A STUDY ON CREDIT CARD FRAUD DETECTION

A Report for the Evaluation 3 of Project

NIKHIL MISHRA
Admission No0.:16SCSE101394

Under the Supervision of

Prof. U Samson Ebenezar

School of Computing Science and Engineering
Greater Noida, Uttar Pradesh
Winter 2019-2020

r

GALGOTIAS

UNIVERSITY

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “ A study on credit card fraud detection ” is the

bonafide work of “ Nikhil Mishra (1613101440) ” who carried out the project

work under my supervision.

SIGNATURE

HEAD OF THE DEPARTMENT
Professor & Dean
School of Computing Science &

Engineering

SIGNATURE

Mr U. Samson Ebenezar
SUPERVISOR

Professor

School of Computing Science &

Engineering

O N o o kB~ w D =

TABLE OF CONTENTS

Abstract
Introduction
Proposed System
Existing System
Implementation
Result

Conclusion

. References

ABSTRACT

Fraud is one of the major ethical issues in the credit card industry.
The main aims are, firstly, to identify the different types of credit
card fraud, and, secondly, to review alternative techniques that
have been used in fraud detection. The sub-aim is to present,
compare and analyze recently published findings in credit card
fraud detection.

This project defines common terms in credit card fraud and
highlights key statistics and figures in this field. Depending on the
type of fraud faced by banks or credit card companies, various
measures can be adopted and implemented.

The proposals made in this project are likely to have beneficial
attributes in terms of cost savings and time efficiency. The
significance of the application of the techniques reviewed here is
in the minimization of credit card fraud. Yet there are still ethical
iIssues when genuine credit card customers are misclassified as
fraudulent.

INTRODUCTION

Financial fraud is an ever-growing menace with far
consequences in the financial industry. Data mining had
played an imperative role in the detection of credit card
fraud in online transactions. Credit card fraud detection,
which is a data mining problem, becomes challenging
due to two major reasons - first, the profiles of normal
and fraudulent behaviors change constantly and
secondly, credit card fraud data sets are highly skewed.
The performance of fraud detection in credit card
transactions is greatly affected by the sampling
approach on dataset, selection of variables and
detection technique(s) used. This project implements
the naive bays classification algorithm on highly
skewed credit card fraud data. Fraud means obtaining
services/goods and/or money by unethical means, and
is a growing problem all over the world nowadays.
Fraud deals with cases involving criminal purposes that,
mostly, are difficult to identify.

Furthermore, the face of fraud has changed
dramatically during the Ilast few decades as
technologies have changed and developed. Dataset of
credit card transactions is sourced from European
cardholders containing 284,807 transactions. A hybrid

technigue of under-sampling and oversampling is
carried out on the skewed data.

Credit cards are one of the most famous targets of
fraud but not the only one; fraud can occur with any
type of credit products, such as personal loans, home
loans, and retail. Fraud is one of the major ethical
issues in the credit card industry. The main aims are,
firstly, to identify the different types of credit card fraud,
and, secondly, to review alternative techniques that
have been used in fraud detection. The sub-aim is to
present, compare and analyze recently published
findings in credit card fraud detection. The proposals
made in this project are likely to have beneficial
attributes in terms of cost savings and time efficiency.

The significance of the application of the techniques
reviewed here is in the minimization of credit card fraud.
Yet there are still ethical issues when genuine credit
card customers are misclassified as fraudulent .A
critical task to help businesses, and financial institutions
including banks is to take steps to prevent fraud and to
deal with it efficiently and effectively. Credit card fraud
may happen in various ways, which depend on the type
of fraud concerned; it encapsulates bankruptcy fraud,
theft fraud / counterfeit fraud, application fraud and
behavioral fraud. Each of these sub-fraud categories
has its own definition and specificity.

The complexity of credit card fraud is that it may be
committed in various ways, including theft fraud,
application fraud, counterfeit fraud, bankruptcy fraud.

By not paying enough attention to fraud prevention or
detection, the risk for the bank is that “credit card fraud
remains usually undetected until long after the criminal
has completed the crime”. Therefore, it will generate
irrecoverable costs for the bank. Credit is a method of
selling goods or services without the buyer having cash
in hand. A credit card is only an automatic way of
offering credit to a consumer.

Today, every credit card carries an identifying number
that speeds shopping transactions. In the credit card
business, it can be an internal party but most likely an
external party. As an external party, fraud is committed
being a prospective/existing customer or a
prospective/existing supplier. Three different profiles
can be identified for external fraudsters: the average
offender, criminal offender, and organized crime
offender. For many companies sometimes dealing with
millions of external parties, it is cost-prohibitive to
manually check the majority of the external parties’
identity and activities. Indeed, to investigate each
suspicious transaction, they incur a direct overhead
cost for each of them. In order to avoid these
overheads and depending on the type of fraud
committed, diverse solutions can be implemented.

