

K4 (12)

School of Computing Science and Engineering

Bachelor of Technology in Computer Science and Engineering Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

Sem II - C1UC222B - Engineering Mathematics-II

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Position	vector	of	а	moving	particle	is	given	by	K2 (2)
	$r(t) = x(t)i + y(t)j + z(t)k$, where $x(t) = t^2, y(t) = 2t, z(t) = 4$. Find the									
	velocity and acceleration of the particle at (1,2,4).									

- ²⁾ Let $T: \mathbb{R}^2 \to \mathbb{R}$ be a mapping defined by T(x, y) = x + y. Show that T defines a linear transformation on \mathbb{R}^2 .
- ³⁾ Define orthogonal set in \mathbb{R}^3 . Show that the set $\{v_1, v_2, v_3\}$ is an orthogonal set in \mathbb{R}^3 if $v_1 = (2, 1, -1)$, $v_2 = (0, 1, 1), v_3 = (1, -1, 1)$.
- ⁴⁾ Find a unit normal vector to the surface $xy^2 + 2yz = 8$ at the point (3, -2, 1).
- ⁵⁾ Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined as T(a, b, c) = (0, a, b). Prove that ^{K3 (6)} $T \neq \hat{0}, T^2 \neq \hat{0}$ but $T^3 = \hat{0}$
- 6) Show that the vector field $F = 2x(y^2 + z^3)i + 2x^2yj + 3z^2x^2k$ is ^{K3 (9)} conservative. Find its potential function.
- 7) Classify the following mappings whether they are linear or non-linear: K4 (8)

1. $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (1 + x, y);2. $T : \mathbb{R}^2 \to \mathbb{R}$ defined by T(x, y) = |x - y|.

⁸⁾ Consider the vectors $u_1 = (1, 1, 1)$, $u_2 = (1, 2, 3)$ and $u_3 = (2, -1, 1)$ in \mathbb{R}^3 . K4 (12) Express w = (1, -2, 5) as a linear combination of u_1, u_2 and u_3 .

OR

Evaluate $\oint_C 3x^2ydx - 2xy^2 dy$, where *C* is the boundary of the region $x^2 + y^2 \le 16, x \ge 0, y \ge 0$ by Green's theorem. [Hint: Parametric representation of C is $x = 4 \cos t$, $y = 4 \sin t$; $0 \le t \le 2\pi$.]