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Sample Image Synthetic texture 
 

Figure 6-4: Texture synthesis by example: Given a sample texture, to generate a new image 

having the same visual textural appearance. The synthetic texture is generated using the method 

described in this thesis. 
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6.2 Focusing Analysis 

 

The method discussed here[3] operates in the Fourier transform domain using the exact 

form of the double-square-root (DSR) operator. Mathematical details of this method are 

found in Section E.7. Figure 6-5 summarizes the main computational steps involved in 

this migration velocity analysis based on wavefield extrapolation. 

1. Starting with the prestack data in midpoint y, off-set h, and two-way event 

time t in the unmigrated position, represented by the wavefield P(y, h, τ = 0, t) at 

the surface τ = 0, perform 3-D Fourier transform. The variable τ is associated 

with the direction of wave extrapolation, and is related to depth z by τ = 2z/υ, 

where υ is the medium velocity. 

2. Specify an extrapolation velocity function that only varies vertically, υ(τ) and 

apply the extrapolation operator exp(–iωDSRτ/2) to compute the extrapolated 

wavefield in the transform domain P(ky,kh,τ,ω) from the surface wavefield in the 

transform domain P(ky,kh,τ = 0,ω). 

3. To obtain the zero-offset image, sum over the offset wavenumber, and thus 

obtain P(ky,h = 0, τ, ω). 

4. Apply 2-D inverse Fourier transform to obtain the zero-offset image P(y, h = 

0,τ,t). The image below a midpoint y is contained in the t – τ plane. 

5. Perform mapping of the variables as described in Section E.6 from τ to υ. The 

velocity information is given by the envelope of the velocity volume of data P(y, 

h =0, τ = t, υ). 

We now demonstrate the procedure outlined in Figure 6-5 using a synthetic data set. 

Figure 6-6 shows two common-offset sections over a number of point scatterers buried 

in a constant-velocity earth, where υ = 3000 m/s. Using a constant velocity for 

extrapolation, υe = 3000 m/s, the t – τ image plane was produced for each midpoint. Two 

such planes corresponding to midpoints 1 and 5 denoted in Figure 6-6 are shown in 

Figure 6-7. The υ–τ planes (Figure 6-8) then were generated from the t – τ image planes 

by the mapping procedure described in Section E.7. Peak amplitudes for all events occur 

at the correct medium velocity (3000 m/s). We expect the diffraction events in Figure 6-

5 to migrate to the apexes beneath midpoint 1, where the point scatterers are located. 

Note that in Figure 6-7, almost all the energy is in the image plane corresponding to 

midpoint 1; just five midpoints away, at midpoint 5, the migrated energy is very low. 

How do we interpret the t – τ image planes? If we used the true medium velocity in 

downward extrapolation, then, according to the imaging principle, we would see all the 

events along the diagonal τ = t, the image line, on the image plane. This happens in 

Figure 6-7, because a 3000-m/s extrapolation velocity was used, which is just the 

velocity used in generating the model in Figure 6-5. Any displacement of peak energy 

from the t = τ image line means that the velocity value used for downward extrapolation 

https://wiki.seg.org/wiki/Focusing_analysis#cite_note-ch05r5-3
https://wiki.seg.org/wiki/Topics_in_Dip-Moveout_Correction_and_Prestack_Time_Migration#E.7_Velocity_analysis_by_wavefield_extrapolation
https://wiki.seg.org/wiki/Topics_in_Dip-Moveout_Correction_and_Prestack_Time_Migration#E.6_Prestack_frequency-wavenumber_migration
https://wiki.seg.org/wiki/Topics_in_Dip-Moveout_Correction_and_Prestack_Time_Migration#E.7_Velocity_analysis_by_wavefield_extrapolation
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differs from that of the event. This displacement is also the basis for mapping from 

the t – τ image plane to the υ – τ plane by equation (E-77). 

  

Figure 6-5 A flowchart of an algorithm for focusing analysis. 

  

  

Figure 6-6 Common-offset data derived from a constant-velocity earth model consisting 

of six point scatterers beneath midpoint 1, where (a) is zero-offset and (b) is far offset. 

  

  

Figure 6-7 Image planes corresponding to midpoints 1 and 5 as indicated in Figure 6-6, 

where (a) is CMP 5 and (b) is CMP 1. 

  

  

Figure 6-8 The υ – τ planes corresponding to midpoints 1 and 5 derived from the image 

planes in Figure 6-7, where (a) is CMP 5 and (b) is CMP 1. 

  

  

https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-23.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-24.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-25.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-26.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-27.png


67  

Figure 6-9 Common-offset data based on a horizontally layered earth model containing 

three point scatterers located beneath midpoint 1 on the boundaries between constant-

velocity layers, where (a) is zero-offset and (b) is far offset. 

  

  

Figure 6-10 Image planes corresponding to midpoints 1 and 5 as indicated in Figure 6-

9, where (a) is CMP 5 and (b) is CMP 1. 

  

  

Figure 6-11 The υ – τ planes corresponding to midpoints 1 and 5 derived from the 

image planes in Figure 6-10, where (a) is CMP 5 and (b) is CMP 1. 

  

  

Figure 6-12 (a) CMP gather at location 1 as indicated in Figure 6-7; (b) and (c) are 

velocity spectra derived from this gather by the methods of Figures 6-4 and 6-5, 

respectively. 

This mapping is investigated further with the modeled data set shown in Figure 5.4-27, 

in which velocity increases with depth. In Figure 6-10, note that the top and middle 

events fall to the left of the image line suggesting that the velocity used in extrapolation 

(υe = 3000 m/s) is greater than the velocities associated with these events. The bottom 

event falls on the image line, implying that its velocity is nearly the same as the 

extrapolation velocity. These observations are confirmed in the corresponding υ – 

τ planes in Figure 6-10. While true stacking velocity values for the three events are 2700, 

2850, and 3000 m/s, the velocities interpreted from Figure 6-10 are about 2500, 2800, 

and 3000 m/s. Thus, the migration-based velocity estimate for the shallow event is in 

error by approximately 8 percent. 

https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-28.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-29.png
https://wiki.seg.org/wiki/File:Dip-moveout-correction-and-prestack-migration_fig5.4-30.png
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To determine the reason for the velocity error, we will consider a migration-based 

velocity analysis of our synthetic data example that does not involve the approximate 

mapping step. Figure 6-11 shows a CMP gather from midpoint 1 in the zero-dip region 

of the depth-variable velocity model associated with the constant-offset sections in 

Figure 6-10. The migration velocity analysis on this gather (Figure 6-12) was done by 

extrapolating the surface wavefield P(kh, ω, τ = 0) repeatedly with different constant 

velocities in steps of Δτ = Δt (the sampling rate). The zero-offset trace from each attempt 

was collected after this effort, abandoning the rest of the migrated CMP gather. 

Interpretation of the velocity analysis in Figure 6-12 reveals correct stacking velocities 

for the three events, including the shallowest. Clearly the error observed in Figure 6-9 is 

attributable to the mapping (equation (E-100). Note that the error does not occur because 

of depth variability of velocity, but instead, because the single extrapolation velocity 

used differed from the medium velocity. The conventional velocity analysis for midpoint 

1 of this model data set is shown in Figure 6-12 for comparison. Note the familiar NMO 

stretching that is apparent in the shallow event. In other respects, both the results 

(Figures 6-11 and 6-12) are comparable. 

The departure of an event on the t – τ image plane from the t = τ image line is measured 

by the quantity Δτ as depicted in Figure 5.4-31a. In some practical implementations, 

the t – τ image plane is mapped onto the plane of Δτ versus τ as depicted in Figure 6-12 

to determine the rms velocity υ(τ) for time migration from the extrapolation 

velocity υe (τ). An event with a velocity error υ (τ) – υe (τ) is represented by an energy 

maximum either to the left or to the right of the Δτ = 0 line. The δτ(τ) trend can be 

picked and translated into a velocity trend as depicted in Figure 6-12. This type of 

analysis has come to be called focusing analysis in the industry (Faye and Jeannaut, 

1986). It has been used in some cases erroneously to estimate and update velocity-depth 

models used for depth migration. The method can only provide plausable velocity update 

within the framework of time migration. 

