

School of Biological and Life sciences

Bachelor of Science in Biochemistry Mid Term Examination - May 2024

Duration: 90 Minutes Max Marks: 50

Sem II - C1UH201T - Biochemistry of Metabolism

General Instructions

Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Provide example of coupled reactions in cellular metabolism.	K2 (2)
2)	Define high energy compounds and provide examples.	K1 (3)
3)	Illustrate the Zeroth law of thermodynamics.	K2 (4)
4)	State Gibbs free energy and explain its significance in chemical thermodynamics.	K2 (6)
5)	Explain Hess's Law and how it relates to enthalpy changes.	K3 (6)
6)	Compare and contrast the entropy of solids, liquids, and gases.	K3 (9)
7)	Examine the difference between exothermic and endothermic reactions in terms of enthalpy change.	K4 (8)
8)	Describe the interplay between Gibbs free energy, entropy, and enthalpy in determining the spontaneity and feasibility of chemical reactions.	K4 (12)
OR		
	Analyze the two distinct phases of the pentose phosphate pathway	K4 (12)

and the reactions that occur in each phase.