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Abstract 

Spamming is the process of posting unwanted and not related comments on 
specific posts in any type of social sharing medium or video-sharing medium. 
These messages are posted by bots for reducing ranking or disturbing users 
viewing experience which ultimately reduces the rank of website and post. This 
spamming is done manually also which are mostly seen in most competitive 
pages. 

There are few methods that can remove spamming methods that use data mining 
techniques but in this project, we are automating the process of spam comment 
detection using machine learning by taking a dataset of youtube spam messages 
and applying count vectorizer and naive bayes algorithm for clustering on the 
given dataset using Go programming language.

Anyone having an e-mail address must have faced unwanted e-mails which we 
call spam mail. Modern spam filtering software are continuously struggling to 
detect unwanted e- mails and mark them as spam mail. It is an ongoing battle 
between spam filtering software and anonymous spam mail senders to defeat 
each other. Because of that, it is very important to improve spam filters 
algorithm time to time. Behind the scenes, we use Machine-learning algorithm 
to find unwanted e-mails. More specifically, we use text classifier algorithm like 
Naïve Bayes, Support Vector Machine or Neural Network to do the job. In this 
article, I will try to show you how to use Naïve Bayes algorithm to identify 
spam e-mail. I will also try to compare the results based on statistics.

The source code for this project is available on Github repository

https://github.com/diabloxenon/Spamaway.git
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Introduction 

This project, count vectorizer is used for extracting features form a given 
dataset and design model by generating tests and training sets from given data. 
Then the naive bayes classifier is applied for clustering and the test and training 
set is given as input based on this data given message is tested if it is spam or 
not. The idea of automatically classifying spam and non-spam emails by 
applying machine learning methods has been popular in academia and has been 
a topic of interest for many researchers. 

Knowledge engineering and machine learning are the two main approaches 
scientists have applied to overcome the spam-filtering problem. The first 
solution focuses on creating a knowledge-based system in which pre-defined 
rules dictate if an incoming message is legitimate or not. The primary 
disadvantage of this method is that those rules need to be maintained and 
updated continuously by the user or a 3rd party like for example a software 
vendor. 

In the existing system, data mining techniques are used for detecting spam 
messages. Most of these methods work only after posting messages. There is a 
need for a system that can automate this process before posting message. The 
spam detection problem is in fact a text classification problem. An e-mail (a text 
document) is either “spam” or “no spam”. In text mining, this is called single-
label text classification, since there is only one label: “spam”. A 

classifier is an algorithm that is capable of telling whether a text document is 
either “spam” or “no spam”. 
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Machine Learning and Data Mining 

Machine learning (ML) is the study of computer algorithms that improve 
automatically through experience. It is seen as a subset of artificial intelligence. 
Machine learning algorithms build a mathematical model based on sample data, 
known as "training data", in order to make predictions or decisions without 
being explicitly programmed to do so. Machine learning algorithms are used in 
a wide variety of applications, such as email filtering and computer vision, 
where it is difficult or infeasible to develop conventional algorithms to perform 
the needed tasks.

Machine learning is closely related to computational statistics, which focuses on 
making predictions using computers. The study of mathematical optimization 
delivers methods, theory and application domains to the field of machine 
learning. Data mining is a related field of study, focusing on exploratory data 
analysis through unsupervised learning. In its application across business 
problems, machine learning is also referred to as predictive analytics. 
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Statistical learning in language acquisition 

Statistical learning is the ability for humans and other animals to extract 
statistical regularities from the world around them to learn about the 
environment. Although statistical learning is now thought to be a generalized 
learning mechanism, the phenomenon was first identified in human infant 
language acquisition.

The earliest evidence for these statistical learning abilities comes from a study 
by Jenny Saffran, Richard Aslin, and Elissa Newport, in which 8-month-old 
infants were presented with nonsense streams of monotone speech. Each stream 
was composed of four three-syllable “pseudowords” that were repeated 
randomly. After exposure to the speech streams for two minutes, infants reacted 
differently to hearing “pseudowords” as opposed to “nonwords” from the 
speech stream, where nonwords were composed of the same syllables that the 
infants had been exposed to, but in a different order. This suggests that infants 
are able to learn statistical relationships between syllables even with very 
limited exposure to a language. That is, infants learn which syllables are always 
paired together and which ones only occur together relatively rarely, suggesting 
that they are parts of two different units. This method of learning is thought to 
be one way that children learn which groups of syllables form individual words.

Since the initial discovery of the role of statistical learning in lexical 
acquisition, the same mechanism has been proposed for elements of 
phonological acquisition, and syntactical acquisition, as well as in non-linguistic 
domains. Further research has also indicated that statistical learning is likely a 
domain-general and even species-general learning mechanism, occurring for 
visual as well as auditory information, and in both primates and non-primates. 
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Lexical Acquisition 

The role of statistical learning in language acquisition has been particularly well 
documented in the area of lexical acquisition. One important contribution to 
infants' understanding of segmenting words from a continuous stream of speech 
is their ability to recognize statistical regularities of the speech heard in their 
environments. Although many factors play an important role, this specific 
mechanism is powerful and can operate over a short time scale.