Figure 6-10 is a CMP stack from offshore Texas. A 7000-ft portion (64 midpoints each 

with 48 offset traces) of the profile was used for migration velocity analysis. For 

computational efficiency, the data were windowed into 1024-ms time gates with 50 

percent overlap. The image planes for one particular midpoint are shown in Figure 6-11. 

Different extrapolation velocities picked from a specified regional velocity function are 

used in each time gate. The velocity scan used in mapping is then carried out within a 

corridor around this function. Because different extrapolation velocities are used in 

successive segments, a given event appears at different values of τ in adjacent time 

segments. 

The resulting velocity analysis for the central midpoint is shown in Figure 6-12. In 

conventional practice, to improve the quality of velocity picks, velocity analyses from a 

number of neighboring CMP gathers often are summed. Figure 6-12 shows the result of 

stacking velocity analysis for data from the six adjacent CMP gathers indicated in Figure 

6-12. For the migration-based method, the υ – τ planes corresponding to these gathers 
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were summed. The result is shown in Figure 6-12. The most obvious difference between 

the two results is the lack of shallow information in the migration-based υ – τ plane. This 

shortcoming is attributed to spatial aliasing and lack of long-offset data in the shallow 

time gate. The problem can be eliminated partly by increasing the length of the time gate 

used in the velocity analysis. With the shortcut time-windowing approach described 

above, the shallowest time segment did not include the large-offset data necessary for 

velocity resolution. Because the events have dip, the derived migration velocities are 

lower (by up to 4.5 percent) than the velocities derived from the stacking velocity 

analysis. 

The velocity analysis described in this section does not handle lateral variations in 

velocity. It is based on a Fourier-transform domain formulation with only vertically 

varying velocity used in extrapolation. This method may be particularly efficient for the 

dip-corrected velocity estimate needed for time migration. 
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6.3 3D face Algorithm 

 
The estimation of 3D face shape from a single image must be robust to variations in lighting, 

head pose, expression, facial hair, makeup, and occlusions. Robustness requires a large 

training set of in-the-wild images, which by construction, lack ground truth 3D shape.” 

(MPIIS). 

In a new paper accepted at CVPR 2019, researchers from the Max Planck Institute for 

Intelligent Systems introduce RingNet, an end-to-end trainable network which learns to 

compute 3D face shape from a single face image without 3D supervision. The researchers also 

built a new benchmark dataset and a 3D reconstruction benchmark challenge, NoW, both of 

which have been open-sourced on Github. 

The Max Planck Institute responded to Synced questions regarding their new paper, RingNet 

and the open challenge. 

How would you describe RingNet? 

RingNet is an end-to-end trainable network that enforces shape consistency across face images 

of the subject with varying viewing angles, light conditions, resolution, and occlusion. It is 

able to learn 3D face geometry from 2D images, but it only need single image for inference. 

 

 
Figure 6-13 Ring Element Output 

Why does this research matter? 

The idea of RingNet is quite general even if it is only used for faces. One can potentially use 

this idea for other 3D reconstruction purposes. In this work, our researchers also introduce a 

3D reconstruction benchmark challenge NoW and an evaluation metric to provide the research 

community with quantitative feedback which was lacking in this field. The aim is to 

encourage other researchers to participate in this challenge and go beyond visual comparisons. 

Since people can reconstruct a 3D face from single images with neck and full head, the 

technique can potentially be used for the animation industry or different face apps. There 

could be many interesting applications by combining RingNet and VOCA project (voice 

https://github.com/soubhiksanyal/RingNet
https://voca.is.tue.mpg.de/
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driven face animation model), for example, Using RingNet to prepare a template mesh for 

VOCA, then animate it with audio, i.e., a talking head from a face image. 

Could you describe the Challenge NoW in more detail? 

The goal of this benchmark is to measure the accuracy and robustness of 3D face 

reconstruction methods under variations in viewing angle, lighting, and common occlusions 

by a standard evaluation metric. 

The NoW Dataset introduced to run the challenge contains 2054 2D images of 100 subjects, 

captured with an iPhone X, and a separate 3D head scan for each subject. The head scans 

serve as ground truth for the evaluation. The subjects were selected to contain variations in 

age, BMI, and sex (55 female, 45 male). 

The challenge for all categories is to reconstruct a neutral 3D face given a single monocular 

image. Note that facial expressions are present in several images, which requires methods to 

disentangle identity and expression to evaluate the quality of the predicted identity. 

 

 
Figure 6-14 (a) Blur 2D image (b) Perfect 3D image 

Can you identify any bottlenecks in the research? 

A bottleneck of the research topic is people tend to rely on only 2D landmarks. This certainly 

constrains the quality of the 3D reconstruction to some extent. Using dense correspondences 

should be able to push the limit to a new level. 

Why do we need 3D when 2D is already looking good? 

https://ringnet.is.tue.mpg.de/challenge
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People may find some 2D face animations (like the Obama lip sync, Kumar, Rithesh, et al 

2017 ) are already quite realistic. Although their results can look good by learning from huge 

datasets, we are lacking the ability to manipulate these 2D models accurately. Additionally, 

looking good is not enough, we need to understand what’s really going on. We live in a 3D 

world, this is what’s really behind every 2D picture and movie frame. So without 3D 

information, we can’t ask a GAN which is only trained with 2D images and landmarks to 

maintain the face shape in each frame when it’s rotating. A 3D model also gets more 

correspondence than 2D for example regarding each pixel’s relevance. Nowadays, face 

tracking by 2D landmark localization performs pretty well, but landmarks alone can’t provide 

the dense correspondence between frames. This is the key motivation for making 3D 

reconstruction more accurate and robust. 
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6.4 Hurestic Algorithm 
 

6.4.1 The “no machine learning” challenge 
 

Inspired by Nick’s post, I decided to challenge myself to explore if similar results could be 

achieved without the use of machine learning. It struck me that the bottles used in the original 

demo could be detected based on their colour or other characteristics along with some simple 

matching rules. This is known as an heuristic approach to problem solving. 

Potential advantages of this include: 

 Ease of development and conceptualisation 

 Lower CPU and memory use 

 Fewer dependencies 

In terms of CPU and memory, on my i5 MacBook Pro, the IBM Cloud Annotations demo uses 

over 100% CPU and more than 1.5 Gigabytes of RAM. It also relies on a web browser and 

some heavy dependencies including Tensorflow, React.js, node.js and COCO-SSD itself. 

The rules I set myself are: 

1. Coke, Pepsi and Mountain Dew bottles must be labelled correctly 

2. A rectangle should be drawn around each bottle as it moves 

3. Minimal code 

4. No machine learning techniques! 

The original demo claims to use only 10 lines of code, however including boilerplate, 

the current demo is 107 lines of JavaScript. I think under 100 lines is a good aim for this task. 

 

6.4.2 Approach and solution 
Firstly, I decided to base my project in OpenCV since I have previously used it for work 

projects, it has relatively easy setup and is designed specifically for computer vision. OpenCV 

is written in C++ and has bindings in Python and JavaScript. I decided to go with the Python 

version for convenience. 

I started with just recognising a Coke bottle. For this, a naïve solution would be to analyse the 

colours in a video frame and place a label where coke red is found. One problem here is that 

depending on the lighting conditions and camera colour accuracy, the bottle label is unlikely 

to be exactly RGB 244 0 0. 

To solve this, we can use a HSV colour representation along with cv::inRange to find colours 

within the image that are within a given range. Think “shades of red”. This gives us an image 

mask with all the red coloured areas white and everything else black. We can then 

use cv::findContours to supply a list of points that define each “red area” within the frame.  

 

 

 

 

https://en.wikipedia.org/wiki/Heuristic
https://codesandbox.io/s/z364noozrm
https://opencv.org/
https://docs.opencv.org/3.4/d5/d10/tutorial_js_root.html
https://usbrandcolors.com/coca-cola-colors/
https://en.wikipedia.org/wiki/HSL_and_HSV
https://docs.opencv.org/trunk/d2/de8/group__core__array.html#ga48af0ab51e36436c5d04340e036ce981
https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
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The basic code will look something like this: 

mask = cv2.inRange(hsv, colour.lower, colour.upper) 

conts, heirarchy = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, 

cv2.CHAIN_APPROX_NONE) 

biggest = sorted(conts, key=cv2.contourArea, reverse=True)[0] 

The third line of code sorts the detected “red” contours and returns the largest one. Done! 

