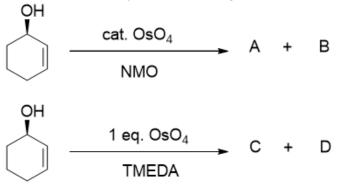


K2 (6)

School of Basic Sciences

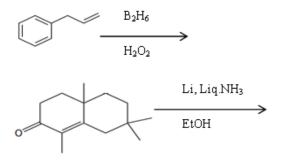
Master of Science in Chemistry

Semester End Examination - May 2024


Duration : 180 Minutes Max Marks : 100

Sem IV - MSCH6002 - Reagents and Heterocyclic Chemistry

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator


- Why LDA is a poor nucleophile? Write the structure and function of LDA.
- 2) Illustrate orbital diagram and all possible resonance structures of K2 (4) Furan.
- ³⁾ Explain the method of synthesis of Dettol.
- 4) Utilizing reduction mechanism, predict the products with mechanism K3 (6) for following reactions.

- 5) Utilizing retrosynthetic approach, explain the synthesis of ^{K3 (6)} sulphanilamide.
- **6)** Applying oxidation mechanism of *OSO*₄ predicts the products and ^{K3 (9)} stereochemistry of following reactions with reason.

- 7) Applying Retrosynthesis approach, illustrate the synthesis of K3 (9) Benzocaine.
- 8) Compare in between Pyridine and Pyridine –N-oxide, which is more K4 (8) reactive towards electrophiles and nucleophiles with reason.

- 9) Analyze the synthesis method of chloropromazine and chloramine -T. K4 (12)
- ¹⁰⁾ Conclude how Gilman's reagent react with α , β unsaturated ^{K5 (10)} compounds, epoxides, acid chlorides and cyclic ketones with reactions.
- ¹¹⁾ Justify the Stereoselectivity of the products in following reactions with ^{K5 (15)} reason

Justify the following:

K5 (15)

1. Terminal alkyne forms aldehydes and internal alkyne forms ketone upon hydroboration-oxidation reaction.

OR

- 2. Hydroboration-oxidation product occurs according to Anti-Markovnikov's rule.
- ¹²⁾ Discuss the following reactions with mechanism: a. Conard-Limpach ^{K6 (12)} synthesis of Quinoline b. Hantz Synthesis

OR

Discuss the method of synthesis of Mepacrine with mechanism. K6 (12)