Proposed Model

The model proposed in this project is to implement machine learning algorithms in
to analyze and compare different fraud detection techniques. Our aim is to classify
the highest possible degree of accuracy, precision and specificity of the detection
techniques which will lead to increase in the probability of detecting the frauds in
credit card . Our dataset gathered is highly unbalanced and huge . So firstly we
need to do the dimensionality reduction and then follow the methods. After initial
data exploration, we knew would implement a logistic regression model, a k-means
clustering model, and a neural network. Some challenges we observed from the
start were the huge imbalance in the dataset: frauds only account for 0.172% of
fraud transactions. In this case, it is much worse to have false negatives than false
positives in our predictions because false negatives mean that someone gets away
with credit card fraud. False positives, on the other hand, merely cause a
complication and possible hassle when a cardholder must verify it .

Principle Component Analysis

The dataset contains only numerical input variables which are the result of a PCA
transformation. Unfortunately, due to confidentiality issues, we cannot provide the
original features and more background information about the data. Features V1,
V2, ... V28 are the principal components obtained with PCA, the only features
which have not been transformed with PCA are 'Time' and 'Amount’. Feature
‘Time' contains the seconds elapsed between each transaction and the first
transaction in the dataset. The feature 'Amount’ is the transaction Amount, this
feature can be used for example-dependent cost-sensitive learning. Feature 'Class'
is the response variable and it takes value 1 in case of fraud and O otherwise.

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is anapproach/philosophy for data analysis that
employs a variety of techniques (mostly graphical) tomaximize insight into a data
set, uncover underlying structure, extract important variables, detect outliers and

anomalies, test underlying assumptions, develop parsimonious models
anddetermine optimal factor settings.The EDA approach is precisely that--an
approach--not a set oftechniques, but an attitude/philosophy about how a data
analysis should be carried out.

Correlation Matrix

Correlation matrix graphically gives us an idea of how features correlate with each
other and can help us predict what are the features that are most relevant for the
prediction. In the HeatMap we can clearly see that most of the features do not
correlate to other features but there are some features that either has a positive or a
negative correlation with each other. For example, V2 and V5 are highly negatively
correlated with the feature called Amount. We also see some correlation

with V20 and Amount. This gives us a deeper understanding of the Data available
to us.

Confusion Matrix

A confusion matrix is a summary of prediction results on a classification problem.
The number of correct and incorrect predictions are summarized with count values
and broken down by each class. This is the key to the confusion matrix. The
confusion matrix shows the ways in which your classification model is confused
when it makes predictions. It gives us insight not only into the errors being made
by a classifier but more importantly the types of errors that are being made. A
confusion matrix for binary classification shows the four different outcomes: true
positive, false positive, true negative, and false negative. The actual values form the
columns, and the predicted values (labels) form the rows. The intersection of the
rows and columns show one of the four outcomes. For example, if we predict a data
point is positive, but it actually is negative, this is a false positive.

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

7))
L
D POSITIVE (1) TP FN
<
-
-
<C
E NEGATIVE (0) FP TN
O
<
Confusion Matrix for the Binary Classification
Accuracy

Accuracy is calculated as the total no. of corrected prediction divided by the total
number of dataset. Accuracy works well on the balanced dataset. In case of
imbalanced dataset accuracy mislead the performance.

TP + TN
TP + TN + FP + FN

Accuracy =

Precision

Precision is defined as the ratio of the total number of correctly classified positive
classes divided by the total number of predicted positive classes. Or, out of all the
predictive positive classes, how much we predicted correctly. Precision should be
high.

TP
TP + FP

Precision =

Recall

Recall is defined as the ratio of the total number of correctly classified positive
classes divide by the total number of positive classes. Or, out of all the positive
classes, how much we have predicted correctly. Recall should be high.

TP
TP + FN

Recall =

F-1 Score

It is difficult to compare two models with different Precision and Recall. So to
make them comparable, we use F-Score. It is the Harmonic Mean of Precision and
Recall. As compared to Arithmetic Mean, Harmonic Mean punishes the extreme
values more. F-score should be high.

2 * Recall * Precision

F - score = —
Recall + Precision

Now it is time to start building the model .The types of algorithms we are going to
use to try to do anomaly detection on this dataset are as follows

Isolation Forest Algorithm :

One of the newest techniques to detect anomalies is called Isolation Forests. The
algorithm is based on the fact that anomalies are data points that are few and
different. As a result of these properties, anomalies are susceptible to a mechanism
called isolation.

