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                              Abstract 
 
CNN and Transfer Learning model algorithms are used to solve specific tasks. These are designed  

to work in isolation, they are used in image classification. Image classification is one of the areas  

where Deep Learning models are successfully applied to practical application. It is an active area 

 of research where many approaches have been proposed and many are popping up. The purpose  

of this research paper is to show the difference between the classification of these two models,  

which model is more efficient and less time consuming. In the conclusion section of the research  

paper we have described which of the two algorithms  for image classification is better in terms of  

efficiency and time taken. 

Humans have a unique ability to transfer knowledge to one another. What we acquire as  
 
knowledge while learning about a task, we use in the same way to solve related tasks. The more  
 
related the tasks, the easier it is for us to transfer, or use our knowledge. Some simple examples  
 
would be. Know how to ride a bike -learn how to ride a car. Know how to play classic piano – 
 
learn how to play jazz piano. Know math and statistics - learn machine learning. In each of the  
 
above situations, we don’t learn everything from the beginning, we just use the knowledge  
 
acquired from previous tasks. We transfer and use our knowledge from what we have learnt in  
 
the past! 
 
Conventional machine learning and deep learning algorithms are so far have been tradition 
 
design to work in confinement. These algorithms are trained to solve specific problems. The  
 
models have to be built from scratch once the feature-description changes. Transfer learning is  
 
the idea of overcoming the  learning and using the knowledge obtained from  one task to solve  
 
related ones. In this article, we will do a comprehensive coverage of the concepts,  
 

 



                              
                            Introduction 
Thus, we can use a network trained on unrelated categories in a massive dataset(usually 

Imagenet) and apply it to our own problem because there are universal, low-level features   

shared between images. The images in the Kaggle dataset are very similar to those in the  

imagenet dateset and the knowledge a model learns on Imagenet should easily transfer to this  

task. 

We have already briefly discussed that humans don’t learn everything from the ground up and  

leverage and transfer their knowledge from previously learnt domains to newer domains and  

tasks. Given the craze for True Artificial Gerneral Intelligence transfer learning is something  

which data scientists and researchers believe can further our progress towards AGI. 

In fact, transfer learning is not a concept which just cropped up in the 2010s. The Neural  

Information Processing Systems (NIPS) 1995 workshop Learning to Learn: Knowledge  

Consolidation and Transfer in Inductive Systems is believed to have provided the initial  

motivation for research in this field. Since then, terms such as Learning to Learn, Knowledge  

Consolidation, and Inductive Transfer have been used interchangeably with transfer learning.  

Invariably, different researchers and academic texts provide definitions from different contexts.  

In their famous book, Deep Learning, Goodfellow et al refer to transfer learning in the context of  

generalization. 

However, getting such a dataset for every domain is tough. Besides, most deep learning models 

are very specialized to a particular domain or even a specific task. While these might be state-of-

the-art models, with really high accuracy and beating all benchmarks, it would be only on very 

specific datasets and end up suffering a significant loss in performance when used in a new task 

which might still be similar to the one it was trained on. This forms the motivation for transfer 

learning, which goes beyond specific tasks and domains, and tries to see how to leverage 

knowledge from pre-trained models and use it to solve new problems! 



 

 

 

Traditional learning is isolated and occurs purely based on specific tasks, datasets and training 

separate isolated models on them. No knowledge is retained which can be transferred from one 

model to another. In transfer learning, you can leverage knowledge (features, weights etc) from 

previously trained models for training newer models and even tackle problems like having less 

data for the newer task! 

Our task will be to train a convolutional neural network (CNN) that can identify objects in 

images. We’ll be using the kaggle which has images in 101 categories. Most categories only 

have 50 images which typically isn’t enough for a neural network to learn to high accuracy. 

Therefore, instead of building and training a CNN from scratch, we’ll use a pre-built and pre-

trained model applying transfer learning. 

The basic premise of transfer learning is simple: take a model trained on a large dataset and 

transfer its knowledge to a smaller dataset. For object recognition with a CNN, we freeze the 

early convolutional layers of the network and only train the last few layers which make a 

prediction. The idea is the convolutional layers extract general, low-level features that are 



applicable across images — such as edges, patterns, gradients — and the later layers identify 

specific features within an image such as eyes or wheels. 

