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ABSTRACT 

 Stock analysis is the technique utilized by a merchant or financial specialist to look at and assess the 

securities exchange. It is then used to settle on educated choices about purchasing and selling shares. 

Stock analysis can likewise be alluded to as market investigation, or value analysis. Stock analysis can 

be utilized to increase knowledge of the economy overall, the securities exchange, a particular division 

or an individual stock.  

 Stock analysis depends on the possibility that by contemplating market information from over a wide 

span of time, brokers can make a technique for picking which stocks to concentrate on, just as an 

approach to distinguish sections and leave focuses for their exchanges.  

Importance of Stock Analysis 

 It is extremely important to carry out a comprehensive research work before making an investment. It 

is only after in-depth research work, you can evaluate or predict the future performance of a share, 

specific sector or the stock market. Even if you are going through the stock market tips, then also it is 

imperative to perform a thorough research just to have a great peace of mind that the investment you 

are planning to undertake will yield profitable returns or not.  

 When you are buying shares, then you are purchasing some portions of the business with an 

expectation to make profits if there is an increase in the business value. Before buying a cloth or phone, 

you may be carrying out research to analyze their quality and performance. Similarly, when you are 

taking a stock market investment decision, then you must ensure that your hard-earned money is 

invested in the right place and does not go wasted. 

Types of stock analysis 

 Although stock analysis can take different forms, there are two main types that traders tend to favour. 

These are:  

Technical analysis, which takes a gander at the recorded value outlines of an advantage, and studies 

past market designs so as to anticipate future developments. Merchants will utilize key devices, similar 

to help and obstruction lines, to find out market patterns  

Fundamental analysis, which takes a gander at information from the organization and from its 

macroeconomic condition to evaluate potential benefits from exchanges. It centers around information 

sources that are accessible to people in general, for example, an organization's monetary record and 

income streams  

The two assortments of stock analysis have the equivalent planned result: to settle on the right 

purchasing and selling choices and pick the ideal occasions to put exchanges.  

A few dealers will commit the entirety of their opportunity to specialized examination, while different 

merchants may adhere to a simply crucial investigation of business sectors. Nonetheless, it is entirely 

expected to utilize a blend of the two. 

 

 

https://www.ig.com/en/glossary-trading-terms/technical-analysis-definition
https://www.ig.com/en/glossary-trading-terms/fundamental-analysis-definition
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INTRODUCTION 

 

What is the Stock Market? 

 

The stock market refers to the collection of markets and exchanges where regular activities of buying, 

selling, and issuance of shares of publicly-held companies take place. Such financial activities are 

conducted through institutionalized formal exchanges or over-the-counter (OTC) marketplaces which 

operate under a defined set of regulations. There can be multiple stock trading venues in a country or 

a region which allow transactions in stocks and other forms of securities. 

While both terms - stock market and stock exchange - are used interchangeably, the latter term is 

generally a subset of the former. If one says that she trades in the stock market, it means that she buys 

and sells shares/equities on one (or more) of the stock exchange(s) that are part of the overall stock 

market. The leading stock exchanges in the U.S. include the New York Stock Exchange (NYSE), 

Nasdaq, and the Chicago Board Options Exchange (CBOE). These leading national exchanges, along 

with several other exchanges operating in the country, form the stock market of the U.S. 

Though it is called a stock market or equity market and is primarily known for trading stocks/equities, 

other financial securities - like exchange traded funds (ETF), corporate bonds and derivatives based on 

stocks, commodities, currencies, and bonds - are also traded in the stock markets. 

Understanding the Stock Market 

 

While today it is possible to purchase almost everything online, there is usually a designated market 

for every commodity. For instance, people drive to city outskirts and farmlands to purchase Christmas 

trees, visit the local timber market to buy wood and other necessary material for home furniture and 

renovations, and go to stores like Walmart for their regular grocery supplies. 

Such dedicated markets serve as a platform where numerous buyers and sellers meet, interact and 

transact. Since the number of market participants is huge, one is assured of a fair price. For example, 

if there is only one seller of Christmas trees in the entire city, he will have the liberty to charge any 

price he pleases as the buyers won’t have anywhere else to go. If the number of tree sellers is large in 

a common marketplace, they will have to compete against each other to attract buyers. The buyers will 

be spoiled for choice with low- or optimum-pricing making it a fair market with price transparency. 

Even while shopping online, buyers compare prices offered by different sellers on the same shopping 

portal or across different portals to get the best deals, forcing the various online sellers to offer the best 

price. 

