

ADMISSION NUMBER									

School of Basic Sciences

Bachelor of Science Honours in Mathematics Semester End Examination - May 2024

Duration : 180 Minutes Max Marks : 100

Sem VI - C1UC602B - Numerical Analysis and Operation Research

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explair	n the	geor	netr	rical interpretat	ion of Regu	la-Falsi metł	nod.	K1 (3)
2)	Solve Least (<u> </u>	transportatior	n problem to	o maximize	profit using	K 2 (4)
		D1 D2	2 D3 D	4 Su	pply				
	S1	37	64	5					
	S2	2 4	3 2	2					
	S3	4 3	85	3					
	Demand	3 3	2 2						
3)	28x+4y	/-z=3	2, x [.]	+3y	the system of e +10z=24,2x+ , using the Gau	17y+4z=35	eration meth	nod.	K2 (6)
					, C				
4)	Find th	e cut 2 3 1 10	oic po	olyn	omial which ta	kes the follo	owing values	::	K3 (6)
4) 5)	Find th x 0 1 2 f(x) 1 2 1 Hence Solve	e cut 2 3 1 10 e eval the f	oic po luate ollow	olyn f(4) ving	omial which ta		Ū		
	Find th X 0 1 2 f(x) 1 2 1 Hence Solve Vogels	e cuk 2 3 1 10 e eval the f Appr	oic po luate ollow	f(4)	omial which ta). transportatior		Ū		
	Find th X 0 1 2 f(x) 1 2 1 Hence Solve Vogels	e cuk 2 3 1 10 e eval the f Appr	luate ollow oxim 2 D3	f(4)	omial which ta). transportatior on method:		Ū		
-	Find th X 0 1 2 f(x) 1 2 1 Hence Solve Vogels A	e cuk 2 3 1 10 e eval the f Appr D1 D	luate ollow coxim 2 D3 3 17	f(4) f(4) ving natio). transportation on method: Supply		Ū		
-	Find th X 0 1 2 f(x) 1 2 1 Hence Solve Vogels A B	e cut 2 3 1 10 e eval the f Appr D1 D 11 1	luate ollow roxim 2 D3 3 17 3 14	f(4) ring natio D4 14 10). transportation on method: Supply 250		Ū		

6) Consider the problem of assigning five jobs to five persons. The K3 (9) assignment costs are given as follows:

Jobs					
Person	Ι	II		IV	V
А	10	5	13	15	16
В	3	9	18	13	6
С	10	7	2	2	2
D	7	11	9	7	12
E	7	9	10	4	12

- Solve the following assignment problem to find the maximum total K3 (9) expected sale:
 - A B C D I 1 4 6 3 II 9 7 10 9 III 4 5 11 7
 - IV 8 7 8 5
- 8) Solve the following LPP problem using simplex method: K4 (8) $Max Z = 100x_1 + 90x_2 + 28x_3$ $Subject \ to \ constraints : 50x_1 + 45x_2 + 42x_3 \le 1000; x_1 \le 6; 0 \le x_1; 0 \le x_2; 0 \le x_3.$
- 9) A firm can produce three types of cloth, say: A, B, and C. Three kinds of wool are required for it, say red wool, green wool and blue wool. One unit length of type A cloth needs 2 yards of red wool and 3 yards of blue wool; on unit length of type B cloth needs 3 yards of red wool, 2 yards of green wool and 2 yards of blue wool and one unit length of type C cloth needs 5 yards of green wool and 4 yards of blue wool. The firm has only a stock of 8 yards of red wool, 10 yards of green wool and 15 yards of blue wool. It is assumed that the income obtained from the one unit length of type A cloth is Rs. 3, of type B cloth is Rs. 5 and of type C cloth is Rs. 4. Formulate this problem as a linear programming model to maximize the income from the finished cloth and solve it by simplex method.
- 10) A resourceful home decorator manufactures two types of lamps say A and B. Both lamps go through technicians, first a cutter, second a finisher. Lamp A requires 2 hours of the cutter's time and 1 hours of finisher's time. Lamp B requires 1 hour of cutter's and 2 hours of finisher's time. The cutter has 104 hours and finisher's has 76 hours of time available each month. Profit of the lamp A is Rs. 6 and on the Lamp B is Rs. 11. Assuming that he can sell all that he produces, how many of each type of lamps should he manufacture per month to obtain the best returns. Solve it by graphical method.

11) In the table below, the values of y are consecutive terms of a series of which -0.540 is the 6th term. Find the first and tenth terms of the series:

X 0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6
Y 1.590	1.392	0.954	0.324	-0.540	-1.320	-2.238	-3.156

OR

In the table below, the values of y are consecutive terms of a series of $K^{5 (15)}$ which 23.6 is the 5th term. Find the first and ninth terms of the series:

x 3 4 5 6 7 8 9 Y 4.8 8.4 14.5 23.6 36.2 52.8 73.9

¹²⁾ Solve the following LPP using Big-M method: $Max \ z = 5x_1 + 8x_2$

Subject to constraints : $3x_1 + 2x_2 \ge 3$; $x_1 + 4x_2 \ge 4$; $x_1 + x_2 \le 5$; x_1 and $x_2 \ge 0$.

OR

Solve the following LPP using Big-M method:

K6 (12)

K6 (12)

 $Max \ z = 5x_1 - 2x_2 + 3x_3$

Subject to constraints: $2x_1 + 2x_2 - x_3 \ge 2$; $3x_1 - 4x_2 \le 3$; $x_2 + 3x_3 \le 5$; x_1, x_2 and $x_3 > 0$.