
1

 APPENDIX 1

OBJECT DETECTION USING DEEP LEARNING

A Project Report of Capstone Project – 2

Submitted By

 Pushpendra Chaudhary

 (1613101528/ 16SCSE101478)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE ENGINEERING

 SCHOOL OF COMPUTER SCIENCE&ENGINEERING

Under the Supervision of

 Dr.Kuldeep Singh Kaswan(Professor)

 APRIL/ MAY 2020

2

 APPENDIX 2

 SCHOOL OF COMPUTER SCIENCE&ENGINEERING

 BONAFIDE CERTIFICATE

Certified that this project report “OBJECT DETECTION USING DEEP LEARNING” is the

bonafide work of “PUSHPENDRA CHAUDHARY(1613101528)” who carried out the project

work under my supervision.

SIGN. OF HEAD SIGN. OF SUPERVISOR

DR.MUNISH SHABARWAL, DR.KULDEEP KASWAN,

Professor & Dean, Professor

School of Computer Science School of Computer Science

& Engineering & Engineering

3

Abstract

Computer Vision is the branch of the science of computers and software systems which can

recognize as well as understand images and scenes. Computer Vision is consists of various

aspects such as image recognition, object detection, image generation, image super-resolution

and many more. Object detection is widely used for face detection, vehicle detection, pedestrian

counting, web images, security systems and self-driving cars. In this project, we are using

highly accurate object detection-algorithms and methods such as R-CNN, Fast-RCNN, Faster-

RCNN, RetinaNet and fast yet highly accurate ones like SSD and YOLO. Using these methods

and algorithms, based on deep learning which is also based on machine learning require lots of

mathematical and deep learning frameworks understanding by using dependencies such as

TensorFlow, OpenCV, imageai etc, we can detect each and every object in image by the area

object in an highlighted rectangular boxes and identify each and every object and assign its tag

to the object. This also includes the accuracy of each method for identifying objects.

4

APPENDIX 3

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 Title of Project 1

 Bonafide Certificate 2

 Abstract 3

 1. Introduction 4

 1.1 Facial Recognition 4

 1.2 Facial Recognition Process 4

 1.3 Facial Biometric Systems used for Security 5-10

 1.4 Objectives 11

 1.5 Proposed System 11

 2. Background Study 12

 2.1 Python 12

 2.2 Anaconda 13

 3. Technologies Used 14

 3.1 Python 3.7 14

 3.2 Anaconda 2019.07 14-15

 3.3 Pandas 15

 3.4 Numpy 16

 3.5 Matplotlib 16

 3.6 Scikit-learn 17

5

 3.7 OpenCV- Python 17

 3.8 Scikit-image 18

 3.9 Joblib 19

 3.10 Tkinter 19

 3.11 Pil 20

 3.12 Scipy 20

 4. Installing all dependencies 21

 4.1 Python 3 21-26

 4.2 Installing Anaconda 26-29

 4.3 Accessing Jupyter Notebook 29-30

 5. Requirement for Project 31

 5.1 Hardware Requirements 31

 5.2 Software Requirements 31

 6. Implementation 32

 6.1 Haar Cascade 32

 6.2 HOG Descriptor 32

 6.3 Datasets 33

 6.4 Graphic User Interface 33-34

 6.5 Maintaining Records 35

 6.6 Working 35-36

 6.7 Training a Model 37

 6.8 Code 38-52

 7. Concerns and Future Works 53

 7.1 The Threats and Concerns About Facial Recognition 53-54

 7.2 How to Avoid Facial Recognition 54-57

 7.3 What the Future Holds? 57

 References 58

6

Chapter 1

INTRODUCTION

1.1 Facial Recognition

Face recognition is a biometric solution designed for the purpose of recognizing a human face without any

physical contact required. The solution runs through algorithms that match the facial nodes of a person to the

../images saved in the database[1]. Security of any organization or critical location can be enhanced using facial

recognition. The versatile nature of facial recognition makes it a preferred choice for added security. Human

face detection is preliminary required step of face recognition systems as well as a very important task in many

applications, such as security access control systems, video surveillance, human computer interface and image

database management. Due to the advancements in face detection technology, it is now possible to detect faces

in an image or video, regardless of head pose, lighting conditions, and skin colour[2].

Today it's considered to be the most natural of all biometric measurements. And for good reason – we recognize

ourselves not by looking at our fingerprints or irises, for example, but by looking at our faces.

1.2 Facial Recognition Process

Unlike any other identification solution, face recognition identifies the unique features of the human face and

them makes a comparison based on the existing database of photographs. Sensors detect and identify face

shapes by the colour of the iris, nose shape, and so on. Identifying the human face includes concentrating on

certain unique features, such as the jaw, cheekbones, face shape and so on[3]. Once the image in the

database matches with the face of the person concerned, the face is verified. It captures, analyses and compares

patterns based on the person's facial details.

1. The face detection process is an essential step as it detects and locates human faces in images and videos.

2. The face capture process transforms an analog information (a face) into a set of digital information (data)

based on the person's facial features.

3. The face match process verifies if two faces belong to the same person.

Today it's considered to be the most natural of all biometric measurements.

7

Figure 1.1: Facial Authentication is easy to deploy and implement no physical interaction

required by the end-user.

1.3 Facial biometrics system used For Security

Facial biometrics system has been used as a measure of securities in the

topmost institutions and workplaces to ensure that there is no scope of any vandalism.

This type of software leaves absolutely no room for human error and is a major helping

hand. Just by a set of algorithms, the software does geometric and photometric

recognition within seconds. These facial biometrics system has emerged as the master

of all recognition software due to its easy applicability and low-cost technology. Its

non-contact nature is the best thing about it in the sense that a person through facial

recognition, even in a crowded place can be recognized, given that his ../images are

saved in the database[2]. Facial recognition makes access to information more limited

and restricted to those who own it. Facial recognition has made verification relatively

easier, with nothing much to equip and a lot of information to access within minutes.

 Figure 1.2: Face recognition solution has been as a major component in the field of security.

The Face recognition solution has been as a major component in the field of security. Here’s why:

8

• Criminal identification

 The authorities can breathe a sigh of relief with the face recognition system. Its database containing

all information about criminals makes it easier to catch them.If the sensor identifies the face with the

algorithms and if the face matches, it’s awin! Face recognition software prevents a crime even before it

takes place[5].

• Surveillance

Crimes are not committed when you have someone watching over you. Facialrecognition keeps a track

on everybody in crowded places. Because of CCTVsurveillance cameras being installed in crowded

areas, the crime rate has been much less[3].

 Figure 1.3: Face recognition can identify all threats in real-time.

 Police Authorities

Police stations have facial recognition systems to track people who have past criminal records and are

wanted. The database when matches with a person’s face, it is easier to get hold of criminals through

simple algorithms. The police authorities are alerted if the system shows a face match[6].

