
 

WEB MUSIC PLAYER 

 

A Report for the ETE of Project 2 

 

                                                       Submitted by  

                                          PIYUSH CHAUHAN  

(1613101479/16SCSE101080) 

 

                              in partial fulfillment for the award of the degree  

                                                                 of  

BACHELOR OF TECHNOLOGY 

 
                                                                 IN  
 

 

                 COMPUTER SCIENCE AND ENGINEERING WITH 

SPECIALIZATION OF CLOUD COMPUTING AND VIRTUALIZATION  

      

         SCHOOL OF COMPUTING SCIENCE AND ENGINEERING, 

 

                                              Under the Supervision of  

                  Mr. Vivek Anand M., Research Scholar (Ph.D), Asst., 

                                                 Professor   

                                               APRIL / MAY- 2020    
           

 

 



 

        SCHOOL OF COMPUTING AND SCIENCE AND  

                                     ENGINEERING 
  

BONAFIDE CERTIFICATE 

 

Certified that this project report “WEB MUSIC PLAYER” is the bonafide work 

of “PIYUSH CHAUHAN(1613101479)” who carried out the project work under 

my supervision. 

 

 

 

 

 

 

 

 

 

SIGNATURE OF HEAD  

Dr. Raju Shanmugam 

Ph.D. (CS),M.E 

Professor & Dean, School of Computing 

Science &  

Engineering   

 

                                                                                                                                                                                                          

    

 

 

 

 

 

SIGNATURE OF SUPERVISOR  

Mr. Vivek Anand M. ,                                                                                             

Research Scholar(Ph.D.), 

Professor, 

School of Computing Science &    

Engineering 

 



1.  

                                                                                                  

                                                                                                 

 

 

 

 

                                                        TABLE OF CONTENTS  

CHAPTER NO.                                          TITLE                                                        

1. ABSTRACT 

2. INTRODUCTION 

2.1. FEATURES 

2.2. MERITS 

2.3. DEMERITS 

3. EXISTING SYSTEM 

3.1. MOTIVATION 

3.2. APPROACH 

4. PROPOSED MODEL 

5. IMPLEMENTATION 

5.1. WORK 

5.2. DESIGN 

5.3. FUNCTION 

6. RESULT 

7. CONCLUSION 

8. REFRENCES 

 

 



ABSTRACT 

The continuous growing of people’s music library requires more advanced ways of computing 

playlists through algorithms that match tracks to the user’s preferences. Several approaches 

have been made to enhance the user’s listening experience; while most of them rely on the 

music content provided by the user, this project presents an online application that sources the 

audio content from publicly available resources (YouTube). A playlist generation algorithm is 

developed that uses only one seed track to compute a playlist of arbitrary length. For sourcing 

the audio content, YouTube’s track coverage is analyzed and statistics show that, in a real-life 

usage scenario, almost 80% of the tracks are available while the rest have rather lower 

popularity. The resulting application is a fully functional but feature limited online music player 

that can also serve as a framework for future playlist generating algorithms or other content 

sources.Media usage is changing rapidly these days. This process has been ignited by several 

technological advances, in particular, the availability of broadband internet, the World Wide 

Web, affordable mass storage, and high-quality media formats, such as mp3. Many music lovers 

have now accumulated collections of music that have reached sizes that make it hard to 

maintain an overview of the data by just browsing hierarchies of folders and searching by song 

title or album. Search methods based on song similarity offer an alternative, allowing users to 

abstract from manually assigned metadata, such as, frequently imprecise or incorrect, genre 

information. In a context where music collections grow and change rapidly, the similarity-based 

organization has also the advantage of providing easy navigation and retrieval of new items, 

even without knowing songs by name. This opens possibilities, such as sophisticated 

recommendations, context-aware retrieval, and discovery of new genres and tendencies 



 

 

