
1

ARTIFICIAL NEURAL NETWORK (ANN)

DEVELOPMENT USING DEEP LEARNING

A Report for the Evaluation 3 of

Project 2

Submitted by

ABHISHEK

 (1613101026 / 16SCSE101415)

in partial fulfillment for the award of the

degree of

Bachelor of Technology

IN

Computer Science and Engineering

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

 Under the Supervision of

Mr. Abhay Kumar,

Assistant Professor

 APRIL / MAY- 2020

2

 TABLE OF CONTENTS

CHAPTER NO.

1.

TITLE

Abstract

PAGE NO.

3

2. Introduction 5

3. Existing System 6

4. Proposed System 8

5. Implementation and Architecture Diagrams 9

6. Result 11

7. Conclusion 13

8. References 14

3

Abstract

 One of the classical problems in the field of computer vision and machine

learning and subsequently deep learning is image classification. While Deep

Learning solves the much difficult hurdles like feature extraction and presents

us with better optimizations like gradient descent and Adam optimizer, most

deep learning models still need a lot of raw computational power to train

models on local Graphical Processing Units (GPUs) or Tensor Processing

Units (TPUs) in the cloud. All of this computational power is not readily

available in all environments and systems and hence the concept of pre-

trained models can help to reduce training time by a huge margin. Initial

models get trained on large array of GPUs and do feature extraction. The

classification part is for the end-user to customise in accordance to the

problem at hand and can be completed in very less time.

We tackled the multi-class classification botanical problem of identifying

flowers of 5 types, namely, Sunflower, Rose, Dandelion, Daisy, and Tulip.

The feature extraction part is done with the model (Google’s Inception-v3)

and fully connected softmax layers were trained on local machine on a Nvidia

GeForce GTX 950 (with CUDA activated) within 30 minutes time and total

steps/epochs were 4000 only. The total number of training images is 3,500

4

(approx.). The finished model produced results with final test accuracy as

91.9% on new images (N=664).

5

Introduction

 Convolutional neural networks (CNNs) opened a door to a new era of

classification. Multi-class classification of the order of couple dozen classes is

now possible. Using existing CNN model of layering can be efficient as well

as robust in classification tasks, but requires a lot of data and computational

power to classify images with higher degree of accuracy. This hardware

include GPUs, FPGAs, and ASICs like Google’s TPU and IBM TrueNorth

[1]. Despite the attractive qualities of CNNs, and despite the relative

efficiency of their local architecture, they have still been prohibitively

expensive to apply in large scale to high-resolution images. The feature

extraction task taken at hand in this paper is done by using Inception-v3 [2].

The network training process is then relatively simpler with a GPU and the

final model for a custom use case is ready after training on custom classes for

approx. 30 min to 1 hr. This paper does it for five flowers’ 3.500 images with

each class having approx. 700 images but it can be extended to any multi-

class classification problem with no additional overhead.

6

Existing System

 In Liu. et.al’s work, Noval general K-nearest neighbour classifier GKMNC

(fuzzy k-nearest) was used for visual classification. Sparse representation-

based method described in Tropp et.al. for learning and deriving the weights

coefficients and FISTA (Beck et.al.) was used for optimization. CNN-M (in

Chatfield et.al.), a pretrained CNN was used for image features extractions

then marginal PCA (Jolliffe et.al.) is applied to reduce the dimension of the

extracted features. In Sun et.al., AlexNet (Hinton et.al.) model, a deep neural

network is used to learn scene image features. During the training phase,

series of transformation such as convolution, max pooling, etc are performed

to obtained image features. Then two classifier SVM (Cortes et.al.) classifier

and Softmax (Nasrabadi et.al.) classifier are trained using extracted features

from the AlexNet model. In Zhang et.al., Spatial pyramid pooling was used in

CNN to eliminate the fixed size input requirements. for this new network

structure SPP-net was used, which can generate a fixed length representation

regardless of image size. Standard back propagation algorithm was used for

training, regardless of the input image. In Fritz et.al., Kernalized version of

Naive bayes Neabour (Murphy et.al.) was used for image classification and

7

SVM (Cortes et.al.) classifier was trained on Bag-Of-Features (Z.S. Harris)

for visual classification.