Original Findings

It is a well-established finding that, unlike written language, spoken language 
does not have any clear boundaries between words; spoken language is a 
continuous stream of sound rather than individual words with silences between 
them. This lack of segmentation between linguistic units presents a problem for 
young children learning language, who must be able to pick out individual units 
from the continuous speech streams that they hear. One proposed method of 
how children are able to solve this problem is that they are attentive to the 
statistical regularities of the world around them. For example, in the phrase 
"pretty baby," children are more likely to hear the sounds pre and ty heard 
together during the entirety of the lexical input around them than they are to 
hear the sounds ty and ba together. In an artificial grammar learning study with 
adult participants, Saffran, Newport, and Aslin found that participants were able 
to locate word boundaries based only on transitional probabilities, suggesting 
that adults are capable of using statistical regularities in a language-learning 
task. This is a robust finding that has been widely replicated.

To determine if young children have these same abilities Saffran Aslin and 
Newport exposed 8-month-old infants to an artificial grammar. The grammar 
was composed of four words, each composed of three nonsense syllables. 
During the experiment, infants heard a continuous speech stream of these words 
. Importantly, the speech was presented in a monotone with no cues (such as 
pauses, intonation, etc.) to word boundaries other than the statistical 
probabilities. Within a word, the transitional probability of two syllable pairs 
was 1.0: in the word bidaku, for example, the probability of hearing the syllable 
da immediately after the syllable bi was 100%. Between words, however, the 
transitional probability of hearing a syllable pair was much lower: After any 
given word (e.g., bidaku) was presented, one of three words could follow (in 
this case, padoti, golabu, or tupiro), so the likelihood of hearing any given 
syllable after ku was only 33%.
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To determine if infants were picking up on the statistical information, each 
infant was presented with multiple presentations of either a word from the 
artificial grammar or a nonword made up of the same syllables but presented in 
a random order. Infants who were presented with nonwords during the test 
phase listened significantly longer to these words than infants who were 
presented with words from the artificial grammar, showing a novelty preference 
for these new nonwords. However, the implementation of the test could also be 
due to infants learning serial-order information and not to actually learning 
transitional probabilities between words. That is, at test, infants heard strings 
such as dapiku and tilado that were never presented during learning; they could 
simply have learned that the syllable ku never followed the syllable pi.

To look more closely at this issue, Saffran Aslin and Newport conducted another 
study in which infants underwent the same training with the artificial grammar 
but then were presented with either words or part-words rather than words or 
nonwords. The part-words were syllable sequences composed of the last 
syllable from one word and the first two syllables from another (such as 
kupado). Because the part-words had been heard during the time when children 
were listening to the artificial grammar, preferential listening to these part-
words would indicate that children were learning not only serial-order 
information, but also the statistical likelihood of hearing particular syllable 
sequences. Again, infants showed greater listening times to the novel (part-) 
words, indicating that 8-month-old infants were able to extract these statistical 
regularities from a continuous speech stream.

Further Research

This result has been the impetus for much more research on the role of 
statistical learning in lexical acquisition and other areas (see ). In a follow-up to 
the original report, Aslin, Saffran, and Newport found that even when words 
and part words occurred equally often in the speech stream, but with different 
transitional probabilities between syllables of words and part words, infants 
were still able to detect the statistical regularities and still preferred to listen to 
the novel part-words over the familiarized words. This finding provides stronger 
evidence that infants are able to pick up transitional probabilities from the 
speech they hear, rather than just being aware of frequencies of individual 
syllable sequences.

Another follow-up study examined the extent to which the statistical 
information learned during this type of artificial grammar learning feeds into 
knowledge that infants may already have about their native language. Infants 
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preferred to listen to words over part-words, whereas there was no significant 
difference in the nonsense frame condition. This finding suggests that even pre-
linguistic infants are able to integrate the statistical cues they learn in a 
laboratory into their previously-acquired knowledge of a language. In other 
words, once infants have acquired some linguistic knowledge, they incorporate 
newly acquired information into that previously-acquired learning.

A related finding indicates that slightly older infants can acquire both lexical 
and grammatical regularities from a single set of input, suggesting that they are 
able to use outputs of one type of statistical learning (cues that lead to the 
discovery of word boundaries) as input to a second type (cues that lead to the 
discovery of syntactical regularities. At test, 12-month-olds preferred to listen to 
sentences that had the same grammatical structure as the artificial language they 
had been tested on rather than sentences that had a different (ungrammatical) 
structure. Because learning grammatical regularities requires infants to be able 
to determine boundaries between individual words, this indicates that infants 
who are still quite young are able to acquire multiple levels of language 
knowledge (both lexical and syntactical) simultaneously, indicating that 
statistical learning is a powerful mechanism at play in language learning.

Despite the large role that statistical learning appears to play in lexical 
acquisition, it is likely not the only mechanism by which infants learn to 
segment words. Statistical learning studies are generally conducted with 
artificial grammars that have no cues to word boundary information other than 
transitional probabilities between words. Real speech, though, has many 
different types of cues to word boundaries, including prosodic and phonotactic 
information.

Together, the findings from these studies of statistical learning in language 
acquisition indicate that statistical properties of the language are a strong cue in 
helping infants learn their first language. 
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Phonological Acquisition 

There is much evidence that statistical learning is an important component of 
both discovering which phonemes are important for a given language and which 
contrasts within phonemes are important. Having this knowledge is important 
for aspects of both speech perception and speech production.

