

ADMISSION NUMBER										

School of Engineering

B.TECH Electrical Engineering Mid Term Examination - May 2024

Duration : 90 Minutes Max Marks : 50

Sem IV - G2UB402B - Electrical Machine I

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

- 1) Why the core flux in a transformer is almost independent of load K2 (2) current?
- 2) Define all day efficiency. How this efficiency of a transformer varies ^{K1 (3)} with load?
- 3) Derive the condition for maximum efficiency and thus find the load K2 (4) current at which the efficiency is maximum.
- 4) The No-Load current of a 4400/440 V, 1-Φ, 50 Hz transformer is 0.04 A. It consumes power 80 W at no-load when supply is given to LV side and HV side is kept open. Calculate the following: (i) Power factor of no-load current. (ii) Iron loss component of current. (iii) Magnetizing component of current.
- 5) Identify and explain SCOTT connection for phase conversation in ^{K3 (6)} transformer.
- 6) Make use of circuit diagram, explain how a two phase supply can be obtained from a three phase supply. Prove that three phase currents will be balanced, for a balanced upf load on 2-phase side.
- ⁷⁾ Show that open delta connection of a 3-phase transformer delivers ^{K4 (8)} only 57.7% of the VA rating of its normal Δ - Δ connection.
- 8) A 20-kVA, 50-Hz, 2000/200-V distribution transformer has a leakage impedance of 0.42 + j 0.52 W in the high-voltage (HV) winding and 0.004 + j 0.05 W in the low-voltage (LV) winding. When seen from the LV side, the shunt branch admittance Y0 is (0.002 j 0.015) at rated voltage and frequency. Analyze and draw the equivalent circuit referred to (a) HV side and (b) LV side, indicating all impedances on the circuit.

OR

The parameters of the equivalent circuit of a 150-kVA, 2400/240-V transformer are: R1 = 0.2 Ω , R2 = 2 * 10^A-3 Ω X1 = 0.45 Ω , X2 = 4.5 *10^A-3 Ω Ri = 10 k Ω , Xm = 1.6 k Ω (as seen from 2400-V side) Calculate: (a) Open-circuit current, power and pf when LV is excited at rated voltage (b) The voltage at which the HV should be excited to conduct a short-circuit test (LV shorted) with full load current flowing. What is the input power and its pf?