…right? Well unfortunately not. Left like this, the program often finds Coke in the image even 

when there is none. 

 

 
Figure 6-15 Coke false positive 

To deal with this we need an additional heuristic. I found simply excluding any contour 

smaller than 50×50 worked well enough. 

if w < 50 or h < 50: 

    continue 

Finally, for our detection system to work well, we need to exclude colours that are found 

“inside” other colours. For example both the Pepsi and Mountain Dew labels contain red, 

which will get detected as Coke unless we exclude it. So we add a special heuristic for Coke 

that ignores detection if it is within the vertical bounds of another bottle. 

if name == "Coke": 

    if any([contains_vertical(rects[n], rect) for n in rects]): 

        continue 
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6.4.3 Demonstration 
Putting it all together, here is a working demonstration of the final system.On my i5 MacBook 

Pro this runs smoothly at around 45% CPU with just over 50MB RAM. The full source code 

comes to 85 lines and is available here. 

 

6.4.4 Limitations 
One of the limitations of this colour-based approach is that it doesn’t place the bounding box 

around the bottle but only the coloured area. We could define additional rules to consider the 

colour above or below the detected region, or attempt to guess where the bounding box should 

be, but the code would quickly become complicated. 

Another limitation is that whilst our system can recognise a Coke and a Pepsi bottle at the 

same time, it can’t detect two Coke bottles. We could add further heuristics to deal with this 

but I would question if an heuristic approach is the right choice if so much complexity needs 

to be added. 

 

6.4.5 Deep learning vs heuristics 
I have shown that it’s straightforward to build a heuristic detector with accuracy comparable to 

that of a deep learning-based system for a highly constrained task. Furthermore, the heuristic 

object detector is conceptually simpler, has fewer dependencies, takes significantly less CPU 

and uses an order-of-magnitude less memory. 

However, the heuristic approach is not as robust or accurate as using deep learning. A deep 

learning system can trivially recognise multiple instances of the same object at different scales 

and rotations, depending on how it is trained. It can also do things like recognise partial 

objects even if key features are missing. 

 

6.5 Conclusion 
For me, this isn’t a clear win for deep learning and I think there still is a place for an heuristic 

approach. The more assumptions that can be made about the detection conditions (consistent 

background and / or scale, constrained object types, distinguishing features such as colour) the 

more appeal heuristics have. As a developer, I would consider a heuristic based solution if 

time and resources were tight and the input constraints were clearly defined. If I wanted 

increased robustness and flexibility, I would opt for machine learning. Both approaches 

definitely have their place, and it’s a question of choosing the right tool for the job. 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/jamiebullock/heuristic-bottle-detection
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Chapter 7 
 

7. GUI (Graphical User Interface) 
 

7.1 What is liveness detection and why do we need it? 
 

Figure 7.1: Liveness detection with OpenCV. On the left is a live (fake) video of me with my 

brother and on the right we can see I am holding my Phone (real). 

Face recognition systems are becoming more prevalent than ever. From face recognition on 

our iPhone/smartphone, to face recognition for mass surveillance in China, face recognition 

systems are being utilized everywhere. 

However, face recognition systems are easily fooled by “spoofing” and “non-real” faces. 

Face recognition systems can be circumvented simply by holding up a photo of a person 

(whether printed, on a smartphone, etc.) to the face recognition camera. In order to make face 

recognition systems more secure, we need to be able to detect such fake/non-real faces —

 liveness detection is the term used to refer to such algorithms. 

There are a number of approaches to liveness detection, including: 
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 Texture analysis, including computing Local Binary Patterns (LBPs) over face regions 

and using an SVM to classify the faces as real or spoofed. 

 Frequency analysis, such as examining the Fourier domain of the face. 

 Variable focusing analysis, such as examining the variation of pixel values between two 

consecutive frames. 

 Heuristic-based algorithms, including eye movement, lip movement, and blink 

detection. These set of algorithms attempt to track eye movement and blinks to ensure 

the user is not holding up a photo of another person (since a photo will not blink or move 

its lips). 

 Optical Flow algorithms, namely examining the differences and properties of optical 

flow generated from 3D objects and 2D planes. 

 3D face shape, similar to what is used on Apple’s iPhone face recognition system, 

enabling the face recognition system to distinguish between real faces and 

printouts/photos/images of another person. 

 Combinations of the above, enabling a face recognition system engineer to pick and 

choose the liveness detections models appropriate for their particular application. 

A full review of liveness detection algorithms can be found in Chakraborty and Das’ 2014 

paper, An Overview of Face liveness Detection. For the purposes of today’s tutorial, we’ll 

be treating liveness detection as a binary classification problem. Given an input image, 

we’ll train a Convolutional Neural Network capable of distinguishing real 

faces from fake/spoofed faces. But before we get to training our liveness detection model, 

let’s first examine our dataset. 

Our liveness detection videos 

To keep our example straightforward, the liveness detector we are building in this blog post 

will focus on distinguishing real faces versus spoofed faces on a screen. This algorithm can 

easily be extended to other types of spoofed faces, including print outs, high-resolution prints, 

etc. 

In order to build the liveness detection dataset, I: 

1. Took my iPhone and put it in portrait/selfie mode. 

2. Recorded a ~25-second video of myself walking around my office. 

3. Replayed the same 25-second video, this time facing my Phone towards my 

desktop where I recorded the video replaying. 

4. This resulted in two example videos, one for “real” faces and another for “fake/spoofed” 

faces. 

https://pyimagesearch.com/2015/12/07/local-binary-patterns-with-python-opencv/
https://pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/
https://pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-python-dlib/
https://arxiv.org/pdf/1405.2227.pdf
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5. Finally, I applied face detection to both sets of videos to extract individual face ROIs for 

both classes. 

I have provided with both my real and fake video files in the “Downloads” section of the 

post. 

We can use these videos as a starting point for our dataset but I would 

recommend gathering more data to help make our liveness detector more robust and 

accurate. With testing, I determined that the model is slightly biased towards my own face 

which makes sense because that is all the model was trained on. And furthermore, since I am 

white/Caucasian I wouldn’t expect this same dataset to work as well with other skin tones. 

Ideally, we would train a model with faces of multiple people and include faces of multiple 

ethnicities.  Be sure to refer to the “Limitations and further work“section below for 

additional suggestions on improving our liveness detection models. In the rest of the tutorial, 

we will learn how to take the dataset I recorded it and turn it into an actual liveness detector 

with OpenCV and deep learning. 

7.1.1 Project structure 

Go ahead and grab the code, dataset, and liveness model using the “Downloads” section of 

this post and then unzip the archive.Once we navigate into the project directory, we’ll notice 

the following structure: 

liveness Detection with OpenCV 

$ tree --dirsfirst --filelimit 10 

. 

├── dataset 

│ ├── fake [150 entries] 

│ └── real [161 entries] 

├── face_detector 

│ ├── deploy.prototxt 

│ └── res10_300x300_ssd_iter_140000.caffemodel 

├── pyimagesearch 

│ ├── __init__.py 

│ └── livenessnet.py 

├── videos 

│ ├── fake.mp4 

│ └── real.mov 

├── gather_examples.py 

├── train_liveness.py 

├── liveness_demo.py 

├── le.pickle 

├── liveness.model 

└── plot.png 

6 directories, 12 files 
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There are four main directories inside our project: 

 dataset/ 

 : Our dataset directory consists of two classes of images: 

 Fake images of me from a camera aimed at my screen while playing a video of my 

face. 

 Real images of me captured from a selfie video with my phone. 

 face_detector/ 

 : Consists of our pretrained Caffe face detector to locate face ROIs. 

 pyimagesearch/ 

 : This module contains our LivenessNet class. 

 videos/ 

 : I’ve provided two input videos for training our LivenessNet classifier. 

Today we’ll be reviewing three Python scripts in detail. By the end of the post we’ll be able 

to run them on our own data and input video feeds as well. In order of appearance in this 

tutorial, the three scripts are: 

1. gather_examples.py 

 : This script grabs face ROIs from input video files and helps us to create a deep learning 

face liveness dataset. 