Distributional Learning

Since the discovery of infants’ statistical learning abilities in word learning, the 
same general mechanism has also been studied in other facets of language 
learning. For example, it is well-established that infants can discriminate 
between phonemes of many different languages but eventually become unable 
to discriminate between phonemes that do not appear in their native language; 
however, it was not clear how this decrease in discriminatory ability came 
about. Maye et al. suggested that the mechanism responsible might be a 
statistical learning mechanism in which infants track the distributional 
regularities of the sounds in their native language. To test this idea, Maye et al. 
exposed 6- and 8-month-old infants to a continuum of speech sounds that varied 
on the degree to which they were voiced. The distribution that the infants heard 
was either bimodal, with sounds from both ends of the voicing continuum heard 
most often, or unimodal, with sounds from the middle of the distribution heard 
most often. The results indicated that infants from both age groups were 
sensitive to the distribution of phonemes. At test, infants heard either non-
alternating (repeated exemplars of tokens 3 or 6 from an 8-token continuum) or 
alternating (exemplars of tokens 1 and 8) exposures to specific phonemes on the 
continuum. Infants exposed to the bimodal distribution listened longer to the 
alternating trials than the non-alternating trials while there was no difference in 
listening times for infants exposed to the unimodal distribution. This finding 
indicates that infants exposed the bimodal distribution were better able to 
discriminate sounds from the two ends of the distribution than were infants in 
the unimodal condition, regardless of age. This type of statistical learning 
differs from that used in lexical acquisition, as it requires infants to track 
frequencies rather than transitional probabilities, and has been named 
“distributional learning.”

Distributional learning has also been found to help infants contrast two 
phonemes that they initially have difficulty in discriminating between. Maye, 
Weiss, and Aslin found that infants who were exposed to a bimodal distribution 
of a non-native contrast that was initially difficult to discriminate were better 
able to discriminate the contrast than infants exposed to a unimodal distribution 
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of the same contrast. Maye et al. also found that infants were able to abstract 
features of a contrast (i.e., voicing onset time) and generalize that feature to the 
same type of contrast at a different place of articulation, a finding that has not 
been found in adults.

In a review of the role of distributional learning on phonological acquisition, 
Werker et al. note that distributional learning cannot be the only mechanism by 
which phonetic categories are acquired. However, it does seem clear that this 
type of statistical learning mechanism can play a role in this skill, although 
research is ongoing.

Perceptual Magnet Effect

A related finding regarding statistical cues to phonological acquisition is a 
phenomenon known as the perceptual magnet effect. In this effect, a 
prototypical phoneme of a person's native language acts as a “magnet” for 
similar phonemes, which are perceived as belonging to the same category as the 
prototypical phoneme. In the original test of this effect, adult participants were 
asked to indicate if a given exemplar of a particular phoneme differed from a 
referent phoneme. If the referent phoneme is a non-prototypical phoneme for 
that language, both adults and 6-month-old infants show less generalization to 
other sounds than they do for prototypical phonemes, even if the subjective 
distance between the sounds is the same. That is, adults and infants are both 
more likely to notice that a particular phoneme differs from the referent 
phoneme if that referent phoneme is a non-prototypical exemplar than if it is a 
prototypical exemplar. The prototypes themselves are apparently discovered 
through a distributional learning process, in which infants are sensitive to the 
frequencies with which certain sounds occur and treat those that occur most 
often as the prototypical phonemes of their language. 
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Syntactical Acquisition 

A statistical learning device has also been proposed as a component of 
syntactical acquisition for young children.[1][9][17] Early evidence for this 
mechanism came largely from studies of computer modeling or analyses of 
natural language corpora.[18][19] These early studies focused largely on 
distributional information specifically rather than statistical learning 
mechanisms generally. Specifically, in these early papers it was proposed that 
children created templates of possible sentence structures involving unnamed 
categories of word types (i.e., nouns or verbs, although children would not put 
these labels on their categories). Children were thought to learn which words 
belonged to the same categories by tracking the similar contexts in which words 
of the same category appeared.

Later studies expanded these results by looking at the actual behavior of 
children or adults who had been exposed to artificial grammars.[9] These later 
studies also considered the role of statistical learning more broadly than the 
earlier studies, placing their results in the context of the statistical learning 
mechanisms thought to be involved with other aspects of language learning, 
such as lexical acquisition.

Experimental Results

Evidence from a series of four experiments conducted by Gomez and Gerken 
suggests that children are able to generalize grammatical structures with less 
than two minutes of exposure to an artificial grammar.[9][20] In the first 
experiment, 11-12 month-old infants were trained on an artificial grammar 
composed of nonsense words with a set grammatical structure. At test, infants 
heard both novel grammatical and ungrammatical sentences. Infants oriented 
longer towards the grammatical sentences, in line with previous research that 
suggests that infants generally orient for a longer amount of time to natural 
instances of language rather than altered instances of language e.g.,.[21] (This 
familiarity preference differs from the novelty preference generally found in 
word-learning studies, due to the differences between lexical acquisition and 
syntactical acquisition.) This finding indicates that young children are sensitive 
to the grammatical structure of language even after minimal exposure. Gomez 
and Gerken also found that this sensitivity is evident when ungrammatical 
transitions are located in the middle of the sentence (unlike in the first 
experiment, in which all the errors occurred at the beginning and end of the 
sentences), that the results could not be due to an innate preference for the 
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grammatical sentences caused by something other than grammar, and that 
children are able to generalize the grammatical rules to new vocabulary.