9

 Figure 1.4: Face recognition makes it easier for authorities to keep track of people on watchlist.

• Tracking attendance

Schools and colleges have adopted face recognition both to track attendance and avoid any malicious

activity in premises.

 Figure 1.5: Face recognition will make restricted entry seamless.

• Defence Services

 Defence services use face recognition because of the degree of sensitivity involved. Since only a few people

have some confidential information hidden with them, with facial recognition, only they can have access to it.

10

 Figure 1.6: Face recognition can prevent crimes before they happen.

 • Bank Services

Banks use this product of Artificial intelligence as a security measure to detect any suspects entering

without being identified. Basically, the artificial intelligence technology employed in banks is to avoid

bank frauds.

 • online payment

Security also contains safe online payments. Since each face is unique like a fingerprint, there is no

chance that your payment will be hacked, as the payment will be made once your face matches.

• Airport Service

In many countries, airports use this system of artificial intelligence to recognize faces of passengers so

that there are no suspected risks involved. Through facial recognition, the information obtained is

authentic and avoids any possibility of error.

Figure 1.7: Face recognition systems can track many people simultaneously and identify all threats in

realtime.

11

1.4 Objectives

To build a prototype model of Surveillance System, for use by institutions and workplaces to ensure that there is

no scope of any vandalism. The project involves monitoring and safety authentication on video feeds. The

Project is based

• On a model that recognise faces and classifiespeople.

• On a model that detects gender of recognised people on basis of their faces

• On a model that detects the emotions of basis of their faces

1.5 Proposed System

Need to build a prototype for Surveillance System using a Python 3 and OpenCV. The Proposed System should

have the following functions:

• It should draw bounding boxes around the faces detected.

• It should be able to create and manage datasets on its own.

• It should have a GUI through which users can access any one model or either all of the model at same time for

recognition.

• It should be able to recognise partial faces.

• It should be able to maintain a record file that at which time particular person is present in the video feed

Create wiring diagram of expected design.

• It should be able to create random colour on basis of the category of detected class/objects and draw their

bounding boxes

• It should be able to change pixel values into and image and resize them and save the m on hard drive so that

they can be used later on

12

Chapter 2

BACKGROUND STUDY

2.1 Python

Python is a popular programming language. It was created in 1991 by Guido van Rossum. It is used at a number

of places as:

• Python can be used on a server to create web applications.

• Python can be used alongside software to create workflows.

• Python can connect to database systems. It can also read and modify files.

• Python can be used to handle big data and perform complex mathematics.

• Python can be used for rapid prototyping, or for production-ready software development.

2.1.1 Reasons for Python

• Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

• Python has a simple syntax similar to the English language.

• Python has syntax that allows developers to write programs with fewer lines than some other programming

languages.

• Python runs on an interpreter system, meaning that code can be executed as soon as it is written. This means

that prototyping can be very quick.

• Python can be treated in a procedural way, an object-orientated way or a functional way.

• Python comes with a huge number of inbuilt libraries. Many of the libraries are for Artificial Intelligence and

Machine Learning

• It's easy to experiment with new ideas and code prototypes quickly in a language with minimal syntax like

Python

13

2.2 Anaconda

Anaconda is a python distribution, with installation and package management tools. It

provides large selection of packages and commercial support. It is an environment

manager, which provides the facility to create different python environments, each with their own settings. It

also provides much greater advantages in the data science platform.

Conda, the Anaconda’s own package manager, is used for updating anaconda and its packages. Conda is a

cross platform package and environment manager. It provides installing, executing and updating different

packages along with their dependencies. It helps in switching between environments in our local machine

2.2.1 Reasons for Anaconda

• Anaconda python is faster than vanilla python: they bundle Intel MKL and this does make most NumPy

computations faster.

• You can easily do a local user install, no need to ask permission from your admin in many cases.

• Under Windows, you don’t have a lot of choices and anyway you need a python package installer.

• Anaconda Inc. is a company. This is a plus in a corporate setting. You can get support contracts for instance.

• Anaconda Inc. has historically made a lot of efforts to please the personal, students and academic users. This

has basically worked out pretty well for all concerned.

• Anaconda Python is very complete.

• There is no risk of messing up required system libraries

14

Chapter 3

TECHNOLOGIES USED

3.1 Python 3.7

Before 2008, Python developers had a bit of a headache. The language that started in the 1989 Christmas

holidays as the pet project of Guido van Rossum was now growing at a fast pace. Features had been piled on,

and the project was now large enough that earlier design decisions were hindering implementation. Because of

this, the process of adding new features was becoming an exercise in hacking around the existing code.

The solution was Python 3: the only release that deliberately broke backwards compatibility. At the time, the

decision was controversial. Despite the backlash, the decision was taken, giving Guido and the developers a

one-off chance to clean out redundant code, fix common pitfalls and re-architect the language. The aim was that

within Python 3 there would be only one obvious way of doing things. It’s a testament to the design choices

made back then that we’re still on 3.x releases a decade later.

3.2 Anaconda 2019.07

The open-source Anaconda Distribution is the easiest way to perform Python/R data science and machine

learning on Linux, Windows, and Mac OS X. With over 15 million users worldwide, it is the industry standard

for developing, testing, and training on a single machine, enabling individual data scientists to:

• Quickly download 1,500+ Python/R data science packages

• Manage libraries, dependencies, and environments with Conda

• Develop and train machine learning and deep learning models with scikit-learn, TensorFlow, and Theano

• Analyze data with scalability and performance with Dask, NumPy, pandas, and Numba

• Visualize results with Matplotlib, Bokeh, Datashader, and Holoviews

15

 Fig 3.1:Some of the libraries made available with Anaconda that simplify Data Science Projects.

3.2.1 Technical Specification

• Intel Core i5-6200U dual core chipset

• 2.7GHz Dual-Core Processor

• 8GB RAM

• 64 Bit CPU

• 0.3 MegaPixel WebCam

• 240 GB SSD

3.3 Pandas

IR When it comes to data manipulation and analysis, nothing beats Pandas. It is the most popular Python

library, period. Pandas is written in the Python language especially for manipulation and analysis tasks. The

name is derived from the term “panel data”, an econometrics term for datasets that include observations over

multiple time periods for the same individuals.

Installation code- pip install pandas

 Figure 3.2: Pandas Library Logo

16

Pandas provides features like:

 • Dataset joining and merging

 • Data Structure column deletion and insertion

 • Data filtration

 • Reshaping datasets

 • DataFrame objects to manipulate data, and much more! Figure 3.1: IR Sensor

3.4 Numpy

The NumPy, like Pandas, is an incredibly popular Python library. NumPy brings in functions to support large

multi-dimensional arrays and matrices. It also brings in high- level mathematical functions to work with these

arrays and matrices. NumPy is an open- source library and has multiple contributors. It comes pre-installed with

Anaconda and Python.

installation code: pip install numpy

 Figure 3.3: NumPy Library Logo.