 

2. train_liveness.py 

 : As the filename indicates, this script will train our LivenessNet classifier. We’ll use Keras 

and TensorFlow to train the model. The training process results in a few files: 

 

 le.pickle 

 : Our class label encoder. 

 

 liveness.model 

 : Our serialized Keras model which detects face liveness. 

 

 plot.png 

 : The training history plot shows accuracy and loss curves so we can assess our model 

(i.e. over/underfitting). 

 

3. liveness_demo.py 

 : Our demonstration script will fire up our webcam to grab frames to conduct face liveness 

detection in real-time. 
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7.1.2 Detecting and extracting face ROIs from our training (video) dataset 

 
Figure 7.2: Detecting face ROIs in video for the purposes of building a liveness detection 

dataset. 

Now that we’ve had a chance to review both our initial dataset and project structure, let’s see 

how we can extract both real and fake face images from our input videos. 

The end goal if this script will be to populate two directories: 

1. dataset/fake/  : Contains face ROIs from the fake.mp4 file. 

 

2. dataset/real/   : Holds face ROIs from the real.mov file. 

Given these frames, we’ll later train a deep learning-based liveness detector on the images. 

Open up the gather_examples.py file and insert the following code: 

1 # import the necessary packages 

2 import numpy as np 

3 import argparse 

4 import cv2 

5 import os 

6 

7 # construct the argument parse and parse the arguments 

8 ap = argparse.ArgumentParser() 

9 ap.add_argument("-i", "--input", type=str, required=True, 

10 help="path to input video") 

11 ap.add_argument("-o", "--output", type=str, required=True, 

12 help="path to output directory of cropped faces") 

13 ap.add_argument("-d", "--detector", type=str, required=True, 

14 help="path to OpenCV's deep learning face detector") 

15 ap.add_argument("-c", "--confidence", type=float, default=0.5, 

16 help="minimum probability to filter weak detections") 

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_detect_faces.png
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17 ap.add_argument("-s", "--skip", type=int, default=16, 

18 help="# of frames to skip before applying face detection") 

19 args = vars(ap.parse_args()) 

Lines 2-5 import our required packages. This script only requires OpenCV and NumPy in 

addition to built-in Python modules. 

From there Lines 8-19 parse our command line arguments: 

 --input 

 : The path to our input video file. 

 --output 

 : The path to the output directory where each of the cropped faces will be stored. 

 --detector 

 : The path to the face detector. We’ll be using OpenCV’s deep learning face detector. 

This Caffe model is included with today’s “Downloads” for our convenience. 

 --confidence 

 : The minimum probability to filter weak face detections. By default, this value is 50%. 

 --skip 

 : We don’t need to detect and store every image because adjacent frames will be similar. 

Instead, we’ll skip N frames between detections. We can alter the default of 16 using this 

argument. 

Let’s go ahead and load the face detector and initialize our video stream: 

21 # load our serialized face detector from disk 

22 print("[INFO] loading face detector...") 

23 protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"]) 

24 modelPath = os.path.sep.join([args["detector"], 

25 "res10_300x300_ssd_iter_140000.caffemodel"]) 

26 net = cv2.dnn.readNetFromCaffe(protoPath, modelPath) 

27 

28 # open a pointer to the video file stream and initialize the total 

29 # number of frames read and saved thus far 

30 vs = cv2.VideoCapture(args["input"]) 

31 read = 0 

32 saved = 0 

 

https://pyimagesearch.com/2018/03/12/python-argparse-command-line-arguments/
https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/
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Lines 23-26 load OpenCV’s deep learning face detector. 

From there we open our video stream on Line 30. We also initialize two variables for the 

number of frames read as well as the number of frames saved while our loop executes (Lines 

31 and 32). Let’s go ahead create a loop to process the frames: 

34 # loop over frames from the video file stream 

35 while True: 

36 # grab the frame from the file 

37 (grabbed, frame) = vs.read() 

38 

39 # if the frame was not grabbed, then we have reached the end 

40 # of the stream 

41 if not grabbed: 

42 break 

43 

44 # increment the total number of frames read thus far 

45 read += 1 

46 

47 # check to see if we should process this frame 

48 if read % args["skip"] != 0: 

49 continue 
 

Our while loop begins on Lines 35. From there we grab and verify a frame (Lines 37-42).At 

this point, since we’ve read a frame, we’ll increment our readcounter (Line 48). If we are 

skipping this particular frame, we’ll continue without further processing (Lines 48 and 49). 

Let’s go ahead and detect faces: 

51 # grab the frame dimensions and construct a blob from the frame 

52 (h, w) = frame.shape[:2] 

53 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, 

54 (300, 300), (104.0, 177.0, 123.0)) 

55 

56 # pass the blob through the network and obtain the detections and 

57 # predictions 

58 net.setInput(blob) 

59 detections = net.forward() 

60 

61 # ensure at least one face was found 

62 if len(detections) > 0: 

63 # we're making the assumption that each image has only ONE 

64 # face, so find the bounding box with the largest probability 

65 i = np.argmax(detections[0, 0, :, 2]) 

66 confidence = detections[0, 0, i, 2] 

 

https://pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/
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In order to perform face detection, we need to create a blob from the image (Lines 53 and 

54). This blob has a 300×300 width and height to accommodate our Caffe face detector. 

Scaling the bounding boxes will be necessary later, so Line 52, grabs the frame dimensions. 

Lines 58 and 59 perform a forward pass of the blob through the deep learning face detector. 

Our script makes the assumption that there is only one face in each frame of the video (Lines 

62-65). This helps prevent false positives. If We’re working with a video containing more 

than one face, I recommend that we adjust the logic accordingly. Thus, Line 65 grabs the 

highest probability face detection index. Line 66 extracts the confidence of the detection 

using the index. 

Let’s filter weak detections and write the face ROI to disk: 

68 # ensure that the detection with the largest probability also 

69 # means our minimum probability test (thus helping filter out 

70 # weak detections) 

71 if confidence > args["confidence"]: 

72 # compute the (x, y)-coordinates of the bounding box for 

73 # the face and extract the face ROI 

74 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

75 (startX, startY, endX, endY) = box.astype("int") 

76 face = frame[startY:endY, startX:endX] 

77 

78 # write the frame to disk 

79 p = os.path.sep.join([args["output"], 

80 "{}.png".format(saved)]) 

81 cv2.imwrite(p, face) 

82 saved += 1 

83 print("[INFO] saved {} to disk".format(p)) 

84 

85 # do a bit of cleanup 

86 vs.release() 

87 cv2.destroyAllWindows() 

 

Line 71 ensures that our face detection ROI meets the minimum threshold to reduce false 

positives.From there we extract the face ROI bounding box coordinates and face ROI itself 

(Lines 74-76). We generate a path + filename for the face ROI and write it to disk on Lines 

79-81. At this point, we can increment the number of saved faces. Once processing is 

complete, we’ll perform cleanup on Lines 86 and 87. 

 

 

 

 

 

 

 

https://pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/
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7.1.3 Building our liveness detection image dataset 

  

          Figure 7.3: Our OpenCV face liveness detection dataset. We’ll use Keras and OpenCV 

to train and demo a liveness model. 

Now that we’ve implemented the gather_examples.py script, let’s put it to work. Make sure 

we use the “Downloads” section of this tutorial to grab the source code and example input 

videos. 

From there, open up a terminal and execute the following command to extract faces for 

our “fake/spoofed” class: 

liveness Detection with OpenCV 

$ python gather_examples.py --input videos/fake.mp4 --output dataset/fake \ 

--detector face_detector --skip 1 

[INFO] loading face detector... 

[INFO] saved datasets/fake/0.png to disk 

[INFO] saved datasets/fake/1.png to disk 

[INFO] saved datasets/fake/2.png to disk 

[INFO] saved datasets/fake/3.png to disk 

[INFO] saved datasets/fake/4.png to disk 

[INFO] saved datasets/fake/5.png to disk 

... 