In Cord et.al., Extension of the HMAX (Poggio et.al.), a four level NN has

been used for image classifications. The local filters at first level are

integrated into last level complex filters to provide a extensiible description of

object regions. In Zisserman er.al., Nearest neighbor classifier (Murphy et.al.)

was used for visual classifications. SIFT (D. G. Lowe) descriptor to describe

shape, HSV (A. R. Smith) values to describe colours and MR filters to

describe texture were used.

8

Proposed System

Transfer Learning –using existing neural network architecture and retraining

portion of it to a particular use case. The network remembers the older

learnings and use them to learn newer ones.

•E.g. Learn to ride a bicycle ----helps---> Learn to ride a motorcycle

•This solves the problem of having to train the model on computationally

expensive hardware (e.g. GPUs) for a long time.

•Because, feature extraction task is taken care of by the pre-trained off the

shelf CNN architecture being utilised.

•The classificationtask is done by re-training the last layers of the model for a

given use case.

9

Implementation and Architecture Diagrams

There are many CNN architectures being used today. Ex-ResNet, Inception-

v1, Inception-v3, AlexNet, VGGNet, etc.

•The CNN model designed here is based on inception-v3. It is a 42 layer deep,

pretrained CNN model trained on ImageNet (12 million images in 1,000

classes), which was 1st runner up in ImageNet Large Scale Visual

Recognition Competition, ILSVRC (2012).

•The inception model has two parts; feature extractionand classification. we

make use of the feature extraction part of inception model and retrained the

classification layer with our own dataset.

 A. Feature Extraction Task

One of the most computationally intensive tasks in neural network approach is

feature extraction. The transfer learning model aims to make this task

independent of the use case. One of the ways it does that is to exhaustively

train (primary) a custom CNN architecture on millions of images and labels.

10

A number of such models are already available e.g. AlexNet, VGGNet,

Google LeNet/Inception-v1, ResNet.

B. Classification Task

The model is then exported and then subjectively trained (secondary) for a

given use case. This training will not require an elaborate dataset, nor will it

require powerful computational hardware. The model does not perform

feature extraction again during this secondary training but trains and stores

weights for new use case among the softmax layers.

11

Result

The learning method used in this experiment is supervised learning. The

network is trained with stochastic gradient utilizing the TensorFlow

distributed machine learning system using a Nvidia GeForce 950 GTX GPU

with batch size 100 for 4,000 epochs. Training set has 90 percent images and

Evaluation set has two subsets, test subset has 10 percent of images and

validation subset has 10 percent of images, both amounting to approx. 367

images each. Training learning rate = 0.01, training interval = 10. These

hyperparameters are customizable in retrain.py file.

Training accuracy was 89.7% at the beginning of the training process and

starts to increase, after completion of all training steps it reached to 98.0%.

Validation accuracy was 75.8% during initiation of training and validation

process and final validation accuracy was 93.0%. Final training accuracy was

91.9.

The model is able to classify class label images with high precision.

Below image of dandelion tested produces the following results –

12

Evaluation time (1-image): 1.387s

dandelion (score=0.99877)

daisy (score=0.00097)

tulips (score=0.00018)

sunflowers (score=0.00007)

roses (score=0.00001)

Another image test results – Evaluation time (1-image): 1.231s

sunflowers (score=0.93991)

dandelion (score=0.03731)

daisy (score=0.01330)

tulips (score=0.00671)

 roses (score=0.00277).

13

Conclusion

In this paper, the classification layers (fully-connected and softmax) of pre-

trained Inception-v3 model was re-trained successfully by implementing

transfer learning technique. The model yields a final test accuracy of 91.9

percent on 5 classes of flower images dataset. Further this model can be used

to retrain for much more classes within small time and with reasonable

computational hardware to classify plants and other flowers’ images as well

as other objects.