3.5 Matplotlib

A Matplotlib is the most popular data visualization library in Python. It allows us to generate and build plots of

all kinds. This is a standard go-to library for exploring data visually.

installation code: pip install matplotlib

17

 Figure 3.4: Matplotlib Library Logo

3.6 Scikit-learn

Like Pandas for data manipulation and matplotlib for visualization, scikit-learn is the Python leader for building

models. scikit-learn is built on NumPy, SciPy and matplotlib. It is open source and accessible to everyone and

reusable in various contexts.

Scikit-learn supports different operations that are performed in machine learning like classification, regression,

clustering, model selection, etc.

 Figure 3.5: Scikit-learn Library Logo.

installation code: pip install scikit-learn

3.7 OpenCV-Python

When it comes to image processing, OpenCV is the first name that comes to mind. OpenCV-Python is the

Python API for image processing, combining the best qualities of the OpenCV C++ API and the Python

language. It is mainly designed to solve computer vision problems.

18

OpenCV-Python makes use of NumPy. All the OpenCV array structures are converted to and from NumPy

arrays. This also makes it easier to integrate with other libraries that use NumPy such as SciPy and Matplotlib.

 Figure 3.6: OpenCV-python Library Logo.

Installation code: pip install opencv-python

3.8 Scikit-image

Another python dependency for image processing is Scikit-image. It is a collection of algorithms for performing

multiple and diverse image processing tasks. You can use it to perform image segmentation, geometric

transformations, color space manipulation, analysis, filtering, morphology, feature detection, and much more.

We need to have the below packages before installing scikit-image:

• Python (>= 3.5)

• NumPy (>= 1.11.0)

• SciPy (>= 0.17.0)

• joblib (>= 0.11)

installation code: pip install scikit-learn

 Figure 3.7: Scikit-image Library Logo.

19

3.9 Joblib

Joblib is such an package that can simply turn our Python code into parallel computing mode and of course

increase the computing speed. Joblib is a set of tools to provide lightweight pipelining in Python. In particular:

• transparent disk-caching of functions and lazy re-evaluation (memorize pattern) easy simple parallel

computing

• Joblib is optimized to be fast and robust in particular on large data and has specific optimizations for numpy

arrays

Installation code: pip install joblib

 Figure 3.8: Joblib Library Logo.

3.10 Tkinter

Python offers multiple options for developing GUI (Graphical User Interface). Out of all the GUI methods,

tkinter is most commonly used method. It is a standard Python interface to the Tk GUI toolkit shipped with

Python. Python with tkinter outputs the fastest and easiest way to create the GUI applications. Creating a GUI

using tkinter is an easy task.

Installation code: pip install python-tk

Figure 3.9: Tkinter Library Logo.

20

3.11 PIL

Python Imaging Library (abbreviated as PIL) (in newer versions known as Pillow) is a free library for the

Python programming language that adds support for opening, manipulating, and saving many different image

file formats. Pillow offers several standard procedures for image manipulation. These include:

• per-pixel manipulations,

• masking and transparency handling,

• image filtering, such as blurring, contouring, smoothing, or edge finding,

• image enhancing, such as sharpening, adjusting brightness, contrast or color,

• adding text to images and much more.

Installation code: pip install Pillow

3.12 Scipy

SciPy is a free and open-source Python library used for scientific computing and technical computing. SciPy

contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and

image processing, ODE solvers and other tasks common in science and engineering.

Installation code: pip install scipy

 Figure 3.11: SciPy Library Logo.

21

CHAPTER 4

Installing All Dependencies

4.1 Python3

Step 1: Select Version of Python to Install

• The installation procedure involves downloading the official Python .exe installer and running it on your

system. It is recommended to download the latest version of Python 3.

Step 2: Download Python Executable Installer

• Open your web browser and navigate to the Downloads for Windows section of the official Python website.

• Search for your desired version of Python. At the time of writing, the latest Python 3 release is version 3.7.4.

• Select a link to download either the Windows x86-64 executable installer (for 64-bit systems) or Windows

x86 executable installer (for 32 bit systems).

 Figure 4.1: Download Python Executable Installer based on your chipset.

22

Step 3: Run Executable Installer

• Run the Python Installer once downloaded. (In this example, we have downloaded Python 3.7.3.)

• Make sure you select the Install launcher for all users and Add Python 3.7 to PATH checkboxes.

• Select Install Now – the recommended installation options.

 Figure 4.2: Run Python Executable Installer.

• For all recent versions of Python, the recommended installation options include Pip and IDLE. Older

versions might not include such additional features.

• The next dialog will prompt you to select whether to Disable path length limit. Choosing this option

will allow Python to bypass the 260-character MAX_PATH limit. Effectively, it will enable Python to

use long path names.

23

 Figure 4.3: Disable Path length limit option in Python Executable Installer.

• The Disable path length limit option will not affect any other system settings. Turning it on will

resolve potential name length issues that may arise with Python projects developed in Linux.

Step 4: Verify Python Was Installed on Windows

• Navigate to the directory in which Python was installed on the system. In our case, it is

C:\Users\Username\AppData\Local\Programs\Python\Python37 since we have installed the latest

version.

• Double-click python.exe.

• The output should be similar to what you can see below:

24

 Figure 4.4: Verify Python Was Installed on Windows

Step 5: Verify Pip Was Installed

• Open the Start menu and type “cmd.”

• Select the Command Prompt application.

• Enter pip -V in the console. If Pip was installed successfully, you should see the following output:

 Fig 4.5: Verify pip Was Installed on Windows.

25

Step 6: Add Python Path to Environment Variables (Optional)

• We recommend you go through this step if your version of the Python installer does not include the

Add Python to PATH checkbox or if you have not selected that option.

• Setting up the Python path to system variables alleviates the need for using full paths. It instructs

Windows to look through all the PATH folders for “python” and find the install folder that contains the

python.exe file.

• Open the Start menu and start the Run app.

 Fig4.6: Add Python Path to Environment Variables.

• Type sysdm.cpl and click OK. This opens the System Properties window.

• Navigate to the Advanced tab and select Environment Variables.

• Under System Variables, find and select the Path variable.

• Click Edit.

• Select the Variable value field. Add the path to the python.exe file preceded with a semicolon (;). For

example, in the image below, we have added “;C:\Python34.”

26

 Figure 4.7: Edit System Variables

• Click OK and close all windows.

• By setting this up, you can execute Python scripts like this: Python script.py

• Instead of this: C:/Python34/Python script.py

4.2 Installing Anaconda

Anaconda is a an open source distribution of the Python and R programming languages and it is used in data

science, machine learning, deep learning-related applications aiming at simplifying package management and

deployment. Anaconda Distribution is used by over 7 million users, and it includes more than 300 data science

packages suitable for Windows, Linux, and MacOS.

