K4 (12)

School of Computing Science and Engineering
Bachelor of Technology in Computer Science and Engineering
Mid Term Examination - May 2024

Duration: 90 Minutes Max Marks: 50

Sem II - C1UC224T - Discrete Mathematics

<u>General Instructions</u>
Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Let $P(x)$ be the statement " $x = 2x$." If the domain consists of the integers, what are the truth values of the following? a) $P(2)$ b) $\exists x P(x)$	K2 (2)
2)	Three cards are chosen one after the other from a 52-card deck. Find the number of ways this can be done: (a) with replacement; (b) without replacement.	K1 (3)
3)	What is the converse, contrapositive, and inverse of the conditional statement "If a positive integer has no divisors other than 1 and itself, then it is prime."	K2 (4)
4)	Let R be a relation on the set R of real numbers defined by $R = \{(x,y) : x - y < 1\}$. Show that R is reflexive and symmetric but not transitive.	K2 (6)
5)	How many cards must be selected from a deck of 52 cards to guarantee that at least 5 cards of the same suit are chosen?	K3 (6)
6)	 a) Let f and g be the functions f(x) = √x and g(x) = x²+1 Find the composition functions f∘g and g∘f. b) Prove that the function f: R → R+ given by f(x) = example and g: R+ → R given by g(x) = ln(x) are inverse of each other. 	K3 (9)
7)	Construct a truth table for the compound proposition: (p \wedge r) \rightarrow (¬q \vee r)	K4 (8)
8)	Let R be the relation defined on the set Z of integers as follows: for integers a and b, aR b if and only if $a\equiv b \pmod{4}$, that is, aR b if 4 divides (a-b).	K4 (12)
	 Show that R is an equivalence relation on Z. What are the equivalence class containing [0]? 	

Prove that if n is an odd integer, then n² is odd.
 Prove that √2 is irrational by giving a proof by contradiction.