

School of Computing Science and Engineering

Bachelor of Technology in Computer Science and Engineering

Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

Sem VI - R1UC601B - Advanced Algorithmic Problem Solving

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Explain the concept of back tracking.	K2 (2)
2)	Write a function to find the string length.	K1 (3)
3)	What the significance of Big O, Theta, and Omega notations.	K2 (4)
4)	Comprehend the principle of recursion and how functions can call themselves to solve problems.	K2 (6)
5)	Implement a function that uses the sliding window technique to find the maximum sum of any contiguous subarray of size K.	K3 (6)
6)	Write a program to implement stack that supports push, pop, top, and write the time complexity of each operation.	K3 (9)
7)	Examine the efficiency of the sliding window technique versus the two-pointer technique for a given set of array-based problems. What are the trade-offs involved in choosing one method over the other?	K4 (8)
8)	Evaluate the use of recursion and backtracking in solving the subset sum problem. How does the state-space tree representation aid in understanding the problem-solving process?	K4 (12)
OR		

Critically evaluate the efficiency of backtracking algorithms in solving ^{K4 (12)} combinatorial problems like the n-Queens problem. How does the approach compare to iterative solutions?