Together these studies suggest that infants are able to extract a substantial 
amount of syntactic knowledge even from limited exposure to a language.[9][20] 
Children apparently detected grammatical anomalies whether the grammatical 
violation in the test sentences occurred at the end or in the middle of the 
sentence. Additionally, even when the individual words of the grammar were 
changed, infants were still able to discriminate between grammatical and 
ungrammatical strings during the test phase. This generalization indicates that 
infants were not learning vocabulary-specific grammatical structures, but 
abstracting the general rules of that grammar and applying those rules to novel 
vocabulary. Furthermore, in all four experiments, the test of grammatical 
structures occurred five minutes after the initial exposure to the artificial 
grammar had ended, suggesting that the infants were able to maintain the 
grammatical abstractions they had learned even after a short delay.

In a similar study, Saffran found that adults and older children (first and second 
grade children) were also sensitive to syntactical information after exposure to 
an artificial language which had no cues to phrase structure other than the 
statistical regularities that were present.[22] Both adults and children were able to 
pick out sentences that were ungrammatical at a rate greater than chance, even 
under an “incidental” exposure condition in which participants’ primary goal 
was to complete a different task while hearing the language.

Although the number of studies dealing with statistical learning of syntactical 
information is limited, the available evidence does indicate that the statistical 
learning mechanisms are likely a contributing factor to children's ability to learn 
their language.
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Statistical Learning in Bilingualism 

Much of the early work using statistical learning paradigms focused on the 
ability for children or adults to learn a single language,[1] consistent with the 
process of language acquisition for monolingual speakers or learners. However, 
it is estimated that approximately 60-75% of people in the world are bilingual.
[23] More recently, researchers have begun looking at the role of statistical 
learning for those who speak more than one language. Although there are no 
reviews on this topic yet, Weiss, Gerfen, and Mitchel examined how hearing 
input from multiple artificial languages simultaneously can affect the ability to 
learn either or both languages.[24] Over four experiments, Weiss et al. found that, 
after exposure to two artificial languages, adult learners are capable of 
determining word boundaries in both languages when each language is spoken 
by a different speaker. However, when the two languages were spoken by the 
same speaker, participants were able learn both languages only when they were 
“congruent”—when the word boundaries of one language matched the word 
boundaries of the other. When the languages were incongruent—a syllable that 
appeared in the middle of a word in one language appeared at the end of the 
word in the other language—and spoken by a single speaker, participants were 
able to learn, at best, one of the two languages. A final experiment showed that 
the inability to learn incongruent languages spoken in the same voice was not 
due to syllable overlap between the languages but due to differing word 
boundaries.

Similar work replicates the finding that learners are able to learn two sets of 
statistical representations when an additional cue is present (two different male 
voices in this case).[25] In their paradigm, the two languages were presented 
consecutively, rather than interleaved as in Weiss et al.’s paradigm,[24] and 
participants did learn the first artificial language to which they had been exposed 
better than the second, although participants’ performance was above chance for 
both languages.

While statistical learning improves and strengthens multilingualism, it appears 
that the inverse is not true. In a study by Yim and Rudoy[26] it was found that 
both monolingual and bilingual children perform statistical learning tasks 
equally well. 
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Naive bayes 

Short introduction to Bayes Theorem

In machine learning we are often interested in selecting the best hypothesis (h) 
given data (d).

In a classification problem, our hypothesis (h) may be the class to assign for a 
new data instance (d).

One of the easiest ways of selecting the most probable hypothesis given the data 
that we have that we can use as our prior knowledge about the problem. Bayes’ 
Theorem provides a way that we can calculate the probability of a hypothesis 
given our prior knowledge.

Bayes’ Theorem is stated as:

P(h|d) = (P(d|h) * P(h)) / P(d)

Where

• P(h|d) is the probability of hypothesis h given the data d. This is called the 
posterior probability.

• P(d|h) is the probability of data d given that the hypothesis h was true.

• P(h) is the probability of hypothesis h being true (regardless of the data). 
This is called the prior probability of h.

• P(d) is the probability of the data (regardless of the hypothesis).
 16



You can see that we are interested in calculating the posterior probability of P(h|
d) from the prior probability p(h) with P(D) and P(d|h).

After calculating the posterior probability for a number of different hypotheses, 
you can select the hypothesis with the highest probability. This is the maximum 
probable hypothesis and may formally be called the maximum a posteriori 
(MAP) hypothesis.

This can be written as:

MAP(h) = max(P(h|d))

or

MAP(h) = max((P(d|h) * P(h)) / P(d))

or

MAP(h) = max(P(d|h) * P(h))

The P(d) is a normalizing term which allows us to calculate the probability. We 
can drop it when we are interested in the most probable hypothesis as it is 
constant and only used to normalize.