Step 1: Visit Anaconda website to download anaconda for windows. Click on Download

Figure 4.8: Visit Anaconda website and choose python 3.

Step 2: Next, double click on setup and click on next.

27

 Figure 4.9: Run Anaconda Installer.

Step 3: Click on “I agree” to Accept the agreement.

 Figure 4.10: Agree Anaconda Agreement.

Step 4: Retain default location and click next.

28

 Figure 4.11: Choose Anaconda install location.

Step 5: Click on “Add anaconda to my Path environment variable”.

 Fig 4.12: Add Anaconda to Environment Variables

Step 6: Click on the Install Button and wait till the installation is complete.

29

 Figure 4.13: Install Anaconda.

Step 7: Click on finish.

4.3 Accessing Jupyter Notebook

To access Jupyter notebook, continue the below steps.

Step 1: Open command prompt and type “jupyter notebook”.

 Figure 4.14: Open command prompt and type “jupyter notebook”.

Step 2: Once the command is given, the jupyter notebook will be opened by the browser automatically.

30

 Figure 4.15: Jupyter Notebook Homepage.

Step 3: Click on the “New” tab and select “Python 3” to create your first file.

 Figure 4.16: Create New jupyter notebook.

Step 4: On clicking the python 3 file we get a screen as shown below where we can type the scripts and execute

it.

31

Chapter 5

REQUIREMENT FOR PROJECT

5.1 Hardware requirement

The hardware and software components required for the development of the Smart Car System.

• 64-bit Computer Running Microsoft Windows

• Webcam

• RGB Display

• 4 GB ram

• Dual Core Processor

• 2 GB free space

• Processor 2 GHz or better

• Internet connection

5.2 Software requirements

• Python3

• Anaconda

• OpenCV-Python

• Pandas

• NumPy

• Matplotlib

• Scikit-learn

• Scipy

• PIL

• Tkinter

• Joblib

• Scikit-image

32

Chapter 6

IMPLEMENTATION

6.1 Haar Cascade

A Haar Cascade is basically a classifier which is used to detect particular objects from the source. The

haarcascade_frontalface_default.xml is a haar cascade designed by OpenCV to detect the frontal face. This haar

cascade is available on github[7]. A Haar Cascade works by training the cascade on thousands of negative

images with the positive image superimposed on it. The haar cascade is capable of detecting features from the

source.

6.2 HOG Descriptor

After The HOG descriptor focuses on the structure or the shape of an object. Now you might ask, how is this

different from the edge features we extract for images? In the case of edge features, we only identify if the pixel

is an edge or not. HOG is able to provide the edge direction as well[8]. This is done by extracting the gradient

and orientation (or you can say magnitude and direction) of the edges.

 Additionally, these orientations are calculated in ‘localized’ portions. This means that the complete image is

broken down into smaller regions and for each region, the gradients and orientation are calculated. We will

discuss this in much more detail in the upcoming sections.

Finally the HOG would generate a Histogram for each of these regions separately[9]. The histograms are

created using the gradients and orientations of the pixel values, hence the name ‘Histogram of Oriented

Gradients’

 Figure 6.1: Image processing through HOG.

33

6.3 Datasets

6.3.1 Gender Dataset

The gender dataset was downloaded from the internet but it contained the images of various resolutions. We

need a fixed size image to train a model so first we had to resize them according to our need. We wrote a python

code to do all that for us. In the same code we also trained a neural network to detect the gender by capturing

the webcam feed using opencv and python. We used “mlpclassifier” which is a classifier based on neural

network and saved the trained model for the further use with name neural_gender_model.pkl

6.3.2 Emotion Dataset

The Emotion dataset was also downloaded from the internet but it was in form of csv file with three columns

i.e. category, pixel values and purpose[11]. We only used the data from the two columns, category and pixel

values. The pizel values were the values of pixel that would create a 48*48 image. First we created the images

and saved them into their respective folder for further use. After that we loaded the images and on basis of them

we trained our model to identify emotions. We wrote a python code to do all that for us. In the same code we

also trained a neural network to detect the gender by capturing the webcam feed using opencv and python. We

used “mlpclassifier” which is a classifier based on neural network and saved the trained model for the further

use with name neural_emotion_model.pkl)

6.3.3 Facial Recognition Dataset

The Facial Recognition Dataset was created by ourselves. We created a GUI through which any user can update

their data inot the dataset wnd which will further train a new model and save it for further uses. In doing so, we

can use this model to recognize the newly added person in future. It also maintains a record file which contains

the data regarding at a given time a person was present over there or not. We used “mlpclassifier” which is

a classifier based on neural network and saved the trained model for the further use with name

neural_model.pkl.

6.4 Graphic User Interface

We used tkinter library to create the GUI of the for our project. The GUI was created so that anyone can use it

regardless of any prior experience. It contained a text field where users can enter their name to update their data.

The data was updated by creating a folder with name as given in text field and which will be used to identify the

users later on. We used OS module to check whether any data with same name is existing already or not. If

it was already there, it would be updated otherwise a new data would be created. Once the user finishes

updating their data, the function to update the facial recognition model is called internally so that later on the

new person can also be identified.

34

The code below is responsible for walking through thegiven directory and store the name of all folder’s in a list.

the code for the GUI and the interface itself are given below.

35

 Figure 6.2: Tkinter GUI.

6.5 Maintaining Records

We wrote another function that maintains a record about at a particular time which of the individuals are present

in video. It uses datetime library to create a row which contains as many columns as the number of registered

users. We store the probability prediction of each class for every frame and then. The time is used as index for

that particular row. If the probability is greater than 50%, we mark the person as present or otherwise we mark

him as absent. Once the recognition window is closed we add this list at the end of previous records and save it

permanently in a file named data.csv. If a new user is added later on, than a new column is created for the user

but the instances before the registration of the new user would be empty and this all works dynamically.

6.6 Working

Installing the various modules and repositories given in the earlier chapters, we would then proceed to

create the datasets to create various models. To identify the frontal face of humans in images we would use

HAAR cascade classifier and HOG descriptor. The whole process can be divided into following steps-

• We read the video captured by webcam with the help of opencv and then read that video feed frame

by frame.

 • We then resize the frame according to our need. You can keep the original resolution to but it would take a lot

more resources in processing later on.

36

• After resizing the frame we then pass the frame through the Haar cascade which in turn returns us a 2-d list

with n elements where n is the number of faces present in the frame. Each of the elements have 4 elements itself

which corresponds to the x, y co-ordinates of the top left corner, width and height of face.

• Now using these locations we draw a bounding boxes around all the faces in frame. The color of the bounding

boxes are generated dynamically using vaios logics.

• After getting the location of the face in the we crop these faces one by one.

o If we have to register a new person we save the image by creating a new folder with their name.

o If we are going to use any kind of recognition, we pass these images through HOG descriptor to

simplify images.

