

Face Recognition System

A Report for the Evaluation 3 of Project 2

Submitted by

Mohd Saim Hashmi

(1613105065)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING WITH SPECIALIZATION OF

CLOUD COMPUTING AND VIRTUALIZATION

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Dr. SPS Chauhan, Assoc. Professor

April/May - 2020

 TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

1. Abstract 1

2. Introduction 2

3. Proposed system 4

4. Implementation 8

5. Output / Result / Screenshot 13

6. Conclusion/Future Enhancement 15

7. References 16

1. Abstract

The goal of this project is to build a face recognition system – from either a single

photograph or from a set of faces tracked in a video or from a live webcam footage.

Face recognition is a computationally challenging task that humans perform

effortlessly. Nonetheless, this remarkable ability is better for familiar faces than

unfamiliar faces. To account for humans’ superior ability to recognize familiar faces,

current theories suggest that different features are used for the representation of

familiar and unfamiliar faces.

In this we use technologies like openCV, face_recognition to recognize people in a

photograph, a video or a live video footage.

2. Introduction

Facial recognition is the task of making a positive identification of a face in a photo or

video image against a pre-existing database of faces. It begins with detection -

distinguishing human faces from other objects in the image - and then works on

identification of those detected faces.

Face recognition is the task of identifying an already detected object as a known or

unknown face. Face recognition is a computationally challenging task that humans

perform effortlessly. Nonetheless, this remarkable ability is better for familiar faces

than unfamiliar faces. To account for humans’ superior ability to recognize familiar

faces, current theories suggest that different features are used for the representation of

familiar and unfamiliar faces.

Computer vision is an interdisciplinary scientific field that deals with how computers

can gain high-level understanding from digital images or videos. From the perspective

of engineering, it seeks to understand and automate tasks that the human visual

system can do.

OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. OpenCV was built to provide a common

infrastructure for computer vision applications and to accelerate the use of machine

perception in the commercial products. The library has more than 2500 optimized

algorithms, which includes a comprehensive set of both classic and state-of-the-art

computer vision and machine learning algorithms. These algorithms can be used to

detect and recognize faces, identify objects, classify human actions in videos, track

camera movements, track moving objects, extract 3D models of objects, produce 3D

point clouds from stereo cameras, stitch images together to produce a high resolution

image of an entire scene, find similar images from an image database, remove red

eyes from images taken using flash, follow eye movements, recognize scenery and

establish markers to overlay it with augmented reality, etc.

Facial tasks in machine learning operate based on images or video frames (or other

datasets) focussed on human faces.

In this project we convert a photograph or a frame of video in black and white which

makes it easier for the algorithm to recognize face.

We use a labeled datasets (separate photographs of individuals that might appear in

input data) to train the model i.e to recognize the people and build a list of names.

Using that list we loop a photograph or a from to detect and recognize individuals in

that photograph.

2.1. Overall Description

This project is carried out to fulfill the following tasks.

 To build a model to recognize individuals in a

photograph or video.

 To effectively recognize find people in a footage.

2.2. Purpose

 To build a model to recognize people in photo or a

video using the face_detection and openCV and numpy

libraries.

2.3. Promising Applications

 Facebook replaced manual image tagging with

automatically generated tag suggestions for each picture

that was uploaded to the platform.

 Face detection technique is being used to maintain the

security of personal devices such as mobile phones.

 larger scale implementation such as enabling cameras to

capture images and detect faces.

2.4. Setup Required

 python 3.6 or higher.

 openCV library

 face_detection API

 numpy

 PyCharm

3. Proposed Model

1. Use Case Diagram

2. Flow Chart Diagram

4. Implementation

 faceRecSys_WebCam.py :

import
import face_recognition
import cv2
import numpy as np

Input from webcam
video_capture = cv2.VideoCapture(0)

Load a sample picture and learn how to recognize it.
saaim_image = face_recognition.load_image_file("saaim.jpg")
saaim_face_encoding = face_recognition.face_encodings(saaim_image)[0]

Create arrays of known face encodings and their names
known_face_encodings = [
 saaim_face_encoding
]
known_face_names = [
 "Saaim Hashmi"
]

Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
 # Grab a single frame of video
 ret, frame = video_capture.read()

 # Resize frame of video to 1/4 size for faster face recognition processing
 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

 # Convert the image from BGR color (which OpenCV uses) to RGB color (which
face_recognition uses)
 rgb_small_frame = small_frame[:, :, ::-1]

 # Only process every other frame of video to save time
 if process_this_frame:
 # Find all the faces and face encodings in the current frame of video
 face_locations = face_recognition.face_locations(rgb_small_frame)
 face_encodings = face_recognition.face_encodings(rgb_small_frame,
face_locations)

 face_names = []
 for face_encoding in face_encodings:
 # See if the face is a match for the known face(s)
 matches = face_recognition.compare_faces(known_face_encodings,
face_encoding)

 name = "Unknown"