This method is highly useful and is fundamentally different from all existing
methods. It introduces the use of isolation as a more effective and efficient means
to detect anomalies than the commonly used basic distance and density measures.
Moreover, this method is an algorithm with a low linear time complexity and a
small memory requirement. It builds a good performing model with a small
number of trees using small sub-samples of fixed size, regardless of the size of a
data set.

Typical machine learning methods tend to work better when the patterns they try to
learn are balanced, meaning the same amount of good and bad behaviors are
present in the dataset.

How Isolation Forests Work The Isolation Forest algorithm isolates observations
by randomly selecting a feature and then randomly selecting a split value between
the maximum and minimum values of the selected feature. The logic argument
goes: isolating anomaly observations is easier because only a few conditions are
needed to separate those cases from the normal observations. On the other hand,
isolating normal observations require more conditions. Therefore, an anomaly
score can be calculated as the number of conditions required to separate a given
observation.

The way that the algorithm constructs the separation is by first creating isolation
trees, or random decision trees. Then, the score is calculated as the path length to
isolate the observation.

Outlier detection formula of an anomaly score is required for decision prediction.
For Isolation Forest it is defined as

S(x, n) =2 ~ -E(h(x))/c(n)

Where,

h(x) = is the path length of observation X,

c(n)=is the Avg path length of failed search in a BST (Binary Search Tree)
(n)=is the number of other nodes.

Each n observation is given an anomaly score and therefore the following call are
often created on its basis:

e Score near to 1 precise the outlier
e Score less than 0.5 show legal transactions

e In condition ofscores which they arenearto 0.5than therest of sample doesnot
seem clearly detect anomalies.

Local Outlier Factor(LOF) Algorithm

The LOF algorithm is an unsupervised outlier detection method which computes
the local density deviation of a given data point with respect to its neighbors. It
considers as outlier samples that have a substantially lower density than their
neighbors.

The number of neighbors considered, (parameter n_neighbours) is typically chosen
1) greater than the minimum number of objects a cluster has to contain, so that
other objects can be local outliers relative to this cluster, and 2) smaller than the
maximum number of close by objects that can potentially be local outliers. In

practice, such information are generally not available, and taking n_neighbors=20
appears to work well in general.

Random forest, like its name implies, consists of a large number of individual
decision trees that operate as an ensemble . Each individual tree in the random
forest spits out a class prediction and the class with the most votes becomes our
model’s prediction. The fundamental concept behind random forest is a simple but
powerful one — the wisdom of crowds. In data science speak, the reason that the
random forest model works so well is: A large number of relatively uncorrelated
models (trees) operating as a committee will outperform any of the individual
constituent models.

The low correlation between models is the key. Just like how investments with low
correlations (like stocks and bonds) come together to form a portfolio that is greater
than the sum of its parts, uncorrelated models can produce ensemble predictions
that are more accurate than any of the individual predictions. The reason for this
wonderful effect is that the trees protect each other from their individual errors (as
long as they don’t constantly all err in the same direction). While some trees may be
wrong, many other trees will be right, so as a group the trees are able to move in the
correct direction.

not valid

USER

l

Credit Card No.

l

l

Enter Transaction

Amount

valid

l

|

Transaction Done
Successfully

Yes

Enter secured code

generated and send to
mobile as SMS

Existing Model

1.) Decision tree

A decision tree is flowchart like structure, where each internal node denotes
a test on an attribute, each branch represents an outcome of the test, and each leaf
node holds a class label. The topmost node in the tree is the root node. The
construction of decision tree classifiers does not require any domain knowledge
discovery. Decision trees can handle multi-dimensional data. Their representation
of acquired knowledge in tree form is intuitive and generally easy to assimilate by
humans. The learning and classification steps of decision tree induction are simple
and fast. Decision tree induction algorithms have been used for classification in
many application areas such as medicine, manufacturing and production, financial
analysis, astronomy, and molecular biology. The idea of a similarity tree using
decision tree logic has been developed. A similarity tree is defined recursively:
nodes are labelled with attribute names, edges are labelled with values of attributes
that satisfy some condition and ‘leaves’ that contain an intensity factor which is
defined as the ratio of the number of transactions that satisfy these condition(s)
over the total number of legitimate transaction in the behavior. The advantage of
the method that is suggested is that it is easy to implement, to understand and to
display. However, a disadvantage of this system is the requirements to check each
transaction one by one. Nevertheless, similarity trees have given proven results
also worked on decision trees and especially on an inductive decision tree in order
to establish an intrusion detection system, for another type of fraud.