INTRODUCTION  

Music  has  always  been  a  means  of  entertaining  people  even  from  the  earliest  

ages  of  the  civilization.  Historically  it  was  produced  by  musicians  and  only  

available  during  life  concerts.  The  technological  evolution  made  it  possible  to  

save  the music  on  vinyl  plates, later electromagnetic  charged  stripes,  CDs  until  

the  technology  brought  us  to  saving  tracks  digitally. When  dealing with a  huge  

collection of  tracks, people encounter management problems they did not have  

before.So they have to develop new ways of using the music collection for their  

entertainment. Playlists are a good approach for saving successions of tracks that  one 

likes.  The  most  dominant  problem  of  existing  playlist  generation  mechanisms is, 

however,  their  lack  of  flexibility:  new  tracks  are  not  

automatically added, they don’t adapt to the user’s current mood etc.  A  new  

approach  in  dynamically  organizing  tracks  into  playlists  is  on  its  way:  companies  

like  last.fm  already  suggest  an  algorithm  of  mapping  songs  one  to  

each other based on  their “similarities”; but how  to compute  these similarities?  

One way, that did not prove to be very productive, is to analyze the audio content  

of  the  track – its audio  frequencies. This way,  tracks are split in categories like  

“Heavy Metal” and  “Blues”, but people do not like all  tracks of a certain gender and  

these genders might  be inaccurate. Another way, which is given more and  more  



attention  by  researchers  and  companies  worldwide,  is  computing  

similarities between tracks based on user input. As an example: if two users add  the  

same  two  tracks  to  their  playlists,  one  can  deduce  that  these  tracks  are  similar  

and  so,  also  other people  that  pick  one  of  them  are  likely  to  enjoy  the  

other one as well.  

The music player allows a user to play various media file formats. It can be used to play 

audio as well as video files. The music player is a software project supporting all known 

media files and has the ability to play them with ease. 

 

The project features are as follows: 

• User may attach Folder to Play add various media files within it. 

• User may see track lists and play desired ones accordingly. 

• Supports various music formats including .mp3, WMA, WAV etc. 

• Interactive GUI. 

• Consists of Pause/Play/Stop Features 

• Consists of a Volume controller 

• The system also consists of a sound Equalizer 

• It Displays the media playing time with Track Bar so that user may drag the media play 

as needed. 



Features: 

• Unlimited song playlist list wise 

• Easy customization via HTML / CSS files 

• Supports multiple instances into a page 

• Previous/Next, Play/Pause, Stop buttons 

• Load new playlist 

• Set volume 

Merits: 

• Enhanced audience experience. 

• Opportunity to use new technology and special effects. 

• easier to explain or put things in perspective 

• helps keep mistakes at a minimum 

Demerits: 

• requires a well-designed presentation or material 

• participants might pay more attention to the graphics than the audio 

• Expense of equipment needed and expertise needed to set up and operate. 

• Preparation and planning time needed. 



 

Existing System 

This  chapter  debates  the  necessity  of  a  new  solution  to  make  the  world  

of intelligent track comparison even more accessible to the end user,followed byan app

roach sketch.  

            Motivation  

Several  solutions  already  use  intelligent  playlists  embedded  in  music  players  

installed  on  computers.  There  are  also  online  solutions,  the  most  popular  

of which islast.fm, which acts as a personalized radio station that plays preferre

dmusic. On the other hand it does not allow playback of a certain track. There 

are  also  other  solutions,  like  the  genius  function  of  iTunes  or  the  Music  

Explorer;  both  use  the  user’s  music  collection  to  generate  playlists.  The  

biggest  disadvantage  of  the  latter  solution  is  that  

the user can use only tracks that he/she already has on his/her PC to generate

 playlists. Of course this limits the  power or the algorithm very much.  There  

are  already  services  that  provide  the  music  content  (like  last.fm  or  

YouTube to name a few) so it’s a natural conclusion to try to use these service

s in  connection with the playlist‐generating algorithm.  In  order  to  understand  

the  utility  of  such  an  application,  just  imagine  the  following  scenario:  one  

enjoys  listening  to  music  while  working.  It  is  not  



common to store music on the company’s computer so one rather has a person

al mp3 player with himself during office time. If one takes enough time to prep

are ones playlists in order to fit ones current mood, it is a pretty decent soluti

on. But  what  if  new  tracks  appear  that  one  might  like?  One first  has  to  

