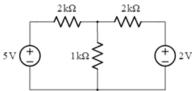


ADMISSION NUMBER

School of Basic Sciences

Bachelor of Science Honours in Physics Semester End Examination - Jun 2024

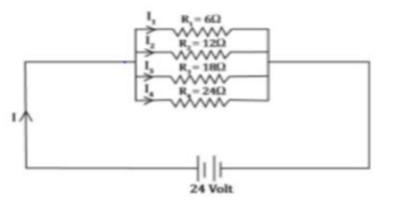

Duration : 180 Minutes Max Marks : 100

Sem II - C1UD202B - Electric Circuits and Networks

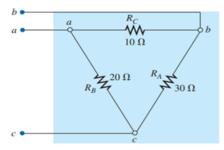
<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	What is the condition for maximum power transfer in DC and AC circuits?	K1(3)
2)	Compare shunt and series field coil construction.	K2(4)
3)	Explain the Hysteresis loss in transformer	K2(6)

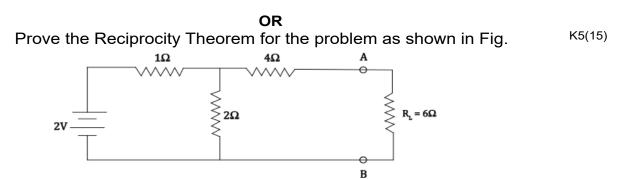
4) Express the mesh current equation in the circuit shown in figure and determine the K3(6) currents.


⁵⁾ Find the equivalent delta circuit.

4.53 ohm 1.23 ohm


- 6) The four resistors 10 Ohms,15 Ohms,20 Ohms and 25 Ohms are K3(9) connected in parallel with 24 Voltage supply. Calculate
 - (i) Current through the branch of network
 - (ii) Supply Current

K3(6)


(iii) Total resistance of the circuit.

- 7) Draw and explain the construction and principle of operation of an K3(9) AC generator
- 8) Define an inductor ? Formulate the voltage, current, power and ^{K4(8)} energy formulae for inductor.
- Discuss the following parameters in transformer: (a) tarnsformer
 K4(12) ratio (b) coefficient of coupling (c) mutual inductance
- **10)** Convert the given delta network into star networkdelt to star ^{K5(10)} conversion

¹¹⁾ Why do we need tuned circuit? Using the circuit digram explain the ^{K5(15)} working of a single tuned amplifier.

¹²⁾ A three phase balanced delta-connected load of $4+j8\Omega$ is ^{K6(12)} connected across a 400V, 3Ø balanced supply. Determine the phase currents and line currents (Phase sequence in RYB)

K6(12)