[INFO] saved datasets/fake/145.png to disk 

[INFO] saved datasets/fake/146.png to disk 

[INFO] saved datasets/fake/147.png to disk 

[INFO] saved datasets/fake/148.png to disk 

[INFO] saved datasets/fake/149.png to disk 

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_dataset.png
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Similarly, we can do the same for the “real” class as well: 

liveness Detection with OpenCV 

$ python gather_examples.py --input videos/real.mov --output dataset/real \ 

--detector face_detector --skip 4 

[INFO] loading face detector... 

[INFO] saved datasets/real/0.png to disk 

[INFO] saved datasets/real/1.png to disk 

[INFO] saved datasets/real/2.png to disk 

[INFO] saved datasets/real/3.png to disk 

[INFO] saved datasets/real/4.png to disk 

... 

[INFO] saved datasets/real/156.png to disk 

[INFO] saved datasets/real/157.png to disk 

[INFO] saved datasets/real/158.png to disk 

[INFO] saved datasets/real/159.png to disk 

[INFO] saved datasets/real/160.png to disk 

Since the “real” video file is longer than the “fake” video file, we’ll use a longer skip frames 

value to help balance the number of output face ROIs for each class. After executing the 

scripts we should have the following image counts: 

 Fake: 150 images 

 Real: 161 images 

 Total: 311 images 

Implementing “LivenessNet”, our deep learning liveness detector 

 
Figure 7.4: Deep learning architecture for LivenessNet, a CNN designed to detect face 

liveness in images and videos. 

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_arch.png
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The next step is to implement “LivenessNet”, our deep learning-based liveness detector. At 

the core, LivenessNet is actually just a simple Convolutional Neural Network. 

We’ll be purposely keeping this network as shallow and with as few parameters as 

possible for two reasons: 

1. To reduce the chances of overfitting on our small dataset. 

2. To ensure our liveness detector is fast, capable of running in real-time (even on resource-

constrained devices, such as the Raspberry Pi). 

Let’s implement LivenessNet now — open up  

1 # import the necessary packages 

2 from keras.models import Sequential 

3 from keras.layers.normalization import BatchNormalization 

4 from keras.layers.convolutional import Conv2D 

5 from keras.layers.convolutional import MaxPooling2D 

6 from keras.layers.core import Activation 

7 from keras.layers.core import Flatten 

8 from keras.layers.core import Dropout 

9 from keras.layers.core import Dense 

10 from keras import backend as K 

11 

12 class LivenessNet: 

13 @staticmethod 

14 def build(width, height, depth, classes): 

15 # initialize the model along with the input shape to be 

16 # "channels last" and the channels dimension itself 

17 model = Sequential() 

18 inputShape = (height, width, depth) 

19 chanDim = -1 

20 

21 # if we are using "channels first", update the input shape 

22 # and channels dimension 

23 if K.image_data_format() == "channels_first": 

24 inputShape = (depth, height, width) 

25 chanDim = 1 

All of our imports are from Keras (Lines 2-10). For an in-depth review of each of these 

layers and functions, be sure to refer to Deep Learning for Computer Vision with Python. 

Our LivenessNet class is defined on Line 12. It consists of one static method, build (Line 

14). The build method accepts four parameters: 

 

 

https://pyimagesearch.com/deep-learning-computer-vision-python-book/
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 width 

 : How wide the image/volume is. 

 height 

 : How tall the image is. 

 depth 

 : The number of channels for the image (in this case 3 since we’ll be working with RGB 

images). 

 classes 

 : The number of classes. We have two total classes: “real” and “fake”. 

Our model is initialized on Line 17. 

The inputShape to our model is defined on Line 18 while channel ordering is determined 

on Lines 23-25. 

Let’s begin adding layers to our CNN: 

27 # first CONV => RELU => CONV => RELU => POOL layer set 

28 model.add(Conv2D(16, (3, 3), padding="same", 

29 input_shape=inputShape)) 

30 model.add(Activation("relu")) 

31 model.add(BatchNormalization(axis=chanDim)) 

32 model.add(Conv2D(16, (3, 3), padding="same")) 

33 model.add(Activation("relu")) 

34 model.add(BatchNormalization(axis=chanDim)) 

35 model.add(MaxPooling2D(pool_size=(2, 2))) 

36 model.add(Dropout(0.25)) 

37 

38 # second CONV => RELU => CONV => RELU => POOL layer set 

39 model.add(Conv2D(32, (3, 3), padding="same")) 

40 model.add(Activation("relu")) 

41 model.add(BatchNormalization(axis=chanDim)) 

42 model.add(Conv2D(32, (3, 3), padding="same")) 

43 model.add(Activation("relu")) 

44 model.add(BatchNormalization(axis=chanDim)) 

45 model.add(MaxPooling2D(pool_size=(2, 2))) 

46 model.add(Dropout(0.25)) 

Our CNN exhibits VGGNet-esque qualities. It is very shallow with only a few learned filters. 

Ideally, we won’t need a deep network to distinguish between real and spoofed faces. 
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The first CONV => RELU => CONV => RELU => POOL  layer set is specified on Lines 

28-36 where batch normalization and dropout are also added. Another CONV => RELU => 

CONV => RELU => POOL layer set is appended on Lines 39-46. Finally, we’ll add our FC 

=> RELU layers: 

48 # first (and only) set of FC => RELU layers 

49 model.add(Flatten()) 

50 model.add(Dense(64)) 

51 model.add(Activation("relu")) 

52 model.add(BatchNormalization()) 

53 model.add(Dropout(0.5)) 

54 

55 # softmax classifier 

56 model.add(Dense(classes)) 

57 model.add(Activation("softmax")) 

58 

59 # return the constructed network architecture 

60 return model 

Lines 49-57 consist of fully connected and ReLU activated layers with a softmax classifier 

head. The model is returned to the training script on Line 60. 
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7.1.4 Creating the liveness detector training script 

 
Figure 7.5: The process of training LivenessNet. Using both “real” and “spoofed/fake” 

images as our dataset, we can train a liveness detection model with OpenCV, Keras, and 

deep learning. 

Given our dataset of real/spoofed images as well as our implementation of LivenessNet, 

we are now ready to train the network. 

Open up the train_liveness.py file and insert the following code: 

1 # set the matplotlib backend so figures can be saved in the background 

2 import matplotlib 

3 matplotlib.use("Agg") 

4 

5 # import the necessary packages 

6 from pyimagesearch.livenessnet import LivenessNet 

7 from sklearn.preprocessing import LabelEncoder 

8 from sklearn.model_selection import train_test_split 

9 from sklearn.metrics import classification_report 

10 from keras.preprocessing.image import ImageDataGenerator 

11 from keras.optimizers import Adam 

12 from keras.utils import np_utils 

https://pyimagesearch.com/wp-content/uploads/2019/03/liveness_detection_opencv_training_process.png
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13 from imutils import paths 

14 import matplotlib.pyplot as plt 

15 import numpy as np 

16 import argparse 

17 import pickle 

18 import cv2 

19 import os 

20 

21 # construct the argument parser and parse the arguments 

22 ap = argparse.ArgumentParser() 

23 ap.add_argument("-d", "--dataset", required=True, 

24 help="path to input dataset") 

25 ap.add_argument("-m", "--model", type=str, required=True, 

26 help="path to trained model") 

27 ap.add_argument("-l", "--le", type=str, required=True, 

28 help="path to label encoder") 

29 ap.add_argument("-p", "--plot", type=str, default="plot.png", 

30 help="path to output loss/accuracy plot") 

31 args = vars(ap.parse_args()) 
 

Our face liveness training script consists of a number of imports (Lines 2-19). Let’s 

review them now: 

 matplotlib 

 : Used to generate a training plot. We specify the "Agg"  backend so we can easily 

save our plot to disk on Line 3. 

 LivenessNet 

 : The liveness CNN that we defined in the previous section. 

 train_test_split 

 : A function from scikit-learn which constructs splits of our data for training and 

testing. 

 classification_report 

 : Also from scikit-learn, this tool will generate a brief statistical report on our 

model’s performance. 

 ImageDataGenerator 

 : Used for performing data augmentation, providing us with batches of randomly 

mutated images. 

 Adam 
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 : An optimizer that worked well for this model. (alternatives include SGD, 

RMSprop, etc.). 

 paths 

 : From my imutils package, this module will help us to gather the paths to all of our 

image files on disk. 

