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Abstract 

 

 One of the classical problems in the field of computer vision and machine 

learning and subsequently deep learning is image classification. While Deep 

Learning solves the much difficult hurdles like feature extraction and presents 

us with better optimizations like gradient descent and Adam optimizer, most 

deep learning models still need a lot of raw computational power to train 

models on local Graphical Processing Units (GPUs) or Tensor Processing 

Units (TPUs) in the cloud. All of this computational power is not readily 

available in all environments and systems and hence the concept of pre-

trained models can help to reduce training time by a huge margin. Initial 

models get trained on large array of GPUs and do feature extraction. The 

classification part is for the end-user to customise in accordance to the 

problem at hand and can be completed in very less time.  

We tackled the multi-class classification botanical problem of identifying 

flowers of 5 types, namely, Sunflower, Rose, Dandelion, Daisy, and Tulip. 

The feature extraction part is done with the model (Google’s Inception-v3) 

and fully connected softmax layers were trained on local machine on a Nvidia 

GeForce GTX 950 (with CUDA activated) within 30 minutes time and total 

steps/epochs were 4000 only. The total number of training images is 3,500 
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(approx.). The finished model produced results with final test accuracy as 

91.9% on new images (N=664). 
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Introduction 

 

 Convolutional neural networks (CNNs) opened a door to a new era of 

classification. Multi-class classification of the order of couple dozen classes is 

now possible. Using existing CNN model of layering can be efficient as well 

as robust in classification tasks, but requires a lot of data and computational 

power to classify images with higher degree of accuracy. This hardware 

include GPUs, FPGAs, and ASICs like Google’s TPU and IBM TrueNorth 

[1]. Despite the attractive qualities of CNNs, and despite the relative 

efficiency of their local architecture, they have still been prohibitively 

expensive to apply in large scale to high-resolution images. The feature 

extraction task taken at hand in this paper is done by using Inception-v3 [2].  

 

The network training process is then relatively simpler with a GPU and the 

final model for a custom use case is ready after training on custom classes for 

approx. 30 min to 1 hr. This paper does it for five flowers’ 3.500 images with 

each class having approx. 700 images but it can be extended to any multi-

class classification problem with no additional overhead. 
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Existing System 

 

 In Liu. et.al’s work, Noval general K-nearest neighbour classifier GKMNC 

(fuzzy k-nearest) was used for visual classification. Sparse representation-

based method described in Tropp et.al. for learning and deriving the weights 

coefficients and FISTA (Beck et.al.) was used for optimization. CNN-M (in 

Chatfield et.al.), a pretrained CNN was used for image features extractions 

then marginal PCA (Jolliffe et.al.) is applied to reduce the dimension of the 

extracted features. In Sun et.al., AlexNet (Hinton et.al.) model, a deep neural 

network is used to learn scene image features. During the training phase, 

series of transformation such as convolution, max pooling, etc are performed 

to obtained image features. Then two classifier SVM (Cortes et.al.) classifier 

and Softmax (Nasrabadi et.al.) classifier are trained using extracted features 

from the AlexNet model. In Zhang et.al., Spatial pyramid pooling was used in 

CNN to eliminate the fixed size input requirements. for this new network 

structure SPP-net was used, which can generate a fixed length representation 

regardless of image size. Standard back propagation algorithm was used for 

training, regardless of the input image. In Fritz et.al., Kernalized version of 

Naive bayes Neabour (Murphy et.al.) was used for image classification and 
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SVM (Cortes et.al.) classifier was trained on Bag-Of-Features (Z.S. Harris) 

for visual classification.  

In Cord et.al., Extension of the HMAX (Poggio et.al.), a four level NN has 

been used for image classifications. The local filters at first level are 

integrated into last level complex filters to provide a extensiible description of 

object regions. In Zisserman er.al., Nearest neighbor classifier (Murphy et.al.) 

was used for visual classifications. SIFT (D. G. Lowe) descriptor to describe 

shape, HSV (A. R. Smith) values to describe colours and MR filters to 

describe texture were used. 
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Proposed System 

 

Transfer Learning –using existing neural network architecture and retraining 

portion of it to a particular use case. The network remembers the older 

learnings and use them to learn newer ones. 

•E.g. Learn to ride a bicycle ----helps---> Learn to ride a motorcycle 

•This solves the problem of having to train the model on computationally 

expensive hardware (e.g. GPUs) for a long time. 

•Because, feature extraction task is taken care of by the pre-trained off the 

shelf CNN architecture being utilised. 

•The classificationtask is done by re-training the last layers of the model for a 

given use case. 
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Implementation and Architecture Diagrams 

 

There are many CNN architectures being used today. Ex-ResNet, Inception-

v1, Inception-v3, AlexNet, VGGNet, etc. 

•The CNN model designed here is based on inception-v3. It is a 42 layer deep, 

pretrained CNN model trained on ImageNet (12 million images in 1,000 

classes), which was 1st runner up in ImageNet Large Scale Visual 

Recognition Competition, ILSVRC (2012). 

•The inception model has two parts; feature extractionand classification. we 

make use of the feature extraction part of inception model and retrained the 

classification layer with our own dataset. 

 

 

 A. Feature Extraction Task  

One of the most computationally intensive tasks in neural network approach is 

feature extraction. The transfer learning model aims to make this task 

independent of the use case. One of the ways it does that is to exhaustively 

train (primary) a custom CNN architecture on millions of images and labels.  
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A number of such models are already available e.g. AlexNet, VGGNet, 

Google LeNet/Inception-v1, ResNet.  

B. Classification Task  

The model is then exported and then subjectively trained (secondary) for a 

given use case. This training will not require an elaborate dataset, nor will it 

require powerful computational hardware. The model does not perform 

feature extraction again during this secondary training but trains and stores 

weights for new use case among the softmax layers. 
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Result 

The learning method used in this experiment is supervised learning. The 

network is trained with stochastic gradient utilizing the TensorFlow 

distributed machine learning system using a Nvidia GeForce 950 GTX GPU 

with batch size 100 for 4,000 epochs. Training set has 90 percent images and 

Evaluation set has two subsets, test subset has 10 percent of images and 

validation subset has 10 percent of images, both amounting to approx. 367 

images each. Training learning rate = 0.01, training interval = 10. These 

hyperparameters are customizable in retrain.py file.  

Training accuracy was 89.7% at the beginning of the training process and 

starts to increase, after completion of all training steps it reached to 98.0%. 

Validation accuracy was 75.8% during initiation of training and validation 

process and final validation accuracy was 93.0%. Final training accuracy was 

91.9. 

The model is able to classify class label images with high precision.  

Below image of dandelion tested produces the following results –  

 



12 

 

Evaluation time (1-image): 1.387s  

dandelion (score=0.99877)  

daisy (score=0.00097)  

tulips (score=0.00018)  

sunflowers (score=0.00007)  

roses (score=0.00001) 

 

Another image test results – Evaluation time (1-image): 1.231s 

sunflowers (score=0.93991) 

dandelion (score=0.03731) 

daisy (score=0.01330)  

tulips (score=0.00671) 

 roses (score=0.00277). 
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Conclusion 

In this paper, the classification layers (fully-connected and softmax) of pre-

trained Inception-v3 model was re-trained successfully by implementing 

transfer learning technique. The model yields a final test accuracy of 91.9 

percent on 5 classes of flower images dataset. Further this model can be used 

to retrain for much more classes within small time and with reasonable 

computational hardware to classify plants and other flowers’ images as well 

as other objects. 
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