• We will reshape the array containing image data so that it becomes one dimensional and then pass it to the

model to make prediction. The class with the highest probability is regarded as our result.

37

6.7 Training a Model

We are currently using three models and the GUI can be used to access either any one of them or all of them at

once. For all the models we are using MLPCLassifier which is a neural network based classifier. Most of the

things are almost same in each model except the number of neurons in each layer and number of layers.

At first we try some other models when we were selecting the models and the result of those models are given

below-

 Table 6.1: Accuracy of gaussian, multinomial and bernoulli models at various test and train sizes.

 Table 6.2: Accuracy of SVM classifier at various kernels and test and train sizes.

38

6.8 Code

6.8.1 Gender dataset code

import os

import cv2

import joblib

import datetime

import numpy as np

import pandas as pd

from tkinter import *

from PIL import Image

import scipy.misc as smp

from sklearn.svm import SVC

from skimage import feature

import matplotlib.image as img

import matplotlib.pyplot as plt

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

In[2]:

def resize():

#searching for all the non empty folder in the given path #all the folders are

stored in form of list in variable dirs temp=os.walk('./gender') dirs=[] for

i,j,k in temp:

if j!=[]:

for _ in j:

dirs.append(_)

for i in dirs:

for j in range(1,1001):

#loading the images, resizing them #writing them back

to storege p1='./gender\%s\\1 (%d).jpg'%(i,j)

im=Image.open(p1) im1 = im.resize((64,64),

Image.ANTIALIAS) im1.save('./gender\%s\\1

(%d).jpg'%(i,j)) print(j)

In[]:

def gender_model():

39

#searching for all the non empty folder in the given path #all the folders are

stored in form of list in variable dirs temp=os.walk('./gender') dirs=[] for

i,j,k in temp:

if j!=[]:

for _ in j:

dirs.append(_)

#declaring variables to store data and label data,label=[],[]

for i in dirs:

for j in range(1,1001):

p1='./gender\%s\\1 (%d).jpg'%(i,j)

im=img.imread(p1) f=feature.hog(im)

f.reshape(1,-1) data.append(f) label.append(i)

#chaining the type of data to numpy array for ease

data=np.array(data)

#declaring variables and creating the train and test sets

train_data,train_label,test_data,test_label=[],[],[],[] for k in

range(0,2000):

if(k%1000>=900):

test_data.append(data[k])

test_label.append(label[k]) else:

train_data.append(data[k])

train_label.append(label[k])

#defining classifier

classifier=MLPClassifier(activation='relu',

hidden_layer_sizes=[100,80,60,40,20],

verbose=True,solver='adam', max_iter=1000,

tol=0.00001)

#providing data to the classifier to train to

classifier.fit(train_data,train_label)

y_pred=classifier.predict(test_data)

#saving the classifier for use in future joblib.dump(classifier,

'./neural_gender_model.pkl', compress=9)

#confirmation for everything went accordingly print('trained

and saved successfully')

print(accuracy_score(test_label,y_pred)*100)

6.8.2 Emotion dataset

40

import os

import cv2

import joblib

import datetime

import numpy as np

import pandas as pd

from tkinter import *

from PIL import Image

import scipy.misc as smp

from sklearn.svm import SVC

from skimage import feature

import matplotlib.image as img

import matplotlib.pyplot as plt

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

In[2]:

#reading data from the dataset

data=pd.read_csv("./fer2013.csv")

#defining the variables to storetraining and testing datasets

train_data,train_label,test_data,test_label=[],[],[],[]

In[3]:

#0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral def

createdata():

#decalring a list with all possible categories emotion=['Angry', 'Disgust', 'Fear', 'Happy',

'Sad', 'Surprise', 'Neutral']

#declaring a dictionary to create count of each category count={'Angry':0, 'Disgust':0, 'Fear':0,

'Happy':0, 'Sad':0, 'Surprise':0, 'Neutral ':0}

i=0

for j in data.values:

#splitting the pixel values, converting them to int and mapping them to a list #it is further

converted into numpy array temp=np.array(list(map(int,str(j[1]).split())),dtype=int)

#changing shape of numy array

temp.shape=(48,48)

41

#converting it to a image img =

smp.toimage(temp)

#checking the category of the given image

temp1=emotion[data['emotion'].loc[i]]

#storing the image into their respective folder

path1='./emotion\\%s'%(temp1) if not os.path.exists(path1):

 os.makedirs(path1) count[temp1]+=1 path2='./emotion\\%s\\1

(%d).png'%(temp1,count[temp1]) cv2.imwrite(path2,temp) i+=1

In[4]:

def load_data():

#searching for all the non empty folder in the given path #all the folders are

stored in form of list in variable dirs temp=os.walk('./emotion') dirs=[] for

i,j,k in temp:

if j!=[]:

for _ in j:

dirs.append(_)

#declaring variables

data,label=[],[] allfiles={}

#searching all of the files in vaious folders in the given directory for _ in dirs:

temp1=os.walk('./emotion/'+_) files=[] for

i,j,k in temp1:

if k!=[]:

for __ in k:

files.append(__) allfiles.update({_:files})

#reading the files one by one and creating the dataseet for i in

allfiles.keys(): for j in allfiles[i]:

p1='./emotion\%s\\%s'%(i,j)

im=img.imread(p1) f=feature.hog(im)

f.reshape(1,-1) data.append(f)

label.append(i)

data=np.array(data) print("data

loaded",data.shape)

42

split_data(data,label)

In[5]:

def split_data(data,label):

#shaoe of data

rows,columns=data.shatpe

#creating training and testing datasets for k in

range(rows):

if(k%1000>=900):

test_data.append(data[k])

test_label.append(label[k]) else:

train_data.append(data[k])

train_label.append(label[k])

print(len(train_data),len(test_data)) print("training and

testing data created")

train_fender_model()

In[6]:

#define classifier def

train_gender_model(l):

classifier=MLPClassifier(activation='relu',

hidden_layer_sizes=[100,75,50,25],

verbose=True,solver='adam', max_iter=1000,

tol=0.00001)

#providing data to the classifier to train to

classifier.fit(train_data,train_label)

y_pred=classifier.predict(test_data)

#saving the classifier for use in future joblib.dump(classifier,

'./neural_gender_model.pkl', compress=9)

#confirmation for everythong went accordingly print('trained and saved successfully')

print(accuracy_score(test_label,y_pred)*100)

43

6.8.3 Main code
import os

import cv2

import PIL

import joblib

import warnings

import datetime

import pytesseract

import numpy as np

import pandas as pd

from tkinter import *

import scipy.misc as smp

from random import randint

from skimage import feature

from PIL import Image,ImageTk

import matplotlib.image as img

from py_files.gender_dataset import *

from py_files.emotion_dataset import *

from sklearn.neural_network import MLPClassifier

from sklearn.metrics import classification_report,confusion_matrix,accuracy_score

warnings.filterwarnings("ignore", category=DeprecationWarning)