Back to classification, if we have an even number of instances in each class in 
our training data, then the probability of each class (e.g. P(h)) will be equal. 
Again, this would be a constant term in our equation and we could drop it so 
that we end up with:

MAP(h) = max(P(d|h))
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Naive Bayes Classification 

In machine learning, naïve Bayes classifiers are a family of simple 
"probabilistic classifiers" based on applying Bayes' theorem with strong (naïve) 
independence assumptions between the features. They are among the simplest 
Bayesian network models.[1] But they could be coupled with Kernel density 
estimation and achieve higher accuracy levels.[2][3]

Naïve Bayes has been studied extensively since the 1960s. It was introduced 
(though not under that name) into the text retrieval community in the early 
1960s,[4] and remains a popular (baseline) method for text categorization, the 
problem of judging documents as belonging to one category or the other 
(document categorization)(such as spam or legitimate, sports or politics, etc.) 
with word frequencies as the features. With appropriate pre-processing, it is 
competitive in this domain with more advanced methods including support 
vector machines.[5] It also finds application in automatic medical diagnosis.[6]

Naïve Bayes classifiers are highly scalable, requiring a number of parameters 
linear in the number of variables (features/predictors) in a learning problem. 
Maximum-likelihood training can be done by evaluating a closed-form 
expression,[7]:718 which takes linear time, rather than by expensive iterative 
approximation as used for many other types of classifiers.

In the statistics and computer science literature, naive Bayes models are known 
under a variety of names, including simple Bayes and independence Bayes.[8] 
All these names reference the use of Bayes' theorem in the classifier's decision 
rule, but naïve Bayes is not (necessarily) a Bayesian method.
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Introduction 

Naive Bayes is a simple technique for constructing classifiers: models that 
assign class labels to problem instances, represented as vectors of feature 
values, where the class labels are drawn from some finite set. There is not a 
single algorithm for training such classifiers, but a family of algorithms based 
on a common principle: all naive Bayes classifiers assume that the value of a 
particular feature is independent of the value of any other feature, given the 
class variable. For example, a fruit may be considered to be an apple if it is red, 
round, and about 10 cm in diameter. A naive Bayes classifier considers each of 
these features to contribute independently to the probability that this fruit is an 
apple, regardless of any possible correlations between the color, roundness, and 
diameter features.

For some types of probability models, naive Bayes classifiers can be trained 
very efficiently in a supervised learning setting. In many practical applications, 
parameter estimation for naive Bayes models uses the method of maximum 
likelihood; in other words, one can work with the naive Bayes model without 
accepting Bayesian probability or using any Bayesian methods.

Despite their naive design and apparently oversimplified assumptions, naive 
Bayes classifiers have worked quite well in many complex real-world situations. 
In 2004, an analysis of the Bayesian classification problem showed that there 
are sound theoretical reasons for the apparently implausible efficacy of naive 
Bayes classifiers.[9] Still, a comprehensive comparison with other classification 
algorithms in 2006 showed that Bayes classification is outperformed by other 
approaches, such as boosted trees or random forests.[10]

An advantage of naive Bayes is that it only requires a small number of training 
data to estimate the parameters necessary for classification. 
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Probabilistic model 

Training is fast because only the probability of each class and the probability of 
each class given different input (x) values need to be calculated. No coefficients 
need to be fitted by optimization procedures.

Calculating Class Probabilities

The class probabilities are simply the frequency of instances that belong to each 
class divided by the total number of instances.

For example in a binary classification the probability of an instance belonging 
to class 1 would be calculated as:

P(class=1) = count(class=1) / (count(class=0) + count(class=1))

In the simplest case each class would have the probability of 0.5 or 50% for a 
binary classification problem with the same number of instances in each class.

Calculating Conditional Probabilities

The conditional probabilities are the frequency of each attribute value for a 
given class value divided by the frequency of instances with that class value.

For example, if a “weather” attribute had the values “sunny” and “rainy” and 
the class attribute had the class values “go-out” and “stay-home“, then the 
conditional probabilities of each weather value for each class value could be 
calculated as:

• P(weather=sunny | class=go-out) = count(instances with weather=sunny 
and class=go-out) / count(instances with class=go-out)

• P(weather=sunny | class=stay-home) = count(instances with 
weather=sunny and class=stay-home) / count(instances with class=stay-
home)

• P(weather=rainy | class=go-out) = count(instances with weather=rainy 
and class=go-out) / count(instances with class=go-out)

• P(weather=rainy | class=stay-home) = count(instances with weather=rainy 
and class=stay-home) / count(instances with class=stay-home)

Make Predictions With a Naive Bayes Model
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Given a naive Bayes model, you can make predictions for new data using Bayes 
theorem.

MAP(h) = max(P(d|h) * P(h))

Using our example above, if we had a new instance with the weather of sunny, 
we can calculate:

go-out = P(weather=sunny | class=go-out) * P(class=go-out)

stay-home = P(weather=sunny | class=stay-home) * P(class=stay-home)

We can choose the class that has the largest calculated value. We can turn these 
values into probabilities by normalizing them as follows:

P(go-out | weather=sunny) = go-out / (go-out + stay-home)

P(stay-home | weather=sunny) = stay-home / (go-out + stay-home)

If we had more input variables we could extend the above example. For 
example, pretend we have a “car” attribute with the values “working” and 
“broken“. We can multiply this probability into the equation.

For example below is the calculation for the “go-out” class label with the 
addition of the car input variable set to “working”:

go-out = P(weather=sunny | class=go-out) * P(car=working | class=go-out) * 
P(class=go-out) 
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Naive Bayes Spam Filtering 

Naive Bayes classifiers are a popular statistical technique of e-mail filtering. 
They typically use bag of words features to identify spam e-mail, an approach 
commonly used in text classification.