 

 pyplot 

 : Used to generate a nice training plot. 

 numpy 

 : A numerical processing library for Python. It is an OpenCV requirement as well. 

 argparse 

 : For processing command line arguments. 

 pickle 

 : Used to serialize our label encoder to disk. 

 cv2 

 : Our OpenCV bindings. 

 os 

 : This module can do quite a lot, but we’ll just be using it for it’s operating system 

path separator. 

That was a mouthful, but now that we know what the imports are for, reviewing the rest 

of the script should be more straightforward. This script accepts four command line 

arguments: 

 --dataset 

 : The path to the input dataset. Earlier in the post we created the dataset with 

the gather_examples.py script. 

 --model 

 : Our script will generate an output model file — here we supply the path to it. 

https://pyimagesearch.com/2018/03/12/python-argparse-command-line-arguments/
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 --le 

 : The path to our output serialized label encoder file also needs to be supplied. 

 --plot 

 : The training script will generate a plot. If we wish to override the default value 

of "plot.png" , we should specify this value on the command line. 

This next code block will perform a number of initializations and build our data: 

33 # initialize the initial learning rate, batch size, and number of 

34 # epochs to train for 

35 INIT_LR = 1e-4 

36 BS = 8 

37 EPOCHS = 50 

38 

39 # grab the list of images in our dataset directory, then initialize 

40 # the list of data (i.e., images) and class images 

41 print("[INFO] loading images...") 

42 imagePaths = list(paths.list_images(args["dataset"])) 

43 data = [] 

44 labels = [] 

45 

46 for imagePath in imagePaths: 

47 # extract the class label from the filename, load the image and 

48 # resize it to be a fixed 32x32 pixels, ignoring aspect ratio 

49 label = imagePath.split(os.path.sep)[-2] 

50 image = cv2.imread(imagePath) 

51 image = cv2.resize(image, (32, 32)) 

52 

53 # update the data and labels lists, respectively 

54 data.append(image) 

55 labels.append(label) 

56 

57 # convert the data into a NumPy array, then preprocess it by scaling 

58 # all pixel intensities to the range [0, 1] 

59 data = np.array(data, dtype="float") / 255.0 
 

Training parameters including initial learning rate, batch size, and number of epochs are 

set on Lines 35-37.From there, our imagePaths are grabbed. We also initialize two lists 

to hold our data and class labels (Lines 42-44).The loop on Lines 46-55 builds our data 

and labels lists. The data consists of our images which are loaded and resized to 

be 32×32 pixels. Each image has a corresponding label stored in the labels list. All pixel 

intensities are scaled to the range [0, 1] while the list is made into a NumPy array 

via Line 59. 

Now let’s encode our labels and partition our data: 
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61 # encode the labels (which are currently strings) as integers and then 

62 # one-hot encode them 

63 le = LabelEncoder() 

64 labels = le.fit_transform(labels) 

65 labels = np_utils.to_categorical(labels, 2) 

66 

67 # partition the data into training and testing splits using 75% of 

68 # the data for training and the remaining 25% for testing 

69 (trainX, testX, trainY, testY) = train_test_split(data, labels, 

70 test_size=0.25, random_state=42) 
 

Lines 63-65 one-hot encode the labels. We utilize scikit-learn to partition our data — 

75% is used for training while 25% is reserved for testing (Lines 69 and 70). Next, we’ll 

initialize our data augmentation object and compile + train our face liveness model: 

72 # construct the training image generator for data augmentation 

73 aug = ImageDataGenerator(rotation_range=20, zoom_range=0.15, 

74 width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, 

75 horizontal_flip=True, fill_mode="nearest") 

76 

77 # initialize the optimizer and model 

78 print("[INFO] compiling model...") 

79 opt = Adam(lr=INIT_LR, decay=INIT_LR / EPOCHS) 

80 model = LivenessNet.build(width=32, height=32, depth=3, 

81 classes=len(le.classes_)) 

82 model.compile(loss="binary_crossentropy", optimizer=opt, 

83 metrics=["accuracy"]) 

84 

85 # train the network 

86 print("[INFO] training network for {} epochs...".format(EPOCHS)) 

87 H = model.fit_generator(aug.flow(trainX, trainY, batch_size=BS), 

88 validation_data=(testX, testY), steps_per_epoch=len(trainX) // BS, 

89 epochs=EPOCHS) 

 

Lines 73-75 construct a data augmentation object which will generate images with 

random rotations, zooms, shifts, shears, and flips. To read more about data augmentation, 

read my previous blog post. Our LivenessNet model is built and compiled on Lines 79-

83. We then commence training on Lines 87-89. This process will be relatively quick 

considering our shallow network and small dataset. Once the model is trained we can 

evaluate the results and generate a training plot: 

 
91 # evaluate the network 

92 print("[INFO] evaluating network...") 

93 predictions = model.predict(testX, batch_size=BS) 

94 print(classification_report(testY.argmax(axis=1), 

95 predictions.argmax(axis=1), target_names=le.classes_)) 

96 

https://pyimagesearch.com/2018/12/24/how-to-use-keras-fit-and-fit_generator-a-hands-on-tutorial/
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97 # save the network to disk 

98 print("[INFO] serializing network to '{}'...".format(args["model"])) 

99 model.save(args["model"]) 

100 

101 # save the label encoder to disk 

102 f = open(args["le"], "wb") 

103 f.write(pickle.dumps(le)) 

104 f.close() 

105 

106 # plot the training loss and accuracy 

107 plt.style.use("ggplot") 

108 plt.figure() 

109 plt.plot(np.arange(0, EPOCHS), H.history["loss"], label="train_loss") 

110 plt.plot(np.arange(0, EPOCHS), H.history["val_loss"], label="val_loss") 

111 plt.plot(np.arange(0, EPOCHS), H.history["acc"], label="train_acc") 

112 plt.plot(np.arange(0, EPOCHS), H.history["val_acc"], label="val_acc") 

113 plt.title("Training Loss and Accuracy on Dataset") 

114 plt.xlabel("Epoch #") 

115 plt.ylabel("Loss/Accuracy") 

116 plt.legend(loc="lower left") 
117 plt.savefig(args["plot"]) 
 

Predictions are made on the testing set (Line 93). From there a classification_report is 

generated and printed to the terminal (Lines 94 and 95). The LivenessNet model is 

serialized to disk along with the label encoder on Lines 99-104. The remaining Lines 

107-117 generate a training history plot for later inspection. 
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7.1.5 Training our liveness detector 

We are now ready to train our liveness detector. Make sure we’ve used 

the “Downloads” section of the tutorial to download the source code and dataset — 

from, there execute the following command: 

liveness Detection with OpenCV 

$ python train.py --dataset dataset --model liveness.model --le le.pickle 

[INFO] loading images... 
[INFO] compiling model... 

[INFO] training network for 50 epochs... 

Epoch 1/50 
29/29 [==============================] - 2s 58ms/step - loss: 1.0113 - acc: 0.5862 - 

val_loss: 0.4749 - val_acc: 0.7436 

Epoch 2/50 
29/29 [==============================] - 1s 21ms/step - loss: 0.9418 - acc: 0.6127 - 

val_loss: 0.4436 - val_acc: 0.7949 

Epoch 3/50 

29/29 [==============================] - 1s 21ms/step - loss: 0.8926 - acc: 0.6472 - 
val_loss: 0.3837 - val_acc: 0.8077 

... 

Epoch 48/50 
29/29 [==============================] - 1s 21ms/step - loss: 0.2796 - acc: 0.9094 - 

val_loss: 0.0299 - val_acc: 1.0000 

Epoch 49/50 

29/29 [==============================] - 1s 21ms/step - loss: 0.3733 - acc: 0.8792 - 
val_loss: 0.0346 - val_acc: 0.9872 

Epoch 50/50 

29/29 [==============================] - 1s 21ms/step - loss: 0.2660 - acc: 0.9008 - 
val_loss: 0.0322 - val_acc: 0.9872 

[INFO] evaluating network... 

precision recall f1-score support 
fake 0.97 1.00 0.99 35 

real 1.00 0.98 0.99 43 

micro avg 0.99 0.99 0.99 78 

macro avg 0.99 0.99 0.99 78 
weighted avg 0.99 0.99 0.99 78 

[INFO] serializing network to 'liveness.model'... 
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Figure 7.6: A plot of training a face liveness model using OpenCV, Keras, and deep 

learning. As our results show, we are able to obtain 99% liveness detection accuracy on 

our validation set! 
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7.1.6 Putting the pieces together: Liveness detection with OpenCV 

 
Figure 7.7: Face liveness detection with OpenCV and deep learning. 