In[2]:

#loading the required things

temp=os.walk('./orl_face\\orl_face') users=[] for i,j,k in

temp:

 if j!=[]:

for _ in j:

users.append(_) users.sort()

pred=pd.DataFrame(columns=['time']+users)

ldata=pd.read_csv('data1.csv',index_col='time') pics=40

In[3]:

Def update():

vid=cv2.VideoCapture(0)

face_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

#getting the number of folders in directory

temp=os.walk('./orl_face\\orl_face') dirs=[] for i,j,k in temp:

if j!=[]:

for _ in j:

44

dirs.append(_) dirs.sort() num=len(dirs) i

= 0

color=(randint(0,255),randint(0,255),randint(0,255))

#reading the video frame by frame while i <

pics:

f,frame=vid.read() if f==True:

#resize frame, change to grac scale, and get the face details in form of list

frame=cv2.resize(frame, (640,480))

im1=cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)

face=face_cascade.detectMultiScale(im1)

#processing the data of the faces for x,y,w,h in

face:

#draw rectangle, and display the no. of pics taken cv2.rectangle(frame,(x,y),(x+w,y+h),color,4)

cv2.putText(frame,'face no. '+str(i),(x,y),cv2.FONT_ITALIC,1,color,2,cv2.LIN E_AA)

#wait for pressing of q if cv2.waitKey(1) & 0xFF ==

ord('q'):

#crop the face from image, and resize it to desired resolution

im_f=im1[y:y+h,x:x+w] im_f=cv2.resize(im_f,(92,112)) i+=1

#creating the new folder if not present and then storing captured image in it

path1='./orl_face\\orl_face\\%s'%(e.get()) path2='./orl_face\\orl_face\\%s\\1

(%d).png'%(e.get(),i) if not os.path.exists(path1):

os.makedirs(path1)

cv2.imwrite(path2,im_f)

#showing the frame

cv2.imshow('frame',frame)

cv2.waitKey(1)

#releasing resources vid.release()

cv2.destroyAllWindows()

#calling model function to train model model()

return 0

In[4]:

45

def recognition1():

count=0

vid=cv2.VideoCapture(0)

face_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

#loading saved model clf2 =

joblib.load('./neural_model.pkl')

color={i:(randint(0,255),randint(0,255),randint(0,255)) for i in users}

color.update({'unknown':(255,255,255)})

while(True):

f,frame=vid.read() if f==True:

#resize frame, change to grac scale, and get the face details in form of list

frame=cv2.resize(frame, (640,480))

im1=cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)

face=face_cascade.detectMultiScale(im1)

#processing the data of the faces for x,y,w,h in

face:

#draw rectangle, crop the image, change it to desired resolution, and the extra ct features from

imgae using hog

im_f=im1[y:y+h,x:x+w]

im_f=cv2.resize(im_f,(92,112))

f=feature.hog(im_f) f.reshape(1,-1)

#predict the prbability of each cases and chnage the result in 12 list

for j in clf2.predict_proba([f]):

y_pred=[int(i*100) for i in j]

u=users[y_pred.index(max(y_pred))]

cv2.rectangle(frame,(x,y),(x+w,y+h),color[u],2)

#predicting the current frame and its probability

if(max(y_pred)>=40):

cv2.putText(frame,str(u)+" "+str(max(y_pred)),(x,y),cv2.FONT_ITALIC,1,c

olor[u],1,cv2.LINE_AA) else:

cv2.putText(frame,str('unknown'),(x,y),cv2.FONT_ITALIC,1,color[u],2,cv2. LINE_AA) #adding the

data to the dataframe with the timestamp pred.loc[count]=[datetime.datetime.utcnow()]+y_pred count+=1

#showing the frame if key q is pressed than loop would be exited

cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'):

46

break vid.release() cv2.destroyAllWindows()

#calling function to update the data data() return

0

In[5]:

def gender(): count=0

vid=cv2.VideoCapture(0)

face_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

temp=os.walk('./gender') dirs=[] for

i,j,k in temp:

if j!=[]:

for _ in j:

dirs.append(_)

color={i:(randint(0,255),randint(0,255),randint(0,255)) for i in dirs}

color.update({'unknown':(255,255,255)})

#loading saved model clf2 =

joblib.load('./neural_gender_model.pkl') while(True):

f,frame=vid.read() if f==True:

#resize frame, change to grac scale, and get the face details in form of list

frame=cv2.resize(frame, (640,480))

im1=cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)

face=face_cascade.detectMultiScale(im1)

#processing the data of the faces for x,y,w,h in

face:

#draw rectangle, crop the image, change it to desired resolution, and the extra ct features from

imgae using hog

im_f=im1[y:y+h,x:x+w]

im_f=cv2.resize(im_f,(64,64))

f=feature.hog(im_f) f.reshape(1,-1)

#predict the prbability of each cases and chnage the result in 12 list for j in

clf2.predict_proba([f]):

y_pred=[int(i*100) for i in j]

47

g=dirs[y_pred.index(max(y_pred))]

cv2.rectangle(frame,(x,y),(x+w,y+h),color[g],2)

#predicting the current frame and its probability

if(max(y_pred)>=40):

cv2.putText(frame,str(g)+" "+str(max(y_pred)),(x,y),cv2.FONT_ITALIC,0.5

,color[g],1,cv2.LINE_AA)

else:

cv2.putText(frame,str('unknown'),(x,y),cv2.FONT_ITALIC,1,color[g],2,cv2. LINE_AA)

#showing the frame if key q is pressed than loop would be exited

cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'):

break vid.release() cv2.destroyAllWindows()

return 0

In[6]:

def emotion():

count=0

vid=cv2.VideoCapture(0)

face_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

temp=os.walk('./emotion') dirs=[] for

i,j,k in temp:

if j!=[]:

for _ in j:

dirs.append(_)

color={i:(randint(0,255),randint(0,255),randint(0,255)) for i in dirs}

color.update({'unknown':(255,255,255)})

#loading saved model clf2 =

joblib.load('./neural_emotion_model.pkl') while(True):

f,frame=vid.read() if f==True:

#resize frame, change to grac scale, and get the face details in form of list

frame=cv2.resize(frame, (640,480))

im1=cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)

face=face_cascade.detectMultiScale(im1)

48

#processing the data of the faces for x,y,w,h in

face:

#draw rectangle, crop the image, change it to desired resolution, and the extra ct features from

imgae using hog

im_f=im1[y:y+h,x:x+w]

im_f=cv2.resize(im_f,(48,48))

f=feature.hog(im_f) f.reshape(1,-1)

#predict the prbability of each cases and chnage the result in 12 list for j in

clf2.predict_proba([f]):

y_pred=[int(i*100) for i in j]