                                                  Proposed System 

Image Classification is one of the areas where Deep learning models are very successfully 

applied to practical applications. It is an area of research where many approaches have been 

proposed and many more are coming up. The most successful Deep Learning models like 

ImageNet, GoogleNet which perform comparison better than humans are very large and complex 

models. 

Major components of my setup would be: 

Dataset: Cats Vs Dogs dataset from Kaggle. Identifying cats in an image is a classical problem of  

Deep Learning. So, this dataset provides a good starting point. It has 8000 training images, 4000  

images each of cats and dogs and 2000 test images, 1000 images each of cats and dogs. 

Framework: Tensorflow 2.0.0 and Keras, Keras is now included in Tensorflow 2.0 so you may  

not need to import it separately. 

CNN Model 

Convolution layers have proved to be very successful in tasks involving images e.g. image  

classification, object identification, face recognition etc. They allow parameter sharing which  

results in a very optimized network compared to using Dense layers. Following is a good source  

of understanding Convolution Neural Networks: http://cs231n.github.io/convolutional-networks/ 

Image classification using CNN 

The CNN model designed for this experiment has following definition: 

model = Sequential() 

model.add(Conv2D(32,(3,3), input_shape = input_shape)) 

model.add(Activation(‘relu’)) 

model.add(MaxPooling2D(pool_size=(2,2))) 

model.add(Conv2D(32,(3,3))) 

model.add(Activation(‘relu’)) 

model.add(MaxPooling2D(pool_size=(2,2))) 

model.add(Conv2D(64,(3,3))) 

model.add(Activation(‘relu’)) 



model.add(MaxPooling2D(pool_size=(2,2))) 

model.add(Flatten()) #flatter feature tensor to 1D 

model.add(Dense(64)) 

model.add(Activation(‘relu’)) 

model.add(Dropout(0.5)) 

model.add(Dense(1)) 

model.add(Activation(‘sigmoid’)) 

model.compile(loss = ‘binary_crossentropy’, 

optimizer = ‘rmsprop’, 

metric = [‘accuracy’]) 

Result: 

Training time: 6.4 hrs, loss: 0.0546, val_loss: 3.2969 

As the results suggest, CNN works much better when dealing with images. We have reduced  

training time by almost 1 hr. Training loss is very optimized but validation loss is still a bit  

higher which indicates over-fitting. We can further regularize our model to reduce overfitting or  

we can use any of the methods suggested in the DNN section to improve our model performance. 

But,  

again this is not what we will do here, instead we will directly move to our last approach which  

We will be using it here. 

Transfer Learning Model 

Transfer learning is a method of reusing the already acquired knowledge. The idea is to use a  

state of the art model which is already trained on a larger dataset for long time and proven to  

work well in related tasks. Lot of such models are available for us to use. 

Keras provides these pretrained, state of the art models. Details of these models can be  

found at https://keras.io/applications/ 

We can use these models in two ways: 

Direct application: In this approach, 

a. We study the model to check if it can solve our target problem. 

b. If yes, we need to preprocess our input according to model and then feed it to model to get 

results. 



2. Representation Learning: In this approach, we assess that the pretrained model may not be 

directly applicable to our problem. But, we can use it to get a useful representation of our input 

data. 

a. We feed input data to a pretrained model to get a representation of our data. 

b. We design our own model and feed it with representations given by pre-trained models to get 

results. 

For the task of image classification here, the 2nd approach described above is applied. Following 

are the typical steps of the same: 

Model used: vgg16 model, https://keras.io/applications/#vgg16 

Using vgg16 we get useful representation. 

The representation we get from vgg16 are fed to a sequential model. 

Transfer Learning for image classification[2nd Approach] 

The model definition is as follows: 

VGG16 model: 

model = applications.VGG16(include_top = False, weights = ‘imagenet’) 

Top model: 

model = Sequential() 

model.add(Flatten(input_shape = train_data.shape[1:])) 

model.add(Dense(256,activation = ‘relu’)) 

model.add(Dropout(0.5)) 

model.add(Dense(1,activation = ‘sigmoid’)) 

model.compile(optimizer = ‘rmsprop’, 

loss = ‘binary_crossentropy’, 

metrics = [‘accuracy’]) 

 

 

 

 

                                                   

                                     

 