Naive Bayes classifiers work by correlating the use of tokens (typically words, 
or sometimes other things), with spam and non-spam e-mails and then using 
Bayes' theorem to calculate a probability that an email is or is not spam.

Naive Bayes spam filtering is a baseline technique for dealing with spam that 
can tailor itself to the email needs of individual users and give low false positive 
spam detection rates that are generally acceptable to users. It is one of the oldest 
ways of doing spam filtering, with roots in the 1990s.
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Bayesian algorithms were used to sort and filter email by 1996. Although naive 
Bayesian filters did not become popular until later, multiple programs were 
released in 1998 to address the growing problem of unwanted email.[1] The first 
scholarly publication on Bayesian spam filtering was by Sahami et al. in 1998.[2] 
That work was soon thereafter deployed in commercial spam filters.[citation needed] 
However, in 2002 Paul Graham greatly decreased the false positive rate, so that 
it could be used on its own as a single spam filter.[3][4]

Variants of the basic technique have been implemented in a number of research 
works and commercial software products.[5] Many modern mail clients 
implement Bayesian spam filtering. Users can also install separate email 
filtering programs. Server-side email filters, such as DSPAM, SpamAssassin,[6] 
SpamBayes,[7] Bogofilter and ASSP, make use of Bayesian spam filtering 
techniques, and the functionality is sometimes embedded within mail server 
software itself. CRM114, oft cited as a Bayesian filter, is not intended to use a 
Bayes filter in production, but includes the ʺunigramʺ feature for reference.[8]
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Process 

Particular words have particular probabilities of occurring in spam email and in 
legitimate email. For instance, most email users will frequently encounter the 
word "Viagra" in spam email, but will seldom see it in other email. The filter 
doesn't know these probabilities in advance, and must first be trained so it can 
build them up. To train the filter, the user must manually indicate whether a new 
email is spam or not. For all words in each training email, the filter will adjust 
the probabilities that each word will appear in spam or legitimate email in its 
database. For instance, Bayesian spam filters will typically have learned a very 
high spam probability for the words "Viagra" and "refinance", but a very low 
spam probability for words seen only in legitimate email, such as the names of 
friends and family members.

After training, the word probabilities (also known as likelihood functions) are 
used to compute the probability that an email with a particular set of words in it 
belongs to either category. Each word in the email contributes to the email's 
spam probability, or only the most interesting words. This contribution is called 
the posterior probability and is computed using Bayes' theorem. Then, the 
email's spam probability is computed over all words in the email, and if the total 
exceeds a certain threshold (say 95%), the filter will mark the email as a spam.

As in any other spam filtering technique, email marked as spam can then be 
automatically moved to a "Junk" email folder, or even deleted outright. Some 
software implement quarantine mechanisms that define a time frame during 
which the user is allowed to review the software's decision.

The initial training can usually be refined when wrong judgements from the 
software are identified (false positives or false negatives). That allows the 
software to dynamically adapt to the ever-evolving nature of spam.

Some spam filters combine the results of both Bayesian spam filtering and other 
heuristics (pre-defined rules about the contents, looking at the message's 
envelope, etc.), resulting in even higher filtering accuracy, sometimes at the cost 
of adaptiveness. 
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Mathematical Foundation 

Bayesian email filters utilize Bayes' theorem. Bayes' theorem is used several 
times in the context of spam:

• a first time, to compute the probability that the message is spam, knowing 
that a given word appears in this message;

• a second time, to compute the probability that the message is spam, 
taking into consideration all of its words (or a relevant subset of them);

• sometimes a third time, to deal with rare words.

Computing the probability that a message containing a given word is spam

Let's suppose the suspected message contains the word "replica". Most people 
who are used to receiving e-mail know that this message is likely to be spam, 
more precisely a proposal to sell counterfeit copies of well-known brands of 
watches. The spam detection software, however, does not "know" such facts; all 
it can do is compute probabilities.

The formula used by the software to determine that, is derived from Bayes' 
theorem.

where:

• Pr(S|W) is the probability that a message is a spam, knowing that the 
word "replica" is in it;

• Pr(S) is the overall probability that any given message is spam;

• Pr(W|S) is the probability that the word "replica" appears in spam 
messages;

• Pr(H) is the overall probability that any given message is not spam (is 
"ham");
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• Pr(W|H) is the probability that the word "replica" appears in ham 
messages.

The spamliness of a word

Statistics[9] show that the current probability of any message being spam is 80%, 
at the very least:
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However, most bayesian spam detection software makes the assumption that 
there is no a priori reason for any incoming message to be spam rather than 
ham, and considers both cases to have equal probabilities of 50%

The filters that use this hypothesis are said to be "not biased", meaning that they 
have no prejudice regarding the incoming email. This assumption permits 
simplifying the general formula to:

This is functionally equivalent to asking, "what percentage of occurrences of the 
word "replica" appear in spam messages?"

This quantity is called "spamicity" (or "spaminess") of the word "replica", and 
can be computed. The number Pr(W|S) used in this formula is approximated to 
the frequency of messages containing "replica" in the messages identified as 
spam during the learning phase. Similarly, Pr(W|H) is approximated to the 
frequency of messages containing "replica" in the messages identified as ham 
during the learning phase. For these approximations to make sense, the set of 
learned messages needs to be big and representative enough. It is also advisable 
that the learned set of messages conforms to the 50% hypothesis about 
repartition between spam and ham, i.e. that the datasets of spam and ham are of 
same size.