14

References

[1] Y. LeCun, "1.1 Deep Learning Hardware: Past, Present, and Future," 2019 IEEE

International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019,

pp. 12-19.

[2] Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and

Zbigniew Wojna, “Rethinking the Inception Architecture for Computer Vision” in

1512.00567- arXiv, 2015

[3] Q. Liu, A. Puthenputhussery, and C. Liu, Novel general knn classifier and general

nearest mean classifier for visual classification," in Image Processing (ICIP), 2015 IEEE

International Conference on. IEEE, 2015, pp. 1810-1814

[4] J. M. Keller, M. R. Gray, and J. A. Givens, A fuzzy k-nearest neighbor algorithm,"

IEEE transactions on systems, man, and cybernetics, no. 4, pp. 580-585, 1985.

[5] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation," IEEE

Transactions on Information theory, vol. 50, no. 10, pp. 2231-2242, 2004.

[6] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear

inverse problems," SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183-202, 2009.

[7] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, Return of the devil in the

details: Delving deep into convolutional nets," arXiv preprint arXiv:1405.3531, 2014.

[8] I. Jolliffe, Principal component analysis," in International encyclopedia of statistical

science. Springer, 2011, pp. 1094-1096.

[9] J. Sun, X. Cai, F. Sun, and J. Zhang, Scene image classification method based on alex-

net model," in Informative and Cybernetics for Computational Social Systems (ICCSS),

2016 3rd International Conference on. IEEE, 2016, pp. 363-367.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing systems,

2012, pp. 1097-1105.

[11] C. Cortes and V. Vapnik, Support-vector networks," Machine learning, vol. 20, no. 3,

pp. 273-297, 1995.

[12] N. M. Nasrabadi, Pattern recognition and machine learning," Journal of electronic

imaging, vol. 16, no. 4, p. 049901, 2007.

[13] K. He, X. Zhang, S. Ren, and J. Sun, Spatial pyramid pooling in deep convolutional

networks for visual recognition," in European conference on computer vision.Springer,

2014, pp. 346-361.

15

[14] T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell, The nbnn kernel," in Computer

Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011, pp. 1824-1831.

[15] K. P. Murphy et al., Naive bayes classifiers," University of British Columbia, vol. 18,

2006.

[16] Z. S. Harris, Distributional structure," Word, vol. 10, no. 2-3, pp. 146-162, 1954.

[17] C. Theriault, N. Thome, and M. Cord, Extended coding and pooling in the hmax

model," IEEE Transactions on Image Processing, vol. 22, no. 2, pp. 764-777, 2013.

[18] M. Riesenhuber and T. Poggio, Hierarchical models of object recognition in cortex,"

Nature neuroscience, vol. 2, no. 11, p. 1019, 1999.

[19] M.-E. Nilsback and A. Zisserman, A visual vocabulary for flower classification," in

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on,

vol. 2. IEEE, 2006, pp. 1447-1454.

[20] D. G. Lowe, Object recognition from local scale-invariant features," in Computer

vision, 1999. The proceedings of the seventh IEEE international conference on, vol. 2.

Ieee, 1999, pp. 1150-1157.

[21] A. R. Smith, Color gamut transform pairs," ACM Siggraph Computer Graphics, vol.

12, no. 3, pp. 12-19, 1978.

[22] Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet

Classification with Deep Convolutional Neural Networks. Neural Information Processing

Systems. 25. 10.1145/3065386.

[23] Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep Convolutional Networks

for Large-Scale Image Recognition. arXiv 1409.1556.

[24] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Jun. 2015.

[25] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image

Recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, 2016, pp. 770-778.

[26] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale

hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern

Recognition, Miami, FL, 2009, pp. 248-255.

16

[27] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, Supervised machine learning: A review

of classification techniques," Emerging artificial intelligence applications in computer

engineering, vol. 160, pp. 3-24, 2007.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.

Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y.

Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,´ R. Monga, S. Moore, D.

Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.

Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War- ´ den, M. Wattenberg, M.

Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous

systems, 2015. Software available from tensorflow.org