do  serious  research in  order  to  find  them and  then go  through buying  

them, downloading  them  to  his/her  mp3  player,  updating  the  playlists  it  

already  sounds  very  difficult,  right?  Now  the  suggested  scenario  is  the  

following: one opens a web site, types in a track that reflects ones current moo

d and hits “play”. That’s it! The player chooses tracks that one likes, also plays 

new tracks that one did not hear before, and can go like this for hours and ho

urs without repetition. One can go on with one’s work and in order to stop the

 music, one only has to hit stop or close the browser. The simplicity of the sol

ution speaks for itself. The goal of this thesis is to analyze and implement an a

pproach of building such  a  web‐based  music  player.  The  questions  it  has  

to  find  answers  for  are:  How  should  the  user  interaction  be  designed  to  

maximize  the  user  satisfaction?  Where  to  source  the  audi  data  from,  

while ensuring a maximum coverage? And finally, how to promote the applicatio

n in order to attract as many users as possible? The different implementation p

ossibilities are evaluated and the best solution is  implemented.  The  logic  

behind  the  web‐based  music  player  computes a  5 sequence  of  tracks  based  

on  their  similarity. At  the  same  time, user behavioral  data  is  gathered  that  



helps  further  releases  to  be  even  more  user  friendly.  Another important  

aspect  of  the  application is its  extensibility. Modularity  and  code  reusing  

are  very  important  parameters  of  this  application,  as  it  acts  as  a  

version 1.0 for future releases. These future releases will be able to interact wit

h the user for finding the best track video on YouTube or to determine the mu

sic  preferences of users and even adapt the space to the new usage statistics. 

  

Approach  

The analysis of the currently available tools to accomplish the task is one of the

  most  important  steps  because  the  ground  concepts  of  the  application  

should  never change, regardless of its future complexity.  The  several  possible  

implementations  of  the  web  service  together  with  the  

balancing of computing tasks between server and client are the first parameters

 that have to be defined for a solid base. Also the programming language plays

 a  crucial  part  in  the  development  process,  as  it is  shown  later.  The  

amount  of callbacks  to  the  database  in favor  of  less  memory  usage  is  

also  an  important  aspect  that  is  difficult  to  estimate  from  the  start.  In  

order  to  allow  a  high  flexibility  while  still  maintaining  a  small  dataflow,  

the implementation of the logic is mainly on the server. The UI responsibility is 

fully retained by the client side as well as servicing UI requests and only notify 



the server of such activity. In order to achieve the high goals that were set, th

e structure of the applicationis  important  to  be  highly  modularized  to  allow  

interchanging  the  modules  with  better,  more  complex  implementations.  It  

is important to determine which components are possible and also easy to mod

ularize, without introducing too  much  communication  overhead  in  the  

interfaces. It turns out that the music content related jobs can easily be modula

rized, as well as the DB relatedjobs and  the  playlist  computing  tasks.  The  

core  of  the  application  only  needs  to  handle  these modules  and  

the logging  task.  Also  the  communication  with  the  client is  modularized,  

making it particularly easy to implement new clients running on the same servic

e or new services to servethe same client. .  

 

Proposed Model 

• The application is a simple HTML file that you open in your browser. 

•  You only need to download our zip file from the button near the beginning of the 

article, and unzip it somewhere on your computer.  

• Unfortunately, due to security restrictions in modern browsers it won't work if you just 

double click the index.html file.  



• You will have to open it through a locally running web server like Apache or Nginx and 

access it through local host. Or you can just use our demo, nothing is uploaded so your 

music is safe. 

• The app listens for JavaScript drag and drop events. 

•  When you drop a mp3 file, it extracts information like song and artist name, if they are 

available, from the file's ID3 tags. 

•  Each song is placed in an array, which represents our playlist.  

• The application then initializes the Wavesurfer.js audio player, which generates the 

awesome wave visualization for every song and plays it. 

• From there on we can do everything you would expect from a native audio player - play 

next/previous, pause, pick songs and so on. 

•  Our playlist section also gives users the option to remove songs from the player or 

search for a particular track, album or artist. 