2.) Classification

It is the organization of data in given classes. Also known as supervised
classification, classification uses given class labels to order the objects in the data
collection. Classification approaches normally use a training set where all objects
are already associated with known class labels. The classification algorithm learns
from the training set and builds a model. The model is used to classify new objects.
Common techniques for classification are decision tree, neural networks, SVM etc.
Algorithms are often recommended as predictive methods as a means of detecting
fraud. One algorithm that has been suggested by Bentley et al. (2000) is based on
genetic programming in order to establish logic rules capable of classifying credit
card transactions into suspicious and non-suspicious classes. Basically, this method

follows the scoring process. They conclude from their investigation that
neighborhood-based and probabilistic algorithms have been shown to be
appropriate techniques for classification, and may be further enhanced using
additional diagnostic algorithms for decision-making in borderlines cases, and for
calculating confidence and relative risk measures.

3.) Clustering techniques

It is a division of data into groups of similar objects. Each group, called
cluster, consists of objects that are similar amongst them and dissimilar compared
to objects of other groups. Representing data by fewer clusters necessarily loses
certain fine details, but achieve simplification. It represents many data objects by
few clusters, and hence, it models data by its clusters . Some algorithms are Model
Based algorithms , Density Based algorithms etc. Bolton & Hand (2002) suggest
two clustering techniques for behavioral fraud. The peer group analysis is a
system that allows identifying accounts that are behaving differently from others
at one moment in time whereas they were behaving the same previously. Those
accounts are then flagged as suspicious. Fraud analysts have then to investigate
those cases. The hypothesis of the peer group analysis is that if accounts behave
the same for a certain period of time and then one account is behaving
significantly differently, this account has to be notified. Breakpoint analysis uses a
different approach. The hypothesis is that if a change of card usage is notified on
an individual basis, the account has to be investigated. In other words, based on
the transactions of a single card, the break-point analysis can identify suspicious
behavior. Signals of suspicious behavior are a sudden transaction for a high
amount, and a high frequency of usage.

4.) Neural networks

Fraud detection methods based on neural network are the most popular ones. An
artificial neural network consists of an interconnected group of artificial neurons
.The principle of neural network is motivated by the functions of the brain
especially pattern recognition and associative memory. The neural network
recognizes similar patterns, predicts future values or events based upon the
associative memory of the patterns it was learned. It is widely applied in

classification and clustering. The advantages of neural networks over other
techniques are that these models are able to learn from the past and thus, improve
results as time passes. They can also extract rules and predict future activity based
on the current situation. By employing neural networks, effectively, banks can
detect fraudulent use of a card, faster and more efficiently. Among the reported
credit card fraud studies most have focused on using neural networks. In more
practical terms neural networks are non-linear statistical data modeling tools. They
can be used to model complex relationships between inputs and outputs or to find
patterns in data. There are two phases in neural network training and recognition.
Learning in a neural network is called training. There are two types of NN training
methods supervised and unsupervised. In supervised training, samples of both
fraudulent and non fraudulent records are used to create models. In contrast,
unsupervised training simply seeks those transactions, which are most dissimilar
from the norm. On other hand, the unsupervised techniques do not need the
previous knowledge of fraudulent and non fraudulent transactions in database. NNs
can produce best result for only large transaction dataset. And they need a long
training dataset.

Implementation

The datasets contains transactions made by credit cards in September 2013 by
european cardholders. This dataset presents transactions that occurred in two days,
where we have 492 frauds out of 284,807 transactions. The dataset is highly
unbalanced, the positive class (frauds) account for 0.172% of all transactions.

It contains only numerical input variables which are the result of a PCA
transformation. Unfortunately, due to confidentiality issues, we cannot provide the
original features and more background information about the data. Features V1,
V2, ... V28 are the principal components obtained with PCA, the only features
which have not been transformed with PCA are "Time' and 'Amount'. Feature
‘Time' contains the seconds elapsed between each transaction and the first
transaction in the dataset. The feature 'Amount’ is the transaction Amount, this
feature can be used for example-dependant cost-sensitive learning. Feature 'Class'
Is the response variable and it takes value 1 in case of fraud and O otherwise.

& Anamoly Detection.ipynb

B commem 2% Share £ o

File Edit View Insert Runtime Tools Help t saved at 3:36 PM

+ Code + Text Connect = # Editing ~

atplotlib.pyplot as plt
import seaborn as sns

from sklearn.metrics import classification_report,accuracy_score
from sklearn.ensemble import IsolationForest

from skle mport LocaloutlierFactor
from skleal oneClasssvm

from pyl;

rcParams.

