

ADMISSION NUMBER											

School of Basic Sciences

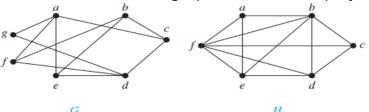
Bachelor of Science Honours in Mathematics Semester End Examination - May 2024

Duration : 180 Minutes Max Marks : 100

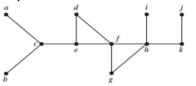
Sem VI - C1UC603T - Discrete Mathematics and Graph Theory

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

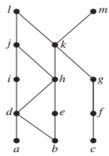
- 1) Decide whether the graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ equal or isomorphic. K1 (3) $V_1 = \{a, b, c, d\}, E_1 = \{\{a, b\}, \{a, c\}, \{a, d\}, \{c, d\}\}$ $V_2 = \{a, b, c, d\}, E_2 = \{\{a, b\}, \{a, c\}, \{b, c\}, \{c, d\}\}$
- ²⁾ Show that the value of the prefix expression + * 32/841 is 5.
- 3) Explain whether the two compound propositions are logically ^{K2 (6)} equivalent:


a) $\neg (p \leftrightarrow q)$ and $p \leftrightarrow \neg q$ b). $\neg p \leftrightarrow q$ and $p \leftrightarrow \neg q$

- 4) Apply graph theory to draw a graph with the adjacency matrix K^{3} (6)
 - $\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$
- 5) Write the applications of trees in discrete mathematics. K3 (6)
- ⁶⁾ Let $R=\{(1,2),(1,3),(2,3),(2,4),(3,1)\}$ and $S=\{(2,1),(3,1),(3,2),(4,2)\}$ be ^{K3 (9)} relations defined on {1,2,3,4}. Solve for SoR and RoS.
- 7) Develop an adjacency matrix to represent the pseudograph shown in figure.
 K3 (9)



⁸⁾ Examine whether the graphs G and H displayed in figure bipartite?


K4 (8)

9) Construct a spanning tree for the given graph shown in figure using ^{K4 (12)} depth-first search method.

- Evaluate these questions for the partial order represented by this
 K5 (10)
 Hasse diagram.
 - a) Find the maximal elements.
 - b) Find the minimal elements.
 - c) Is there a greatest element?
 - d) Is there a least element?
 - e) Find all upper bounds of {a, b, c}.
 - **f**) Find the least upper bound of {*a*, *b*, *c*}, if it exists.
 - **g)** Find all lower bounds of $\{f, g, h\}$.
 - h) Find the greatest lower bound of {f, g, h}, if it exists

¹¹⁾ Consider the Z of integers and an integer m > 1. We say that x is congruent to y modulo m, written $x \equiv y \pmod{m}$ if x - y is divisible by m. Prove that this defines an equivalence relation on Z.

OR	
Prove	K5 (15)
${}^{n}\mathbf{C}_{r} + {}^{n}\mathbf{C}_{r-1} = {}^{n+1}\mathbf{C}_{r}$	

¹²⁾ Discuss the applications of Graph Colorings.

Design these graphs. a) K7 b) $K_{1,8}$ c) $K_{4,4}$ d) C7 e) W7 f) Q4 OR

K6 (12)

K6 (12)