The final step is to combine all the pieces: 

1. We’ll access our webcam/video stream 

2. Apply face detection to each frame 

3. For each face detected, apply our liveness detector model Open up 

the liveness_demo.py and insert the following code: 

1 # import the necessary packages 

2 from imutils.video import VideoStream 

3 from keras.preprocessing.image import img_to_array 

4 from keras.models import load_model 

5 import numpy as np 

6 import argparse 

7 import imutils 

8 import pickle 

9 import time 

10 import cv2 

11 import os 

12 

13 # construct the argument parse and parse the arguments 

14 ap = argparse.ArgumentParser() 

15 ap.add_argument("-m", "--model", type=str, required=True, 
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16 help="path to trained model") 

17 ap.add_argument("-l", "--le", type=str, required=True, 

18 help="path to label encoder") 

19 ap.add_argument("-d", "--detector", type=str, required=True, 

20 help="path to OpenCV's deep learning face detector") 

21 ap.add_argument("-c", "--confidence", type=float, default=0.5, 

22 help="minimum probability to filter weak detections") 

23 args = vars(ap.parse_args()) 

Lines 2-11 import our required packages. Notably, we’ll use 

 VideoStream 

  to access our camera feed. 

 img_to_array 

  so that our frame will be in a compatible array format. 

 load_model 

  to load our serialized Keras model. 

 imutils 

  for its convenience functions. 

 cv2 

  for our OpenCV bindings. 

Let’s parse our command line arguments via Lines 14-23: 

 --model 

 : The path to our pretrained Keras model for liveness detection. 

 --le 

 : Our path to the label encoder. 

 --detector 

 : The path to OpenCV’s deep learning face detector, used to find the face ROIs. 

 --confidence 

 : The minimum probability threshold to filter out weak detections. 
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Now let’s go ahead an initialize the face detector, LivenessNet model + label encoder, 

and our video stream: 

25 # load our serialized face detector from disk 

26 print("[INFO] loading face detector...") 

27 protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"]) 

28 modelPath = os.path.sep.join([args["detector"], 

29 "res10_300x300_ssd_iter_140000.caffemodel"]) 

30 net = cv2.dnn.readNetFromCaffe(protoPath, modelPath) 

31 

32 # load the liveness detector model and label encoder from disk 

33 print("[INFO] loading liveness detector...") 

34 model = load_model(args["model"]) 

35 le = pickle.loads(open(args["le"], "rb").read()) 

36 

37 # initialize the video stream and allow the camera sensor to warmup 

38 print("[INFO] starting video stream...") 

39 vs = VideoStream(src=0).start() 

40 time.sleep(2.0) 
 

The OpenCV face detector is loaded via Lines 27-30.From there we load our serialized, 

pretrained model (LivenessNet ) and the label encoder (Lines 34 and 

35).Our VideoStream object is instantiated and our camera is allowed two seconds to 

warm up (Lines 39 and 40). At this point, it’s time to start looping over frames to detect 

real versus fake/spoofed faces: 

42 # loop over the frames from the video stream 

43 while True: 

44 # grab the frame from the threaded video stream and resize it 

45 # to have a maximum width of 600 pixels 

46 frame = vs.read() 

47 frame = imutils.resize(frame, width=600) 

48 

49 # grab the frame dimensions and convert it to a blob 

50 (h, w) = frame.shape[:2] 

51 blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, 

52 (300, 300), (104.0, 177.0, 123.0)) 

53 

54 # pass the blob through the network and obtain the detections and 

55 # predictions 

56 net.setInput(blob) 

57 detections = net.forward() 

Line 43 opens an infinite whileloop block where we begin by capturing + resizing 

individual frames (Lines 46 and 47).After resizing, dimensions of the frame are grabbed 

so that we can later perform scaling (Line 

50)Using OpenCV’s blobFromImage function we generate a blob (Lines 51 and 52) 

https://pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/
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and then proceed to perform inference by passing it through the face detector network 

(Lines 56 and 57). 

59 # loop over the detections 

60 for i in range(0, detections.shape[2]): 

61 # extract the confidence (i.e., probability) associated with the 

62 # prediction 

63 confidence = detections[0, 0, i, 2] 

64 

65 # filter out weak detections 

66 if confidence > args["confidence"]: 

67 # compute the (x, y)-coordinates of the bounding box for 

68 # the face and extract the face ROI 

69 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

70 (startX, startY, endX, endY) = box.astype("int") 

71 

72 # ensure the detected bounding box does fall outside the 

73 # dimensions of the frame 

74 startX = max(0, startX) 

75 startY = max(0, startY) 

76 endX = min(w, endX) 

77 endY = min(h, endY) 

78 

79 # extract the face ROI and then preproces it in the exact 

80 # same manner as our training data 

81 face = frame[startY:endY, startX:endX] 

82 face = cv2.resize(face, (32, 32)) 

83 face = face.astype("float") / 255.0 

84 face = img_to_array(face) 

85 face = np.expand_dims(face, axis=0) 

86 

87 # pass the face ROI through the trained liveness detector 

88 # model to determine if the face is "real" or "fake" 

89 preds = model.predict(face)[0] 

90 j = np.argmax(preds) 

91 label = le.classes_[j] 

92 

93 # draw the label and bounding box on the frame 

94 label = "{}: {:.4f}".format(label, preds[j]) 

95 cv2.putText(frame, label, (startX, startY - 10), 

96 cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) 

97 cv2.rectangle(frame, (startX, startY), (endX, endY), 

98 (0, 0, 255), 2) 

On Line 60, we begin looping over face detections. Inside we: 

 Filter out weak detections (Lines 63-66). 
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 Extract the face bounding box coordinates and ensure they do not fall outside the 

dimensions of the frame (Lines 69-77). 

 Extract the face ROI and preprocess it in the same manner as our training data 

(Lines 81-85). 

 Employ our liveness detector model to determine if the face 

is “real” or “fake/spoofed” (Lines 89-91). 

 Line 91 is where we would insert our own code to perform face recognition but 

only on real images. The pseudo code would similar to if label == "real": 

run_face_reconition() directly after Line 91). 

 Finally (for this demo), we draw the label text and a rectangle around the face (Lines 

94-98). 

Let’s display our results and clean up: 

100 # show the output frame and wait for a key press 

101 cv2.imshow("Frame", frame) 

102 key = cv2.waitKey(1) & 0xFF 

103 

104 # if the `q` key was pressed, break from the loop 

105 if key == ord("q"): 

106 break 

107 

108 # do a bit of cleanup 

109 cv2.destroyAllWindows() 

110 vs.stop() 

The ouput frame is displayed on each iteration of the loop while keypresses are captured 

(Lines 101-102). Whenever the user presses “q” (“quit”) we’ll break out of the loop and 

release pointers and close windows (Lines 105-110). 

Deploying our liveness detector to real-time video 

To follow along with our liveness detection demo make sure we have used 

the “Downloads” section of the blog post to download the source code and pre-trained 

liveness detection model. From there, open up a terminal and execute the following 

command: 

liveness Detection with OpenCV 

$ python liveness_demo.py --model liveness.model --le le.pickle \ 

--detector face_detector 

Using TensorFlow backend. 

[INFO] loading face detector... 

[INFO] loading liveness detector... 

[INFO] starting video stream... 

https://pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/
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Fig 7.8 (Detection on Live Camera) 
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7.2 Conclusion 

Using this liveness detector we can now spot fake fakes and perform anti-face 

spoofing in our own face recognition systems. 

To create our liveness detector we utilized OpenCV, Deep Learning, and Python. 

The first step was to gather our real vs. fake dataset. To accomplish this task, we: 

1. First recorded a video of ourselves using our smartphone (i.e., “real” faces). 

2. Held our smartphone up to our laptop/desktop, replayed the same video, and 

then recorded the replaying using our webcam (i.e., “fake” faces). 