Of course, determining whether a message is spam or ham based only on the 
presence of the word "replica" is error-prone, which is why bayesian spam 
software tries to consider several words and combine their spamicities to 
determine a message's overall probability of being spam.

Dealing with rare words

In the case a word has never been met during the learning phase, both the 
numerator and the denominator are equal to zero, both in the general formula 
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and in the spamicity formula. The software can decide to discard such words for 
which there is no information available.

More generally, the words that were encountered only a few times during the 
learning phase cause a problem, because it would be an error to trust blindly the 
information they provide. A simple solution is to simply avoid taking such 
unreliable words into account as well.

Applying again Bayes' theorem, and assuming the classification between spam 
and ham of the emails containing a given word ("replica") is a random variable 
with beta distribution, some programs decide to use a corrected probability:

where:

• Pr′(S|W) is the corrected probability for the message to be spam, 
knowing that it contains a given word ;

• s is the strength we give to background information about incoming 
spam ;

• Pr(S) is the probability of any incoming message to be spam ;

• n is the number of occurrences of this word during the learning phase ;

• Pr(S|W) is the spamicity of this word.

This corrected probability is used instead of the spamicity in the combining 
formula. Pr(S) can again be taken equal to 0.5, to avoid being too suspicious 
about incoming email. 3 is a good value for s, meaning that the learned corpus 
must contain more than 3 messages with that word to put more confidence in 
the spamicity value than in the default value.

This formula can be extended to the case where n is equal to zero (and where 
the spamicity is not defined), and evaluates in this case to Pr(S). 
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Discussion 

Advantages

One of the main advantages[citation needed] of Bayesian spam filtering is that it can be 
trained on a per-user basis.

The spam that a user receives is often related to the online user's activities. For 
example, a user may have been subscribed to an online newsletter that the user 
considers to be spam. This online newsletter is likely to contain words that are 
common to all newsletters, such as the name of the newsletter and its 
originating email address. A Bayesian spam filter will eventually assign a higher 
probability based on the user's specific patterns.

The legitimate e-mails a user receives will tend to be different. For example, in 
a corporate environment, the company name and the names of clients or 
customers will be mentioned often. The filter will assign a lower spam 
probability to emails containing those names.

The word probabilities are unique to each user and can evolve over time with 
corrective training whenever the filter incorrectly classifies an email. As a result, 
Bayesian spam filtering accuracy after training is often superior to pre-defined 
rules.

It can perform particularly well in avoiding false positives,[citation needed] where 
legitimate email is incorrectly classified as spam. For example, if the email 
contains the word "Nigeria", which is frequently used in Advance fee fraud 
spam, a pre-defined rules filter might reject it outright. A Bayesian filter would 
mark the word "Nigeria" as a probable spam word, but would take into account 
other important words that usually indicate legitimate e-mail. For example, the 
name of a spouse may strongly indicate the e-mail is not spam, which could 
overcome the use of the word "Nigeria."

Disadvantages

Depending on the implementation, Bayesian spam filtering may be susceptible 
to Bayesian poisoning, a technique used by spammers in an attempt to degrade 
the effectiveness of spam filters that rely on Bayesian filtering. A spammer 
practicing Bayesian poisoning will send out emails with large amounts of 
legitimate text (gathered from legitimate news or literary sources). Spammer 
tactics include insertion of random innocuous words that are not normally 
associated with spam, thereby decreasing the email's spam score, making it 
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more likely to slip past a Bayesian spam filter. However, with (for example) 
Paul Graham's scheme only the most significant probabilities are used, so that 
padding the text out with non-spam-related words does not affect the detection 
probability significantly.

Words that normally appear in large quantities in spam may also be transformed 
by spammers. For example, «Viagra» would be replaced with «Viaagra» or «V!
agra» in the spam message. The recipient of the message can still read the 
changed words, but each of these words is met more rarely by the Bayesian 
filter, which hinders its learning process. As a general rule, this spamming 
technique does not work very well, because the derived words end up 
recognized by the filter just like the normal ones.[17]

Another technique used to try to defeat Bayesian spam filters is to replace text 
with pictures, either directly included or linked. The whole text of the message, 
or some part of it, is replaced with a picture where the same text is "drawn". The 
spam filter is usually unable to analyze this picture, which would contain the 
sensitive words like «Viagra». However, since many mail clients disable the 
display of linked pictures for security reasons, the spammer sending links to 
distant pictures might reach fewer targets. Also, a picture's size in bytes is 
bigger than the equivalent text's size, so the spammer needs more bandwidth to 
send messages directly including pictures. Some filters are more inclined to 
decide that a message is spam if it has mostly graphical contents. A solution 
used by Google in its Gmail email system is to perform an OCR (Optical 
Character Recognition) on every mid to large size image, analyzing the text 
inside. 
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E-mail Spam Classification 

Description

The dataset included for this project is based on a subset of the SpamAssassin 
Public Corpus. Upper image of Figure 1 shows a sample email that contains a 
URL, an email address (at the end), numbers, and dollar amounts. While many 
emails would contain similar types of entities (e.g., numbers, other URLs, or 
other email addresses), the specific entities (e.g., the specific URL or specific 
dollar amount) will be different in almost every email. Therefore, one method 
often employed in processing emails is to “normalize’ these values’, so that all 
URLs are treated the same, all numbers are treated the same, etc. For example, 
we could replace each URL in the email with the unique string “httpaddr” to 
indicate that a URL was present. This has the effect of letting the spam classifier 
make a classification decision based on whether any URL was present, rather 
than whether a specific URL was present. This typically improves the 
performance of a spam classifier, since spammers often randomize the URLs, 
and thus the odds of seeing any particular URL again in a new piece of spam is 
very small.