RANDCM_SEED

LABELS = ["Normal”, "Fraud"]

© data - pd.read_csv(’creditcard.csv’,sep=", ")
data. head()

Time vi v2 v3 va Vs Ve v7 ve va ... v21 Va2 va3 V24 v2s V26 v27 v2s
0 00 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0462388 0.239599 0.098698 0.363787 -0.018307 0277838 -0.110474 0066928 0.128539 -0.189115 0.133558 -0.021053
1 00 1.191857 0.266151 0.166480 0448154 0.060018 -0.082361 -0.078803 0.085102 -0.255425 .. -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724
2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 c 0247998 0.771679 0909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752
3 10 -0.966272 -0.185226 1.792693 -0.863291 -0.010309 1.247203 0.237609 0.377436 -1.387024 .. -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458
4 20 -1.158233 0877737 1.548718 0403034 -0407193 0095921 0.592841 -0.270533 0.817739 .. -0.009431 0796278 -0.137458 0.141267 -0.206010 0502292 0.219422 0.215153

5 rows x 31 columns

H P Type here to search

& colabresearch.google.com

& Anamoly Detection.ipynb B Comment
File Edit View Insert Runtime Tools Help

+ Code + Text Connect

data.info()

<class 'pandas.core.frame.DataFrame’>
(] RangeIndex: 284807 entries, © to 284806

Data columns (total 31 columns):

Time 284807 non-null 6

Vi 284807 non-null

v2 284867 non-null

Vi 284867 non-null

va 284887 non-null f1

Vs 284807 non-null

V6 284807 non-null 1

v7 284807 non-null

v 284807 non-null

va 284887 non-null

vie 284807 non-null

Vil 284867 non-null f

vi2 284887 non-null

vi3 284887 non-null

via 284807 non-null

V15 284807 non-null

V16 284807 non-null fl

vi7 284807 non-null

vis 284807 non-null f

vig 284807 non-null

V20 284867 non-null

v21 284867 non-null

v22 284807 non-null

Va3 284887 non-null

v2a 284807 non-null

V25 284807 non-null 1

V26 284807 non-null

vz7 284807 non-null

v2a 284807 non-null

Amount 284867 non-null

Class 284807 non-null intea

dtypes: floatea(3e),

H P Type here to search

intea(1)

@ colabresearchgoogle.com/d

& Anamoly Detection.ipynb o
hare €3

Flle Edit View Insert Runtime Tools Help Last 1336 F

~ Exploratory Data Analysis

o data.isnull() .values.any()

© count_classes = pd.value_counts(data]

count_classes.plot(kind = ‘bar’,

tributd

plt. title("T

plt.xticks(,

plt.xlabel("Class

plt.ylabel(“Frequency”)

Transaction Class Distribution

& colabresearch.google.com/d

A |
& Anamoly Detection.ipynb B comment Share €3 o
File Edit View Insert Runtime Tools Help | 6 PM
+ Text nnect 4 A
e [] #n Get the Fraud and the normal dataset
m] fraud = data[data['Clas

normal = data[data['Class

t(fraud.shape,normal. shape)

31) (284315, 31)
[] ## We need to analyze of information from the t

dif ent e the +
fraud. Amount .describe()

oney used in dif

count 000000
mean 211321
std 683288
min
5% 1
]
105
max 2125

[] normal.Amount.deseribe()

count 284315,000000
mean 88.291022
std 250.105092
min 2.000000
25% 5.650000
50% 22.000000
75% 77.850000
max 25691. 160000

Name: Amount, dtype: floatéd

H P Type here to search

#& colab.research.google.com/drive/1

" Share £¢ o

Connect ~ 7 A

& Anamoly Detection.ipynb B Comment
File Edit View Insert Runtime Tools Help

+ Code + Text

ax1.hist(fraud.Amount, bins = bins)
< ax1.set_title('Fraud')
ax2.hist(normal.Amount, bins = bins)

ax2.set_title('Normal')

o plt.xlabel('Amount ($)')
plt.ylabel('Number of Transactions')
plt.xlin((0, 20000))

plt.yscale('log")
plt.show();

Amount per transaction by class

Fraud

2500

#& colab.research.google.com/drive/1xLr

& Anamoly Detection.ipynb

B Comment

Flle Edit View Insert Runtime Tools Help
» + Code + Text Connect ~ 7 A
, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
© f.suptitle('Ti n vs Amount by class')
ax1.scatter(Fraud.Time, Fraud.Amount)
=] axl.set_title('Fraud’)
ax2.scatter(Normal.Time, Normal.Amount)
ax2.set_title('Normal')
plt.xlabel('T
plt.ylabel(’Amount
plt. show()
Time of transaction vs Amount by class
Fraud
.
2000
.
1500 .
.o, .
.
.
1000 . b
500
°
25000 .