#predicting the current frame and its probability

e=dirs[y_pred.index(max(y_pred))]

cv2.rectangle(frame,(x,y),(x+w,y+h),color[e],2)

if(max(y_pred)>=40):

cv2.putText(frame,str(e)+" "+str(max(y_pred)),(x,y),cv2.FONT_ITALIC,0.5

,color[e],1,cv2.LINE_AA)

else:

cv2.putText(frame,str('unknown'),(x,y),cv2.FONT_ITALIC,1,color[e],2,cv2. LINE_AA)

#showing the frame if key q is pressed than loop would be exited

cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'):

break vid.release() cv2.destroyAllWindows()

return 0

In[7]:

def all_models():

count=0 vid=cv2.VideoCapture(0)

face_cascade=cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

#loading saved model clf2 =

joblib.load('./neural_model.pkl')

color={i:(randint(0,255),randint(0,255),randint(0,255)) for i in users}

color.update({'unknown':(255,255,255)})

#loading saved model clf2g =

joblib.load('./neural_gender_model.pkl')

49

#loading saved model clf2e =

joblib.load('./neural_emotion_model.pkl')

temp=os.walk('./emotion') dirse=[] for

i,j,k in temp:

if j!=[]:

for _ in j:

dirse.append(_)

temp=os.walk('./gender')

dirsg=[] for i,j,k in temp:

if j!=[]:

for _ in j:

dirsg.append(_)

while(True):

f,frame=vid.read() if f==True:

#resize frame, change to grac scale, and get the face details in form of list

frame=cv2.resize(frame, (640,480))

im1=cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)

face=face_cascade.detectMultiScale(im1)

#processing the data of the faces for x,y,w,h in

face:

#draw rectangle, crop the image, change it to desired resolution, and the extra ct features from

imgae using hog

im_f=im1[y:y+h,x:x+w]

im_fe=cv2.resize(im_f,(48,48))

fe=feature.hog(im_fe) fe.reshape(1,-1)

im_fg=cv2.resize(im_f,(64,64))

fg=feature.hog(im_fg) fg.reshape(1,-1)

im_f=cv2.resize(im_f,(92,112))

f=feature.hog(im_f) f.reshape(1,-1)

#predict the prbability of each cases and chnage the result in 12 list for j in

clf2.predict_proba([f]):

y_pred=[int(i*100) for i in j]

for j in clf2g.predict_proba([fg]):

50

y_predg=[int(i*100) for i in j]

for j in clf2e.predict_proba([fe]):

y_prede=[int(i*100) for i in j]

#predicting the current frame and its probability

u=users[y_pred.index(max(y_pred))] e=dirse[y_prede.index(max(y_prede))]

g=dirsg[y_predg.index(max(y_predg))] cv2.rectangle(frame,(x,y),(x+w,y+h),color[u],2) st=str(u)+"

"+str(max(y_pred))+" "+str(e)+" "+str(max(y_prede))+" "+str(g) +" "+str(max(y_predg))

if(max(y_pred)>=40):

cv2.putText(frame,str(st),(x,y),cv2.FONT_ITALIC,0.5,color[u],1,cv2.LINE_ AA)

else:

cv2.putText(frame,str('unknown'),(x,y),cv2.FONT_ITALIC,1,color[u],2,cv2. LINE_AA)

pred.loc[count]=[datetime.datetime.utcnow()]+y_pred count+=1

#showing the frame if key q is pressed than loop would be exited

cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'):

break vid.release() cv2.destroyAllWindows()

data()

return 0

In[8]:

def model():

#getting the number of folders in directory

temp=os.walk('./orl_face\\orl_face') dirs=[] for i,j,k in

temp:

if j!=[]:

for _ in j:

dirs.append(_) dirs.sort() num=len(dirs)

#reading data from folders

data,label=[],[] for i in dirs:

for j in range(1,pics+1):

51

p1='./orl_face\\orl_face\\%s\\1 (%d).png'%(i,j)

im=img.imread(p1) f=feature.hog(im) f.reshape(1,-1)

data.append(f) label.append(i) data=np.array(data)

#dividing data into train and test

train_data,train_label,test_data,test_label=[],[],[],[] for k in

range(0,num*pics):

if(k%pics>=36):

test_data.append(data[k])

test_label.append(label[k]) else:

train_data.append(data[k])

train_label.append(label[k])

#define classifier

classifier=MLPClassifier(activation='tanh',

hidden_layer_sizes=[100,80,60,40,20], verbose=True,solver='adam',

max_iter=1000,tol=0.00001) classifier.fit(train_data,train_label)

y_pred=classifier.predict(test_data)

#saving classifier joblib.dump(classifier, './neural_model.pkl',

compress=9)

#confirmation for everythong went accordingly print('trained

and saved successfully')

print(accuracy_score(test_label,y_pred)*100) return 0

In[9]:

def data():

global pred global ldata

pred=pred.set_index('time') pred for i in

users:

#setting the values as present or absent at given time for j in

pred.index:

j=str(j) if pred[i].loc[j]>=50:

 pred[i].loc[j]='present' elif pred[i].loc[j]<50:

pred[i].loc[j]='absent'

#appending the new and old data ldata=pd.concat([ldata,pred])

ldata.to_csv('data1.csv', encoding='utf-8', index='time') print("no of rows in

data.csv\t",len(ldata),"\t rows added",len(pred))

52

In[10]:

root = Tk() frame=Frame(root) frame.pack() bottomframe =

Frame(root) bottomframe.pack(side = BOTTOM) label =

Label(frame, text="new user's name") e = Entry(frame, bd

=5)

In[11]:

updb=Button(frame, text='update',command = update) modb=Button(bottomframe,

text='model',command = model) recogf=Button(bottomframe, text='facial',command

= recognition1) recogg=Button(bottomframe, text='gender',command = gender)

recoge=Button(bottomframe, text='emotion',command = emotion)

recoga=Button(bottomframe, text='all models',command = all_models)

label.pack(side = LEFT) e.pack(side = LEFT) updb.pack(side = LEFT) modb.pack(

side = LEFT) recogf.pack(side = LEFT) recogg.pack(side = LEFT) recoge.pack(

side = LEFT) recoga.pack(side = LEFT)

In[12]:

root.mainloop()

53

Chapter 7

CONCERNS AND FUTURE WORKS

7.1 The threats and concerns about facial recognition

For now, facial recognition seems amazing. It’s fast, accurate, and provide outstanding results in no time. Looks

like all companies should immediately integrate it with their security systems and start enjoying the benefits

from its use.But things are not so bright as they seem.

Here are the biggest concerns about the technology that stands on the way of implementing it in every

company.

7.1.1 Breach of privacy

With the help of this technology, the government can track down the criminals. But at the same time, it can

actually track down people like you: anytime, anywhere.

The question of ethics and privacy is the most critical one. The USA government is already known to store a

certain number of the citizens’ pictures without their consent and we don’t know about all cases yet[13].

