

## ADMISSION NUMBER

## **School of Engineering**

B.TECH Electronics and Communication Engineering
Mid Term Examination - May 2024

Duration: 90 Minutes Max Marks: 50

## Sem IV - C1UC420T - Probability and Stochastic Process

General Instructions
Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

| 1)<br>2) | Roll a red die and a green die. Find the probability the total is 5.  Write the Expectation and variance of binomial and Poisson distributions.                                                                     | K2 (2)<br>K1 (3) |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 3)       | If the random variable X has the following probability distribution Find $x: 2 - 1 0 1 k$ and the mean of x.<br>P(x) $0.4 k 0.2 0.3$                                                                                | K2 (4)           |
| 4)       | The joint PDF of two random variables X and Y are given by $f_{X,Y}(x,y) = \begin{cases} cxy, 0 \le x \le 2, 0 \le y \le 2\\ 0, otherwise \end{cases}$ (i) Find c. (ii) Find FX,y (x,y)(iii) Find fX (x) and fY (y) | K2 (6)           |
| 5)       | The density function of coded measurements of the pitch diameter of threads of a fitting is                                                                                                                         | K3 (6)           |
|          | $f(x) = \begin{cases} \frac{4}{\pi(1+x^2)}, & 0 < x < 1\\ 0, & elsewhere \end{cases}$                                                                                                                               |                  |

Find the expected value of 
$$X$$
.

- A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality?
- If X is uniformly distributed over (0, 10), calculate the probability that (a) X < 3, (b) X > 6, and (c) 3 < X < 8.

8) If X is a continuous random variable with PDF

$$\begin{cases} x, 0 \le x < 1 \\ \frac{(x-1)^2}{2}, 1 \le x \le 2 \\ 0, otherwise \end{cases}$$

Find the cumulative distribution function F(x) of X and use it to find P(1.5 < x < 2.5)

OR

Let  $\{X(t), t \in R\}$  be a continuous-time random process, defined as  $X(t)=A\cos(\omega t+\Phi)$  where  $\Phi\sim U(0,2\pi)$ .

K4 (12)

K4 (12)

- a. Find the mean function  $\mu X(t)$ .
- b. Find the autocorrelation function RX(t1,t2).
- c. Is X(t) a WSS process?