Amount

75000 100000 175000

Time (in Seconds)

25000 50000

@ colabresearch.google.com/drive/1xLrNSLni7xLj

& Anamoly Detection.ipynb B comment Share €2 o
File Edit View Insert Runtime Tools Help
+ Code + Text Connect ~ Z" Editing -~

n L Type here to search

##t Take some sample of the data

datal= data.sample(frac = 0.1,random_state=1)

datal.shape

(28481, 31)
F v oB B8

data.shape

(284807, 31)

in the dataset

#Determine the number of fraud and valid transactions

Fraud = datal[datal['Class’]

1]

valid = datal[datal['Class’']==c

outlier_fraction = len(Fraud)/float(len(valid))

print(outlier_fraction)

en(Fraud)))

print("Fraud Cases : {}

{

print("valid Cases " format(len(valid)))
0.0017234102419808666

Fraud Cases 49

Valid Cases 28432

#& colab.research.google.com/drive/1xLr 1 QuTIBDe1Alxr

& Anamoly Detection.ipynb
File Edit View Insert Runtime Tools Help Lastsaved at3:36PM

B Comment &% Share €% o

+ Code + Text Connect ~ * Edit ~

2*veoB QN

<> | @ # Correlation
import seaborn as sns

in dataset

#get correlations of each featu
corrmat = datal.corr()
top_corr_features = corrmat. index
plt.figure(figsize=(20,20))

#plot heat map

=sns. heatmap(data[top_corr_features].corr(),annot=True, cmap="RdY1Gn")

09
v 25 Ge-18 1e-16e-12 2o Tde 16 20 Hde-H9e-10.099 013
v 9e-142e.- Thbe- Wi2e-16 Ge- Dide- 168e. 18 e -66e. T le- [H5e- 16te- 1E1e-13 e Thle-1E de. File- Ihe. 18 3e. Fibe 1612 165¢- 18 Je. xunm
ve 16 7e-1e- 159 M9e- 1)e 1B, e 5 022 9084
V7 0085 2e-154e-1@ Ze- IE6e- 1A 2e- 16de-1 VBe le-1%e18 G- S Le- 260 = 704 m’ p19)
-06

V8 0038 Se-Wde. Hle. Bi2e-Iée. 15 Te-BTe. 9e-11e12e-16 e T de-Ble- 10016 50-1@ Se-M 1e-Fde- 16 1. Wde. HiSe. B9 1 Se. I6de. W2e- 1614 501601 002

V9 0 0082 2¢-15 Te- 1 2¢ BBe- 162e- T61e- 16.9¢- 159 U 6e-367e. 18 de. 15 Te- Bde- 1K G-I e Mibe- Ii2e- 16 1e-14 Je- M. 17 9e. 159 15 Je- Tle- 15 de- 15 Je-Bole-10.0440,098

e 130 10 Te 7 1e e 1670 WBe 18012 ca 59

2e-T50e-1S6e. WBe-16 20 Hle 16e-18 2¢. 16 Jo. 59 [58e- D2e- I62e- W be. 16 Le- I56e- T51e. XEO001 0 15

Vi1 ﬂ‘ehsa-l&saml! Dile-169e. 1 1e-19¢.1 Te. 15ée.

V12 - 01224e.16 6e-TiZe. T Te- ibe. 1 le- TESe-16 Jo-Wie. Tote- 152¢.1| 3e-MBe 189 1ESe-18 Je. e Bde- 17 o 162¢-18 Je- 1ote- 169¢- 15 118 8e.Th Je. Tide- 16 wsﬂ

Vi3 D068 1 EETR =, 1 o

V14 0099 de-18 Se-BiSe. 18 Se- [6e. BiSe- 15 Te. 15 1o Be- 156e. [H6e. 1WBe- 1B 8e-1 . M6e. 1Be 18 ‘-DMH

QuTJBDe1Alxr

& Anamoly Detection.ipynb
File Edit View Insert Runtime Tools Help Lastsaved at3.36PM

B Comment

+ Code + Text Connect ~

° V12 - 0122 4e.36 6o Ti2e. 15 Je- Hifle. 1B 1e. I65¢- 16 Je-Rlde. I5de- 132¢.1)
=2 Vi3 Dose 38 3e. Be-14 Te-Hide-18 2e- Bide- L Ge- Iide- 185e- 17 Te- H e -FiSe- Bl e- 17 1e-M6Se- 182150 005D 0046
%
5 | e SIPR— .