                                        IMPLEMENTATION 

We will use the images from Kaggle to distinguish photos from one another.Here we compare 
images by CNN model and then transfer learning model. 
Here’s the code: 
kaggle 
cp kaggle.json /root/.kaggle/kaggle.json 
chmod 600 /root/.kaggle/kaggle.json 
kaggle datasets download ellenyusa/4classimages 
unzip -qq 4classimages.zip 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from keras.preprocessing.image import ImageDataGenerator 

from keras.layers import Input, Dense, MaxPool2D, Conv2D, Dropout, Flatten 

from keras.models import Model 

generator = ImageDataGenerator(horizontal_flip=True, zoom_range=.2, rotation_range=20, 

shear_range=.3, validation_split=0.2) 

train_gen = generator.flow_from_directory("data", color_mode="grayscale", subset="training") 

test_gen = generator.flow_from_directory("data", color_mode="grayscale", subset="validation") 

train_gen.next()[0].shape 

train_gen.class_indices 

images, values = train_gen.next() 

images.shape 

for image in images: 

  img = image.reshape(256,256) 

  plt.figure() 

  plt.imshow(img, cmap="gray") 

in_layer = Input(shape=[256, 256, 1]) 

layer_1 = Conv2D(32, (3,3), activation="relu")(in_layer) 

layer_2 = MaxPool2D()(layer_1) 

layer_3 = Conv2D(64, (3,3), activation="relu")(layer_2) 

layer_4 = MaxPool2D()(layer_3) 

drop = Dropout(.25)(layer_4) 



layer_5 = Conv2D(128, (3,3), activation="relu")(drop) 

layer_6 = MaxPool2D()(layer_5) 

layer_7 = Conv2D(128, (3,3), activation="relu")(layer_6) 

layer_8 = MaxPool2D()(layer_7) 

layer_9 = Conv2D(128, (3,3), activation="relu")(layer_8) 

layer_10 = MaxPool2D()(layer_9) 

x = Conv2D(256, (3,3), activation="relu")(layer_10) 

x = MaxPool2D()(x) 

flatten = Flatten()(x) 

d = Dense(1000, activation="relu")(flatten) 

d2 = Dense(800, activation="relu")(d) 

d3 = Dense(600, activation="relu")(d2) 

d1 = Dense(400, activation="relu")(d3) 

d2 = Dense(100, activation="relu")(d1) 

d3 = Dense(50, activation="relu")(d2) 

out = Dense(4, activation="softmax")(d3) 

model = Model(inputs=[in_layer], outputs=[out]) 

model.summary() 

model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) 

hist = model.fit_generator(train_gen, epochs=10, steps_per_epoch=100, 

validation_data=test_gen, validation_steps=100 

plt.plot(hist.history["acc"]) 

from keras.applications.resnet50 import ResNet50 

gen = generator.flow_from_directory("data") 

base_model = ResNet50(weights="imagenet", include_top=False, input_shape=(256,256,3), 

classes=len(train_gen.class_indices)) 

for layer in base_model.layers: 

  layer.trainable = False 

base_model = ResNet50(weights="imagenet", include_top=False, input_shape=(256,256,3), 

classes=len(train_gen.class_indices)) 

 



for layer in base_model.layers: 

  layer.trainable = False 

model2 = Model(inputs=[base_model.input], outputs=[final]) 

model2.summary() 

model2.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) 

model2.fit_generator(gen, epochs=10, steps_per_epoch=100) 

model2.evaluate_generator(gen, steps=10) 

We will have the difference between the two model accuracy as- 

 

 
 

We can clearly observe that transfer learning has 96% accuracy while CNN has only 32%.This 

shows that transfer learning is better than CNN inimage classification. 

 

 

 

 

 



                                    Conclusion 

 
As we have seen from the proposed model that transfer learning algorithm perform better than 

CNN in terms of both efficiency and time so we come to a point that transfer learning is better.We 

know that in transfer learning we don’t have to start everything from scratch it uses pre trained 

dataset for related problems that saves us time to start everything from scratch. 

Results: 

Training time: 11mins[10 mins to get representations]+1 mins to train top model. 

loss: 8.2268 — accuracy: 0.4519— val_loss: 0.0680— val_accuracy: 0.9912 

So, using transfer learning we could train a model which has training accuracy of 96% in only 11 

mins which is much better when compared to earlier discussed models. 
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