We have already implemented the following email preprocessing steps: lower- 
casing; removal of HTML tags; normalization of URLs, email addresses, and 
numbers. In addition, words are reduced to their stemmed form. For example, 
“discount”, “discounts”, “discounted” and “discounting” are all replaced with 
“discount”. Finally, we removed all non-words and punctuation. The result of 
these preprocessing steps is shown in lower image of Figure 1.

Experiments

• This project will involve your implementing classification algorithms. 
Before you can build these models and measures their performance, split 
your training data (i.e. spam train.txt) into a training and validate set, 
putting the last 1000 emails into the validation set. Thus, you will have a 
new training set with 4000 emails and a validation set with 1000 emails. 
Explain why measuring the performance of your final classifier 
would be problematic had you not created this validation set.

Ans: In a classification work flow, training data set are in two categories 
(training and validation). Then the test data set is for testing. The problem with 
not creating a validation set can cause the performance measure to perform 
poorly due to inaccurate prediction.
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• Transform all of the data into feature vectors. Build a vocabulary list 
using only the 4000 email training set by finding all words that occur 
across the training set. Note that we assume that the data in the validation 
and testsets is completely unseen when we train our model, and thus we 
do not use any information contained in them. Ignore all words that 
appear in fewer than X = 30 emails of the 4000 email training set. This is 
both a means of preventing overfitting and of improving scalability. For 
each email, transform it into a feature vector x where the ith entry, xi, is 1 
if the ith word in the vocabulary occurs in the email, and 0 otherwise.

• Train the linear classifier such as Naive Bayes using your training set. 
How many mistakes are made before the algorithm terminates? Next, 
classify the emails in your validation set. What is the validation error? 
Explain your results.

Ans: The algorithm makes about 1.575% mistake during the training phase. In 
addition, validation error is about 2.7% while testing the validation data set.

• Explore some other algorithms to solve spam filter problem. And 
demonstrate your thoughts.
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Design and Implementation 

Implementation of Bayesian 

defaultProb is the tiny non-zero probability that a word we have not seen before 
appears in the class.

Classifier implements the Naive Bayesian Classifier

Document is a group of tokens with certain class

 33



NewDocument return new Document

getWordProb returns P(W | C_j) -- the probability of seeing a particular word W 

in a document of this class. getWordsProb returns P(D|C_j) 
-- the probability of seeing this set of words in a document of this class. Note 
that words should not be empty, and this method of calculation is prone to 
underflow if there are many words and their individual probabilities are small.

The term frequency - inverse document frequency (Tf-idf) is another alternative 
for characterizing text documents. It can be understood as a weighted term 
frequency, which is especially useful if stop words have not been removed from 
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the text corpus. The Tf-idf approach assumes that the importance of a word is 
inversely proportional to how often it occurs across all documents. Although Tf-
idf is most commonly used to rank documents by relevance in different text 
mining tasks, such as page ranking by search engines, it can also be applied to 
text classification via naive Bayes.

NewClassifier returns a new classifier. The classes provided should be at least 2 
in number and unique, or this method will panic
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Learn will accept new training documents for supervised learning.

LogScores produces "log-likelihood"-like scores that can be used to classify 
documents into classes. The value of the score is proportional to the likelihood, 
as determined by the classifier, that the given document belongs to the given 
class. This is true even when scores returned are negative, which they will be 
(since we are taking logs of probabilities). The index j of the score corresponds 
to the class given by c.Classes[j]. Additionally returned are "inx" and "strict" 
values. The inx corresponds to the maximum score in the array. If more than 
one of the scores holds the maximum values, then strict is false. Unlike 
c.Probabilities(), this function is not prone to floating point underflow and is 
relatively safe to use. 
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Saves machine learning model to a file.

removeDuplicate Removes duplicate tokens from file. 
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Result Analysis 

For benchmarking our classifier, we used confusion matrix to represent false 
positives and False negatives.

This confusion matrix represents the true positive and true negative rates with 
heatmap. See the code at https://github.com/diabloxenon/Spamaway.git 
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Conclusion 

Opinions from online digital media are increasingly used by individuals and 
organizations for making purchase decisions and marketing and product design. 
Positive opinions often mean profits and fames for businesses and individuals. 
This is a strong incentives for people to game the system and manipulate user 
sentiment by posting fake opinions or reviews to promote or to discredit some 
target products. Such individuals are called opinion spammers and their 
activities are called opinion spamming. 

It is very unusual to having 100% success from a model. Obviously, it is due to 
small training and test dataset. I have tested my own emails using the model. It 
turned out that it is not as effective as my existing paid spam filter. It makes 
sense. There are many ways we can improve the model. If the model trains with 
sufficient data, it will deliver more accurate results.
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