V16 0012 3. 369e-1W2e 16 9615 Se. P . ’3e 36 s

V17 D0735¢-18 9 4064 3 Se- 55 W78 e 169¢-188e-18 2e- 16007

vis 6e- 15 151e- e 15 le- M 1e. 1 166e-18 Ye. Hi2e-16e.17 Se-1@e-15 be- 4e-159¢.T61e WiTe. [6e-T6le. Tide B2e- Iide- 18016036 011

V19 0022 8e.18 5. Wée. I e Tl e. I7e. 16 9 Th3e- 10e. 1B 7e. 32615 3e.12 G-Il e Bbe.16e- 15 Je. Tide. 9e.18ke.1@ Te. File. Thle. 17 4e. 156e.16 le.64e. 19,0560 035

V20 -0.0511e-1® 3e-Bide-Bize-Tle. I6de-157e-16 le-Wole. 15 1e-T5 e Mide- 16 Je- IB6e. HiZe- IE9e.- 18 Ge-6%e- Mbe.- 1 le-I5e 15e-18 6e-155e 16¢ 14 de-I5le- 1@ 34 002

18e151e16@011 004

V22 - 01475135 ¥66e-1B1e. 15 1e- 1B de. 15 1e. F5e. 0. 14 Te. Th8e. I 9e. 15 Te. EMe. M 0e. Bide. 19 de. W 7e B 7e. I6le 1391 1e.162¢.14 le- BSe- 15 3e.16e-160.068 0008 |

V23 005D Se-T5le-18 le-15e-12 Ge. 1K 2¢- W3e- 159e. - 16Se. 16 2¢- Iode- 16 Je. Wbe- 17 Le- MSe- 154e- 18 Ge- 5ive- 16e- 16 1e-Thle.] 4e-17 9. HBe- 155¢-16e-16 0,130 0027

V24 00104618 s 1 5 = 5

Vs Ek-‘k ¥Be.15 de- F6e I5le-152¢.35 de- 1e-18 Je. 6o File- 161e. 17 Ge. e 16 6e-WiSe. 15 Je. Tote. 15 Se. L5Se. 26 L. To0e- 1be. 1 Be.i6 le.Bole-10 0480033

V26 0,048 6o Wbe- WS- M2e- Bile- 18 de-T63e- 1626 Bode. Bibe- B 1 e Bibe- 15 1e-Fibe- He-16 2e- Mie- 1B 2¢-be-1@e-18 e F5e- Bbe- Tle-I58e-1 Ae-THSe- 10030 0045 3

V27 0.009226-15¢ 19, 1e-15 3 . Ee- 167

\28 0,009 8e-18 7e-UsTe- I9e- 1 Je-J6Be- 16 8e- 0 Se- Bile- 16 Se- T61e Uide-18e-12 Se-15 1e- Hbe- 15 2e- HBe. 16 de. 15 1o Fole-1 @e- 160e- 1@ Jo. Hhbe- 18 8e-Tge-

amount .01 QL o

22 04 01004401 0000D.009800530340.000.0039.00730.0360.056 0 34 011 0.06540.11000510.0480 0030029 001

Qass 001201 0091838 :mamuﬁ owza.oﬂ:xsﬁwﬂmm 1110035 002 0040000800029 0072 0038 00450 018 009800
G A e g s 2

TERE : s 8§88y

n P Type here to search

g8 5388

Vi1 -
w7
V26
v

Time

<>

n £ Type here to search

<>

& col

ab research.google.com/dri

& Anamoly Detection.ipynb
Y Py B comment 2% Share £t o
File Edit View Insert Runtime Tools Help Lastsaved at3:36 PM
+ Code + Text Connect ~ # Editing A
ET 77T s g g s SR EEOSES EY S S ROYYSOozoE
<
=R - I

& col

#Create independent and Dependent Features

columns = datal.columns.tolist()

Filter the columns to remove data we do not want
columns = [c for c in columns if ¢ not in ["Class"]]
Store the variable we are predicting

target = "Class"

Define a random state

state = np.random.RandomState(42)

X = datal[columns]

Y = datal[target]

X_outliers = state.uniform(low=8, high=1, size=(X.shape[©], X.shape[1]))
Print the shapes of X & Y

print(X.shape)

print(Y.shape)

(28481, 30)
(28481,)

lab.research.google.com,

& Anamoly Detection.ipynb
4 Py B Comment 2% Share £t o
File Edit View Insert Runtime Tools Help Lastsaved at3:36 PM
+ Code + Text Connect ~ # Editing A
H_1ISIYIIUUI 9= £U Uppeuno W ywUIn wen i yenisiar.

[1

[1

[1

##Define the outlier detection methods

classifiers = {
"Isolation Forest":IsolationForest(n_estimators=100, max_samples=len(X),
contamination=outlier_fraction,random_state=state, verbose=08),

"Local Outlier Factor":LocalOutlierFactor(n_neighbors=206, algorithm='auto’,

leaf_size=30, metric='minkowski',

p=2, metric_params=None, contamination=outlier_fraction),
"Support Vector Machine":0OneClassSVM(kernel='rbf', degree=3, gamma=0.1,nu=0.05,

max_iter=-1, random_state=state)

type(classifiers)

dict

n_outliers = len(Fraud)

n pel Typeherek;sear(‘h ﬂ (~] 9 m @ ®]

