

School of Computing Science and Engineering

Master of Technology in Computer Science and Engineering

Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

Sem II - R1PV202B - MachineLearning

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Distinguish the difference between simple and multiple linear regression.	K2 (2)
2)	Describe the role of neural networks in machine learning and give an example of a task they can be used for.	K1 (3)
3)	Given a dataset with one independent variable (X) and one dependent variable (Y), calculate the slope and intercept of the simple linear regression line.	K2 (4)
4)	How would you use a confusion matrix to compare the performance of multiple classifiers on the same dataset?	K2 (6)
5)	Apply logistic regression with L1 regularization (LASSO) to select the most important features for classification.	K3 (6)
6)	Implement logistic regression using gradient descent optimization and tune the learning rate to achieve convergence.	K3 (9)
7)	Explain the concept of KNN and how it works in classification tasks.	K4 (8)
8)	Describe the process of building a decision tree, including attribute selection measures such as entropy, or information gain.	K4 (12)

OR

Discuss techniques for handling overfitting in decision trees, such as pruning, setting minimum samples per leaf, or using ensemble methods like random forests.