So even though facial recognition indeed brings benefits, there is still an awful lot of work to be done before the

technology is 100% used fairly and in accordance with human rights for privacy.

7.1.2 Vulnerability in recognition

Facial recognition technology is indeed very accurate and no one can doubt that.

At the same time, a slight change in the camera angle or even the change of appearance will inevitably lead to

an error[12]. Bam — and your new haircut keeps you invisible for the cameras.

So, this is a really serious flaw. You cannot guarantee that a person will stand still and face the camera so the

results will not always be correct. And if the person changes the appearance, it would be almost impossible to

recognize them.

7.1.3 Massive data storage

Machine Learning technology requires massive data sets to “learn” in order to deliver accurate results. And

such data sets require a powerful data storage[15].

54

So if you are a small or medium-sized company you simply may not have the necessary resources to store all

the data. And that might be a problem.

 Figure 7.1: Facial Recognition can guess peoples emotions and identify potential threats for future

7.2 How to Avoid Facial Recognition

The first step to avoiding facial recognition online is to take care of where photos of you are uploaded.

Social media sites like Facebook have facial recognition algorithms which analyze photos uploaded to the site

to make suggestions for who should be tagged in them[11]. When someone tags you in a photo, they are

training the algorithm to identify your face more accurately.

7.2.1 Disabling Facial Recognition on Facebook

You should be able to disable automatic facerecognition on Facebook.

To disable the feature, go to the Facebook website or app and head to Settings. Then check the left-hand menu,

where you should find Face recognition just under Languages.

In this menu, click on Edit. From the option Do you want Facebook to be able to recognize you in photos

and videos select No from the drop-down menu, then hit Close.

This should save your settings and prevent people from tagging you[14].

7.2.2 Use FaceShield When UploadingPhotos

55

You might still want to share photos online, but not to have them visible to facial recognition software. In that

case, you can use the FaceShield tool[11].

FaceShield is a filter that you apply to your photos before you upload them to a website. It makes only minor

changes to the photo to the human eye, but the developers say that it makes faces less visible to facial

recognition software.

Figure 7.2: FaceShield Tool can make minor changes to photo not visible to human eye but not identifiable by

Facial Recognition System.

7.2.3 How to Avoid Facial Recognition in Person

Avoiding facial recognition online is only half the battle, however. You also need to be aware of all the places

where facial recognition is happening in person[10].

Facial recognition software is commonly used for security at large events. Law enforcement use software to

monitor protests and demonstrations. It’s also often found in airports and other high-security locations.

The simplest way to avoid facial recognition in person is to obscure your face with a scarf or balaclava.

However, this may be against the law in some places and also has the downside of being very conspicuous.

There are few better ways to draw attention to yourself in a crowd than covering your face.

56

7.2.4 Use Hair and Makeup to Fool Facial Recognition

 Figure 7.3: bold hair and makeup forms can confuse facial detection software.

An ingenious way to avoid facial recognition is to use a technique like CV Dazzle. This approach uses bold hair

and makeup forms which confuse facial detection software and act as camouflage for your face[9].

The looks use high contrast makeup, with dark colors on light skin and light colors on dark skin. The hairstyles

often partially or completely obscure the nose bridge region between the eyes, which is key to facial

identification. The looks are also asymmetrical, as facial recognition software are used to symmetry between the

sides of the face.

7.2.5 Use Clothing to Distract Facial Recognition

57

 Figure 7.4: False faces can confuse facial detection software.

Another option is to distract software by overwhelming it with images that look like faces, so it can’t see your

face. This is the approach taken by the HyperFace project.

Hyperface uses prints for clothes and other textiles which create “false faces”. Software sees these prints are

struggles to differentiate your real face from the simulated faces, making it harder to track you[8].

These prints aren’t publicly available yet, but in the future, they could be a tool against facial recognition.

7.3 What the Future Holds?

The future of facial recognition technology is bright. Forecasters opine that this technology is expected to grow

at a formidable rate and will generate huge revenues in the coming years. Security and surveillances are the

major segments which will be deeply influenced. Other areas that are now welcoming it with open arms are

private industries, public buildings, and schools. It is estimated that it will also be adopted by retailers and

banking systems in coming years to keep fraud in debit/credit card purchases and payment especially the ones

that are online. This technology would fill in the loopholes of largely prevalent inadequate password system. In

the long run, robots using facial recognition technology may also come to foray. They can be helpful in

completing the tasks that are impractical or difficult for human beings to complete.

58

REFERENCES

[1] Gunturk, B., Batur, A., Altunbasak, Y., III, M.H., Mersereau, R.: Eigenface-domain super-resolution for

face recognition. IEEE Transactions on Image Processing 12(5), 597– 606 (2003)

[2] Lemieux, A., Parizeau, M.: Experiments on eigenfaces robustness. In: Proc. ICPR- 2002, vol. 1, pp. 421–

424 (August 2002)

[3] Wang, X., Tang, X.: Face Hallucination and Recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003.

LNCS, vol. 2688, pp. 486–494. Springer, Heidelberg (2003)

[4] Jaynes, C., Kale, A., Sanders, N., Grossmann, E.: The Terrascope dataset: scripted multi-camera indoor

video surveillance with ground-truth. In: Proc. Visual Surveillance and Performance Evaluation of Tracking

and Surveillance, pp. 309–316 (October 2005)

[5]Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

[6] Wiskott, L., Fellous, J., Krüger, N., Malsburg, C.: Face recognition by elastic bunch graph matching. In:

Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 456–463. Springer, Heidelberg

(1997)

[7] Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTS: The Extended M2VTS Database. In:

Proc. AVBPA-1999, pp. 72–76 (1999)

[8] Park, S., Park, M., Kang, M.: Super-resolution image reconstruction: a technical overview. IEEE Signal

Processing Magazine 25(9), 21–36 (2003)

[9] Tsai, R., Huang, T.: Multiframe image restoration and registration. Advances in Computer Vision and image

Processing 1, 317–339 (1984)

[10] Baker, S., Kanade, T.: Limits on Super-Resolution and How to Break Them. 24(9), 1167–1183 (2002)

[11] Baker, S., Kanade, T.: Super Resolution Optical Flow. Technical Report CMU-RI- TR-99-36, The

Robotics Institute, Carnegie Mellon University (October 1999)

[12] Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Investigation into Optical Flow Super-Resolution for

Surveillance Applications. In: Proc. APRS Workshop on Digital Image Computing 2005, pp. 73–78 (February

2005)

[13] Black, M., Anandan, P.: A framework for the robust estimation of optical flow. In:

Proc. ICCV-1993, pp. 231–236 (May 1993)

[14] Schultz, R., Stevenson, R.: Extraction of High-Resolution Frames from Video Sequences. IEEE

Transactions on Image Processing 5(6), 996–1011 (1996)

[15] Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features.

In: CVPR (2001)