 # # If a match was found in known_face_encodings, just use the first
one.
 # if True in matches:
 # first_match_index = matches.index(True)
 # name = known_face_names[first_match_index]

 # Or instead, use the known face with the smallest distance to the new
face
 face_distances = face_recognition.face_distance(known_face_encodings,
face_encoding)
 best_match_index = np.argmin(face_distances)
 if matches[best_match_index]:
 name = known_face_names[best_match_index]

 face_names.append(name)

 process_this_frame = not process_this_frame

 # Display the results
 for (top, right, bottom, left), name in zip(face_locations, face_names):
 # Scale back up face locations since the frame we detected in was scaled
to 1/4 size
 top *= 4
 right *= 4
 bottom *= 4
 left *= 4

 # Draw a box around the face
 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

 # Draw a label with a name below the face
 cv2.rectangle(frame, (left, bottom), (right, bottom), (0, 0, 255),
cv2.FILLED)
 font = cv2.FONT_HERSHEY_DUPLEX
 cv2.putText(frame, name, (left, bottom), font, 1.0, (255, 255, 255), 1)

 # Display the resulting image
 cv2.imshow('Video', frame)

 # Hit 'q' on the keyboard to quit!
 if cv2.waitKey(1) & 0xFF == ord('q'):
 break

Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

FaceRecSys_Video.py :

Import
import face_recognition
import cv2
import numpy as np
import time

Open the input video file
video = cv2.VideoCapture("hamilton_clip.mp4")

Some variables
start = time.time()
length = int(video.get(cv2.CAP_PROP_FRAME_COUNT))

Variables to match the input files resolution and frame rate in output file
fps = video.get(cv2.CAP_PROP_FPS)
reslen = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
reswid = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))

Create an output video file
fourcc = cv2.VideoWriter_fourcc(*'XVID')
output_video = cv2.VideoWriter('output.avi', fourcc, fps, (reswid, reslen))

Load some sample pictures and learn how to recognize them.
lmm_image = face_recognition.load_image_file("llm.png")
lmm_face_encoding = face_recognition.face_encodings(lmm_image)[0]

al_image = face_recognition.load_image_file("Alex.png")
al_face_encoding = face_recognition.face_encodings(al_image)[0]

known_faces_encodings = [
 lmm_face_encoding,
 al_face_encoding
]
known_face_names = [
 "Lin Manuel Miranda",
 "Alex lacamoire"
]
Initialize some more variables
face_locations = []
face_encodings = []
face_names = []
frame_number = 0

while True:
 # Grab a single frame of video
 ret, frame = video.read()
 frame_number += 1

 # Quit when the input video file ends
 if not ret:
 break

 # Convert the image from BGR color (which OpenCV uses) to RGB color (which
face_recognition uses)
 rgb_frame = frame[:, :, ::-1]

 # Find all the faces and face encodings in the current frame of video
 face_locations = face_recognition.face_locations(rgb_frame)
 face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)

 face_names = []
 for (top, right, bottom, left), face_encoding in zip(face_locations,
face_encodings):
 # See if the face is a match for the known face(s)
 matches = face_recognition.compare_faces(known_faces_encodings,

face_encoding)

 name = "unknown"

 # If you had more than 2 faces, you could make this logic a lot prettier
 # but I kept it simple for the demo
 face_distances = face_recognition.face_distance(known_faces_encodings,
face_encoding)
 best_match_index = np.argmin(face_distances)
 if matches[best_match_index]:
 name = known_face_names[best_match_index]

 face_names.append(name)

 # Label the results
 for (top, right, bottom, left), name in zip(face_locations, face_names):
 if not name:
 continue

 # Draw a box around the face
 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

 # Draw a label with a name below the face
 cv2.rectangle(frame, (left, bottom), (right, bottom), (0, 0, 255),
cv2.FILLED)
 font = cv2.FONT_HERSHEY_DUPLEX
 cv2.putText(frame, name, (left + 6, bottom - 6), font, 0.5, (255, 255,
255), 1)

 # Write the resulting image to the output video file
 print("Writing frame {} / {}".format(frame_number, length))
 output_video.write(frame)

All done!
video.release()
cv2.destroyAllWindows()
print("------------ {} seconds taken ---------------".format(time.time()-start))

FaceRecSys_Image.py :

import
import face_recognition
from PIL import Image, ImageDraw
import numpy as np

Load a sample picture and learn how to recognize it.
salman_image = face_recognition.load_image_file("salman.jpg")
salman_face_encoding = face_recognition.face_encodings(salman_image)[0]

Load a second sample picture and learn how to recognize it.
akshay_image = face_recognition.load_image_file("akshay.jpg")
akshay_face_encoding = face_recognition.face_encodings(akshay_image)[0]

Load a third sample picture and learn how to recognize it.
ranveer_image = face_recognition.load_image_file("ranveer.jpg")
ranveer_face_encoding = face_recognition.face_encodings(ranveer_image)[0]