3. Applied face detection to both sets of videos to form our final liveness detection dataset. 

After building our dataset we implemented, “LivenessNet”, a Keras + Deep Learning 

CNN. 

This network is purposely shallow, ensuring that: 

1. We reduce the chances of overfitting on our small dataset. 

2. The model itself is capable of running in real-time (including on the Raspberry Pi). 

Overall, our liveness detector was able to obtain 99% accuracy on our validation set. 

To demonstrate the full liveness detection pipeline in action we created a Python + 

OpenCV script that loaded our liveness detector and applied it to real-time video 

streams. As our demo showed, our liveness detector was capable of distinguishing 

between real and fake faces. 
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Chapter 8 
 

 

8. Conclusion and Future Work 
 

8.1 Conclusion 
In this part of work, there is a meticulous depiction of the object detection and 

tracking phenomena in addition to their mechanisms .Object tracking is considered as 

the first step for tracking which actually serves to locate the temporal position of the 

object in question .The tracking methods described in this piece of work do not need 

any pre-locating trend of grabbing the object by object detection still the techniques 

for detection are studied so far and implemented. Object tracking techniques being 

implemented for this project do possess their own discrepancies in regard of motion 

based tracking complications but efforts are made to make the algorithms robust 

enough to withstand the impediments. In order to provide, vigorous modus operandi 

for object tracking all latest concepts are used in the implementations .All the 

techniques are tested on motion detection of air borne non rigid objects as jets to fully 

examine the heftiness with instantly changing orientations and it cogently showed the 

vigor of the algorithms implemented during this project phase by withstanding the 

occlusions to a large extent. At several places tracking snags became a problem like in 

template matching target loss hinders the algorithm to succeed at certain situations. 

Purposefully, several other techniques are implemented then which proved to be 

efficient and effective. So Fast mean shift and Kalman filter are implemented to have 

a strong savor of object tracking for airborne objects, the objects for which every 

next instant derives a new position varying widely from the previous one. Thus 

results prove the effectiveness of the techniques implemented in this project and their 

accomplishment is also obvious from the results provided in this thesis. 
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8.2 Future Work 
 

FUTURE ENCHANCEMENTS 

The object recognition system can be applied in the area of surveillance system, face 

recognition, fault detection, character recognition etc. The objective of this thesis is to 

develop an object recognition system to recognize the 2D and 3D objects in the image. 

The performance of the object recognition system depends on the features used and the 

classifier employed for recognition. This research work attempts to propose a novel 

feature extraction method for extracting global features   and and obtaining local features 

from the region of interest. Also the research work attempts to hybrid the traditional 

classifiers to recognize the object. The object recognition system developed in this 

research was tested with the benchmark datasets like COIL100, Caltech 101, ETH80 and 

MNIST. The object recognition system is implemented in MATLAB 7.5 

 

It is important to mention the difficulties observed during the experimentation of the 

object recognition system due to several features present in the image. The research work 

suggests that the image is to be preprocessed and reduced to a size of 128 x 128. The 

proposed feature extraction method helps to select the important feature. To improve the 

efficiency of the classifier, the number of features should be less in number. Specifically, 

the contributions towards this research work are as follows, 

1. An object recognition system is developed, that recognizes the two-dimensional 

and three dimensional objects. 

2. The feature extracted is sufficient for recognizing the object and marking the 

location of the object. X The proposed classifier is able to recognize the object in 

less computational cost. 

3. The proposed global feature extraction requires less time, compared to the 

traditional feature extraction method. 

4. The performance of the SVM-kNN is greater and promising when compared with 

the BPN and SVM. 

5. The performance of the One-against-One classifier is efficient. 

6. Global feature extracted from the local parts of the image. 

7. Local feature PCA-SIFT is computed from the blobs detected by the Hessian-

Laplace detector. 

8. Along with the local features, the width and height of the object computed 

through projection method is used. 

 

The methods presented for feature extraction and recognition are common and can be 

applied to any application that is relevant to object recognition. 

 

The proposed object recognition method combines the state-of-art classifier SVM and k-

NN to recognize the objects in the image. The multiclass SVM is used to hybridize with 

the k-NN for the recognition. The feature extraction method proposed in this research 

work is efficient and provides unique information for the classifier. 
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The image is segmented into 16 parts, from each part the Hu’s Moment invariant is 

computed and it is converted into Eigen component. The local feature of the image is 

obtained by using the Hessian-Laplace detector. This helps to obtain the objects feature 

easily and mark the object location without much difficulty. 

 

As a scope for future enhancement, 

1. Features either the local or global used for recognition can be increased, to 

increase the efficiency of the object recognition system. 

2. Geometric properties of the image can be included in the feature vector for 

recognition. 150 

3. Using unsupervised classifier instead of a supervised classifier for recognition of 

the object. 

4. The proposed object recognition system uses grey-scale image and discards the 

color information. The color information in the image can be used for recognition 

of the object. Color based object recognition plays vital role in Robotics 

Although the visual tracking algorithm proposed here is robust in many of the 

conditions, it can be made more robust by eliminating some of the limitations as 

listed below: 

i. In the Single Visual tracking, the size of the template remains fixed for tracking. 

If the size of the object reduces with the time, the background becomes more 

dominant than the object being tracked. In this case the object may not be 

tracked. 

ii. Fully occluded object cannot be tracked and considered as a new object in the 

next frame. 

iii. Foreground object extraction depends on the binary segmentation which is 

carried out by applying threshold techniques. So blob extraction and tracking 

depends on the threshold value. 

iv. Splitting and merging cannot be handled very well in all conditions using the 

single camera due to the loss of information of a 3D object projection in 2D 

images. 

v. For Night time visual tracking, night vision mode should be available as an 

inbuilt feature in the CCTV camera. 

 

To make the system fully automatic and also to overcome the above limitations, in 

future, multi- view tracking can be implemented using multiple cameras. Multi view 

tracking has the obvious advantage over single view tracking because of wide coverage 

range with different viewing angles for the objects to be tracked. 
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In this thesis, an effort has been made to develop an algorithm to provide the base for 

future applications such as listed below: 

 

In this research work, the object Identification and Visual Tracking has been done 

through the use of ordinary camera. The concept is well extendable in applications like 

Intelligent Robots, Automatic Guided Vehicles, Enhancement of Security Systems to 

detect the suspicious behavior along with detection of weapons, identify the suspicious 

movements of enemies on boarders with the help of night vision cameras and many such 

applications. In the proposed method, background subtraction technique has been used 

that is simple and fast. This technique is applicable where there is no movement of 

camera. For robotic application or automated vehicle assistance system, due to the 

movement of camera, backgrounds are continuously changing leading to implementation 

of some different   segmentation techniques like single Gaussian mixture or multiple 

Gaussian mixture models. Object identification task with motion estimation needs to be 

fast enough to be implemented for the real time system. Still there is a scope for 

developing faster algorithms for object identification. Such algorithms can be 

implemented using FPGA or CPLD for fast execution 

An accurate and efficient object detection system has been developed which achieves 

comparable metrics with the existing state-of-the-art system. This project uses recent 

techniques in the elder of computer vision and deep learning. Custom dataset was created 

using labelling and the evaluation was consistent. This can be used in real-time 

applications which require object detection for pre-processing in their pipeline. An 

important scope would be to train the system on a video sequence for usage in tracking 

applications. Addition of a temporally consistent network would enable smooth detection 

and more optimal than per-frame detection. Object detection is a key ability for most 

computer and robot vision system. Although great progress has been observed in the last 

years, and some existing techniques are now part of many consumer electronics (e.g., 

face detection for auto-focus in smartphones) or have been integrated in assistant driving 

technologies, we are still far from achieving human-level performance, in particular in 

terms of open-world learning. It should be noted that object detection has not been used 

much in many areas where it could be of great help. As mobile robots, and in general 

autonomous machines, are starting to be more widely deployed (e.g., quad-copters, 

drones and soon service robots), the need of object detection systems is gaining more 

importance. Finally, we need to consider that we will need object detection systems for 

nano-robots or for robots that will explore areas that have not been seen by humans, such 

as depth parts of the sea or other planets, and the detection systems will have to learn to 

new object classes as they are encountered. In such cases, a real-time open-world 

learning ability will be critical. 
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