 

 

Implementation/Work/Design in Progress 

• The pop up effect for the playlist and other highlights and small animations were done 

via CSS by manipulating classes with jQuery. 

https://en.wikipedia.org/wiki/ID3
https://github.com/katspaugh/wavesurfer.js


• All of the icons we needed for this music player were already available in: 

 

 

 

JavaScript Library for HTML Audio – Sound.js 

• A JavaScript library that provides a simple API, and powerful features to make working 

with audio a breeze. 

Audio let 

• Audio let is a JavaScript library for real-time audio synthesis and composition from 

within the browser. 

Open Source Audio Library – Wedge.JS 



• Wedge.js is a small audio library that provides HTML5 apps with low latency audio if 

available, and falls back to Buzz! If not. 

ION.Sound– jQueryPlugin for Playing Sounds on Events 

• A free jQuery-plugin for playing sounds on events. 

The HTML Audio Compatibility Layer – Audio5js 

• Audio5js is a Javascript library that provides a seamless compatibility layer to the HTML5 

Audio playback API, with multiple codec support and a Flash-based MP3 playback 

fallback for older or unsupported browsers. 

• The motivation for creating Audio5js is to provide a light-weight, library-agnostic, 

Javascript-only interface for audio playback in the browser. 

FUNCTIONS 

             



             

 

             



 

Follow these steps to add sound to a Web page: 

• Open your Web page in Notepad. 

• Let your Web page’s user know they can stop sound from playing in your Web page by 

clicking the Stop button in their browsers. 

• Enter the <embed> tag and a link to the sound file you want to use. 

• An example looks like this: <C:\xampp\htdocs\play\collection”>, “D:\BOLLYWOOD” is a 

link to the sound file. 



• The simplest way to be sure you have the link right is to place the sound file in the same 

folder as the Web page; that way the link is simply the filename. 

• Click File→Save and reopen the file. 

• The sound should play. Test the link right away to be sure it will work. 

• If the sound doesn’t play, experiment to make sure you have the path right and that 

sound plays on your machine. 

• To make sure you have the link right, put the file in the same folder as your Web page 

and simplify the link. To make sure that sound playback works on your machine, 

navigate to the file in Windows Explorer and click it. It should play. If not, identify and fix 

the files affecting sound playback on your machine. 

 

 

Result and Discussion 

The result presented in this thesis project has utilized HTML5 technology to support multiple 

hardware platforms. Even though it is less neither stable nor compatible, as more and more 

major web browsers start to support or improve the current support of the Web Audio API 

audio engine as well as animation, the future of the development capability is brighter. 

 

Conclusion 

  The Web-Based Music Player is used to automate and give a better music player experience 

for the   end user. The application solves the basic needs of music listeners without troubling 



them as existing applications do: it uses technology to increase the interaction of the system 

with the user in many ways. It eases the work of the end-user by capturing the image using a 

camera, determining their emotion, and suggesting a customized play-list through a more 

advanced and interactive system. The user will also be notified of songs that are not being 

played, to help them free up storage space . 

 

 
References 
 

• https://www.dummies.com/web-design-development/site-development/how-to-add-

sound-to-your-web-site-using-html 

• https://nevonprojects.com/media-player-project 

• All music, 2017. [Online; accessed 11-July-         2017]. 
 

• Css - style sheet, 2017. [Online; accessed   11-July-2017] 
 

• Java script, 2017. [Online; accessed 11-July-2017] 
 

• Nodejs, 2017. [Online; accessed 11-July-2017]. 

 

• https://www.dummies.com/web-design-development/site-development/how-to-add-

sound-to-your-web-site-using-html 

• https://www.egrappler.com/wonderful-javascript-audio-libraries-for-developers 

• https://nevonprojects.com/media-player-project 

• https://pub.tik.ee.ethz.ch/students/2009-FS/SA-2009-10 

Bossard,  L.  (2008). Pancho   The  Mobile  Music  Explorer.  Zürich:  

DCG.TIK.EE.ETZH.CH 

  



 

 

 
 

 

  

 


