

ADMISSION NUMBER

School of Basic Sciences

Master of Science in Physics Semester End Examination - Jun 2024

Duration : 180 Minutes Max Marks : 100

Sem II - C1PO207B - Applied Numerical Methods

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

- Explain the fundamental principle behind the Birge-Vieta method K1(3) for finding roots of polynomials.
- Explain the difference between the predictor and corrector steps in K2(4)
 Milne's Predictor-Corrector method.
- 3) Describe the difference between interpolation and least squares ^{K2(6)} approximation. Provide examples to illustrate each.
- 4) Use Simpson's 1/3 rule to approximate the integral of $f(x) = \ln(2x+1)$ from $\frac{k_3}{2}$ to x = 1.
- ⁵⁾ Interpolate the points (0; 0), (1; 1), and (3; 9) at x = 2 using ^{K3(6)} Newton's backward interpolation.
- 6) Use the Birge-Vieta method to find the roots of the polynomial $f(x) = 3x^3 6x^2 + 4x^{3(9)}$. Begin with an initial guess of $x_0 = 1$. Compute the roots with an error tolerance of 10^{-4} .
- ⁷⁾ Using the method of least squares, find the best quadratic $K^{3(9)}$ approximation for the data points (1, 1), (2, 4), (3, 9), and (4, 16).
- 8) Given the function $f(x) = \cos(x) x$, use the Newton-Raphson method to find an apparent from $x_0 = \frac{\pi}{4}$. Calculate the value of x_1 after one iteration.
- 9) Apply the fourth-order Runge-Kutta method to solve the initial value problem $y' \not \underline{k4342} = 2y, y(0) = 1$ over the interval $0 \le x \le 2$ with a step size of h = 0.2.
- 10) Apply the bisection method to find a root of $f(x) = x^3 + 3x^2 2x 4$ in the interval K5(10) [-2, 0]. Use a tolerance of 10^{-5} .

11)

Given the data points (0; 1), (1; 3), (2; 7), and (3; 15), determine the ^{K5(15)} polynomial using the Newton forward formula.

OR

Use Newton's forward difference formula to approximate the first derivative of $f(x)^{5} (\underline{15})^{3} x^{3}$ at x = 2 using the following data:

$$x: 1, 2, 3, 4$$

 $f(x): 1, 8, 27, 64$

12) Apply the Runge-Kutta 2nd order method to approximate the solution of $y' = 3y \frac{\mathsf{K6(12)}}{x}$ with y(0) = 2 at x = 0.5 using a step size of 0.1.

OR

Approximate the third derivative of $f(x) = \ln(x)$ at x = 2 using Newton's forward difference method with the data:

x:1, 1.5, 2, 2.5

f(x): 0, 0.4055, 0.6931, 0.9163