@& colab.research.google.com/drive/1xLrNSLni7xLjl41YdH58

& Anamoly Detection.ipynb B Comment &% Share £X o

File Edit View Insert Runtime Tools Help Lastsaved at 3:36 PM

+ Code + Text Connect ~ # Editing ~
dict
<>
[1 n_outliers = len(Fraud)
— for i, (clf_name,clf) in enumerate(classifiers.items()):
#Fit the data and tag outliers
if clf_name == "Local Outlier Factor":

y_pred = c1f.fit_predict(x)
scores_prediction = clf.negative_outlier_factor_

elif clf_name == "Support Vector Machine":
clf. fit(X)
y_pred = clf.predict(X)

else:
clf. fit(X)

scores_prediction = clf.decision_function(X)
y_pred = clf.predict(X)
#Reshape the prediction values to @ for Valid transactions , 1 for Fraud transactions
y_pred[y_pred == 1] = @
y_pred[y_pred == -1] = 1
n_errors = (y_pred != Y).sum()
Run Classification Metrics
print("{}: {}".format(clf_name,n_errors))
print("Accuracy Score :")
print(accuracy_score(Y,y_pred))
print("Classification Report :")
print(classification_report(Y,y_pred))

n £ Type here to search

OUTPUT

& colab.research.google.com/drive/1xLrNSLni7xLjl41YdH583Kyz4HZMcO3Y#scrollTo=xccMWAISAIX7

& Anamoly Detection.ipynb B comment &% share 1% Q

File Edit View Insert Runtime Tools Help Lastsave

_ + Code + Text Connect ~ 2 Editing A

= e \USEH SR 4311« 1aan \AppraLa \LuLaL \Lulicaniuumanacuiivao \Siivo \myciiv \iriv\sirLcTpacLnagco \o>
o " be removed in ©.22.", DeprecationWarning)

<> Isolation Forest: 73

Accuracy Score :
0.9974368877497279

O Classification Report
precision recall fl-score support
0 1.00 1.00 1.00 28432
1 0.26 0.27 0.26 49
micro avg 1.00 1.00 1.00 28481
macro avg 0.63 0.63 0.63 28481
weighted avg 1.00 1.00 1.00 28481

Local Outlier Factor: 97
nPTypeheretosearm ﬂ ~] 9 m @ ®]

& colaburesearch.google.com/drive/1xLrNSLNi7xLji41¥dH58

& Anamoly Detection.ipynb B Comment &% Share o3 o

File Edit View Insert Runtime Tools Help Lastsave

_ + Code + Text Connect ~ 2 Editing A
° weighted avg 1.00 1.00 1.00 28481
<> .
Local Outlier Factor: 97
Accuracy Score :
(. 0.9965942207085425
Classification Report
precision recall fl-score support
Q 1.00 1.00 1.00 28432
1 0.02 0.02 0.02 49
micro avg 1.00 1.00 1.00 28481
macro avg 0.51 0.51 0.51 28481
weighted avg 1.00 1.00 1.00 28481

& colab.research.google.com/drive/1xLrNSLni7xLjl41YdH583Ky

& Anamoly Detection.ipynb
File Edit View Insert

+ Code + Text

Runtime Tools

Help Lastsave

Bl Comment 2% Share £ Q

" be removed in version ©.22.", DeprecationWarning)
° Support Vector Machine: 8516

< Accuracy Score :
0.7009936448860644
o Classification Report
precision
(4] 1.00
1 0.00
micro avg 0.70
macro avg 0.50
weighted avg 1.00

recall fl-score

0.70
0.37

0.70
0.53
0.70

0.82
0.00

support

28432
49

28481
28481
28481

Connect

v

2 Editing

Conclusion

Isolation Forest detected 73 errors versus Local Outlier Factor
detecting 97 errors vs. SVM detecting 8516 errors

Isolation Forest has a 99.74% more accurate than LOF of 99.65%
and SVM of 70.09

When comparing error precision & recall for 3 models , the Isolation
Forest performed much better than the LOF as we can see that the
detection of fraud cases is around 27 % versus LOF detection rate of
just 2 % and SVM of 0%.

So overall Isolation Forest Method performed much better in
determining the fraud cases which is around 30%.

We can also improve on this accuracy by increasing the sample size
or use deep learning algorithms however at the cost of computational
expense. We can also use complex anomaly detection models to get
better accuracy in determining more fraudulent cases

Ok wnhE

References

www.kaggle.com
www.wikipedia.com
www.google.com
www.researchgate.net
www.youtube.com

http://www.kaggle.com/
http://www.wikipedia.com/
http://www.google.com/
http://www.researchgate.net/
http://www.youtube.com/

	Isolation Forest Algorithm :
	Local Outlier Factor(LOF) Algorithm