Create arrays of known face encodings and their names

known_face_encodings = [
 salman_face_encoding,
 akshay_face_encoding,
 ranveer_face_encoding
]
known_face_names = [
 "Salman Khan",
 "Akshay Kumar",
 "Ranveer Singh"
]

Load an image as an input
unknown_image = face_recognition.load_image_file("sample.jpg")

Find all the faces and face encodings in the unknown image
face_locations = face_recognition.face_locations(unknown_image)
face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

pil_image = Image.fromarray(unknown_image)
draw = ImageDraw.Draw(pil_image)

Loop through each face found in the unknown image
for (top, right, bottom, left), face_encoding in zip(face_locations,
face_encodings):
 # See if the face is a match for the known face(s)
 matches = face_recognition.compare_faces(known_face_encodings, face_encoding)

 name = "Unknown"

 # if True in matches:
 # first_match_index = matches.index(True)
 # name = known_face_names[first_match_index]

 face_distances = face_recognition.face_distance(known_face_encodings,
face_encoding)
 best_match_index = np.argmin(face_distances)
 if matches[best_match_index]:
 name = known_face_names[best_match_index]

 # Draw a box around the face
 draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255))

 # Draw a label with a name below the face
 text_width, text_height = draw.textsize(name)
 draw.rectangle(((left, bottom - text_height), (right, bottom)), fill=(0, 0,
255), outline=(0, 0, 255))
 draw.text((left + 6, bottom - text_height), name, fill=(255, 255, 255, 255))

Remove the drawing library from memory as per the Pillow docs
del draw

Display the resulting image
pil_image.show()

Save the resulting imgae
pil_image.save("output_image.jpg")

5. Output

 For image :

Image database :

Input :

Output :

 For video :

Image database :

Input : A video.

Output : Few frames from the output video.

6. Conclusion

An ideal face classifier would recognize faces in accuracy that is only matched by humans.

The underlying face descriptor would need to be invariant to pose, illumination, expression,

and image quality. It should also be general, in the sense that it could be applied to various

populations with little modifications, if any at all. In addition, short descriptors are preferable,

and if possible, sparse features. Certainly, rapid computation time is also a concern. We

believe that this work, which departs from the recent trend of using more features and

employing a more powerful metric learning technique, has addressed this challenge, closing

the vast majority of this performance gap.

For future enhancements this model should work even faster than the current one.

7. References

1. "What is Facial Recognition? - Definition from Techopedia". Techopedia.com.

Retrieved 2018-08-27.

2. ^ Andrew Heinzman. "How Does Facial Recognition Work?". How-To Geek.

Retrieved 2020-02-28.

3. ^ "How does facial recognition work?". us.norton.com. Retrieved 2020-02-28.

4. ^ "Face Recognition Applications". Animetrics. Archived from the original on 2008-

07-13. Retrieved 2008-06-04.

5. ^ Zhang, Jian, Yan, Ke, He, Zhen-Yu, and Xu, Yong (2014). "A Collaborative Linear

Discriminative Representation Classification Method for Face Recognition. In 2014

International Conference on Artificial Intelligence and Software Engineering

(AISE2014). Lancaster, PA: DEStech Publications, Inc. p.21 ISBN 9781605951508

6. ^ "Facial Recognition: Who's Tracking You in Public?". Consumer Reports.

Retrieved 2016-04-05.

7. ^ Jump up to:a b Bramer, Max (2006). Artificial Intelligence in Theory and Practice:

IFIP 19th World Computer Congress, TC 12: IFIP AI 2006 Stream, August 21-24,

2006, Santiago, Chile. Berlin: Springer Science+Business Media.

p. 395. ISBN 9780387346540.

https://www.techopedia.com/definition/32071/facial-recognition
https://en.wikipedia.org/wiki/Facial_recognition_system#cite_ref-2
https://www.howtogeek.com/427897/how-does-facial-recognition-work/
https://en.wikipedia.org/wiki/Facial_recognition_system#cite_ref-3
https://us.norton.com/internetsecurity-iot-how-facial-recognition-software-works.html
https://en.wikipedia.org/wiki/Facial_recognition_system#cite_ref-Animetrics2_4-0
https://web.archive.org/web/20080713020541/http:/www.animetrics.com/Technology/FRapplications.html
http://www.animetrics.com/technology/frapplications.html
https://en.wikipedia.org/wiki/Facial_recognition_system#cite_ref-5
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781605951508
https://en.wikipedia.org/wiki/Facial_recognition_system#cite_ref-6
http://www.consumerreports.org/privacy/facial-recognition-who-is-tracking-you-in-public1
https://en.wikipedia.org/wiki/Facial_recognition_system#cite_ref-:8_7-0
https://en.wikipedia.org/wiki/Facial_recognition_system#cite_ref-:8_7-1
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780387346540

	A Report for the Evaluation 3 of Project 2
	Submitted by
	in partial fulfillment for the award of the degree of
	Under the Supervision of

