Nan		Printed Pages:01			
Glu	uvni Aunin	No.: School of Basic Sciences Back Paper Examination Even Semester (Non - Graduating Batches)		24	
		[Programme: B.Tech] [Semester:] [Batch:]			
Cou	rse Title: N	Max Marks: 100 Time: 3 Hrs.			
Cou	rse Code: N				
Inst	ructions:	1. All questions are compulsory.	-		
		2. Assume missing data suitably, if any.			
			K	COs	Marks
		SECTION A (15 Marks) 5 Marks	Level		
		SECTION-A (15 Marks) 5 Marks es	acn		1
1.	$u = \frac{4x}{z}$	······································			5
2.	Find a roo	ercentage error in u , when $x = 1, y = 1, z = 1$ t of the equation $\cos x = xe^x$ by Bisection method. Perform four			5
3.		er's method, find an approximate value of y corresponding to x=2, $\frac{dy}{dx} = x + 2y \frac{dy}{dx} = x + 2y \text{ and } y(1) = 1. y(1) = 1.$			5
	given mat	SECTION-B (40 Marks) 10 Marks ea	 ach		
		t of $x^3 - x^2 - 1 = 0$ using the Newton-Raphson method correct to			
4.		t of $x = x^{-1} = 0^{-1}$ using the Newton-Raphson method correct to mal places.			10
5.	1,3,5,7. Al	the forward difference table for $f(x) = x^3 - 2x^2 + 4x + 5$ for x= so find $\Delta^2 f(3)$.			10
6.	A train is m train per sec (Time t) : (speed v) :	oving at the speed of 30m/s suddenly the brakes are applied. The speed of the cond after t seconds is given by 0 5 10 15 20 25 30 35 40 45 30 24 19 16 13 11 10 8 7 5 son 3/8 Rule to determine the distance covered by the train in 45 seconds			10
	Solve the	e equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions u			10
7.		$in\pi x(x,0) = sin\pi x$, $0 < x < 1$, ; $u(0, t) = u(1, t) = 0, t \ge 0$.			
	u(0, t) =	$u(1, t) = 0, t \ge 0$. Find u for x=0.6 at t =.04.			
		SECTION-C (45 Marks) 15 Marks e	each		i
8.	Solve the	following system of linear equations by Gauss Jordan method: $\begin{bmatrix} 2 & 3 & -1 \\ 4 & 4 & -3 \\ -2 & 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ 1 \end{bmatrix}$			15
9.	x: 0 f(x): 2	ubic Lagrange's interpolating polynomial from the following data: 1 2 5 3 12 147. e, find the value of f(3).			15

10	Write Trapezoidal formula for numerical integration, also evaluate $I = \int_{4}^{52} log x dx$ $I = \int_{4}^{5.2} \log x dx$ by Trapezoidal rule (taking h=0.2).		15