A stock market is a similar designated market for trading various kinds of securities in a controlled, 

secure and managed environment. Since the stock market brings together hundreds of thousands of 

market participants who wish to buy and sell shares, it ensures fair pricing practices and transparency 

in transactions. While earlier stock markets used to issue and deal in paper-based physical share 

certificates, the modern day computer-aided stock markets operate electronically. 

 

How the Stock Market Works? 

 

In a nutshell, stock markets provide a secure and regulated environment where market participants can 

transact in shares and other eligible financial instruments with confidence with zero- to low-operational 

https://www.investopedia.com/terms/o/otc.asp
https://www.investopedia.com/terms/n/nyse.asp
https://www.investopedia.com/terms/n/nasdaq.asp
https://www.investopedia.com/terms/c/cboe.asp
https://www.investopedia.com/terms/e/etf.asp
https://www.investopedia.com/terms/c/corporatebond.asp
https://www.investopedia.com/ask/answers/021615/whats-difference-between-capital-market-and-stock-market.asp
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risk. Operating under the defined rules as stated by the regulator, the stock markets act as primary 

markets and as secondary markets. 

As a primary market, the stock market allows companies to issue and sell their shares to the common 

public for the first time through the process of initial public offerings (IPO). This activity helps 

companies raise necessary capital from investors. It essentially means that a company divides itself 

into a number of shares (say, 20 million shares) and sells a part of those shares (say, 5 million shares) 

to the common public at a price (say, $10 per share). 

To facilitate this process, a company needs a marketplace where these shares can be sold. This 

marketplace is provided by the stock market. If everything goes as per the plans, the company will 

successfully sell the 5 million shares at a price of $10 per share and collect $50 million worth of funds. 

Investors will get the company shares which they can expect to hold for their preferred duration, in 

anticipation of rising share price and any potential income in the form of dividend payments. The stock 

exchange acts as a facilitator for this capital raising process and receives a fee for its services from the 

company and its financial partners. 

Following the first-time share issuance IPO exercise called the listing process, the stock exchange also 

serves as the trading platform that facilitates regular buying and selling of the listed shares. This 

constitutes the secondary market. The stock exchange earns a fee for every trade that occurs on its 

platform during the secondary market activity. 

The stock exchange shoulders the responsibility of ensuring price transparency, liquidity, price 

discovery and fair dealings in such trading activities. As almost all major stock markets across the 

globe now operate electronically, the exchange maintains trading systems that efficiently manage the 

buy and sell orders from various market participants. They perform the price matching function to 

facilitate trade execution at a price fair to both buyers and sellers. 

A listed company may also offer new, additional shares through other offerings at a later stage, like 

through rights issue or through follow-on offers. They may even buy back or delist their shares. The 

stock exchange facilitates such transactions. 

The stock exchange often creates and maintains various market-level and sector-specific indicators, 

like the S&P 500 index or Nasdaq 100 index, which provide a measure to track the movement of the 

overall market. Other methods include the Stochastic Oscillator and Stochastic Momentum Index. 

The stock exchanges also maintain all company news, announcements, and financial reporting, which 

can be usually accessed on their official websites. A stock exchange also supports various other 

corporate-level, transaction-related activities. For instance, profitable companies may reward investors 

by paying dividends which usually comes from a part of the company’s earnings. The exchange 

maintains all such information and may support its processing to a certain extent. 

Functions of a Stock Market 

 

A stock market primarily serves the following functions: 

Fair Dealing in Securities Transactions: Depending on the standard rules of demand and supply, the 

stock exchange needs to ensure that all interested market participants have instant access to data for all 

buy and sell orders thereby helping in the fair and transparent pricing of securities. Additionally, it 

should also perform efficient matching of appropriate buy and sell orders. 

https://www.investopedia.com/terms/p/primarymarket.asp
https://www.investopedia.com/terms/p/primarymarket.asp
https://www.investopedia.com/terms/s/secondarymarket.asp
https://www.investopedia.com/terms/i/ipo.asp
https://www.investopedia.com/terms/d/dividend.asp
https://www.investopedia.com/terms/p/pricetransparency.asp
https://www.investopedia.com/terms/l/liquidity.asp
https://www.investopedia.com/terms/p/pricediscovery.asp
https://www.investopedia.com/terms/p/pricediscovery.asp
https://www.investopedia.com/terms/r/rightsoffering.asp
https://www.investopedia.com/terms/f/followonoffering.asp
https://www.investopedia.com/terms/b/buyback.asp
https://www.investopedia.com/terms/d/delisting.asp
https://www.investopedia.com/terms/s/sp500.asp
https://www.investopedia.com/terms/n/nasdaq100.asp
https://www.investopedia.com/ask/answers/021315/what-difference-between-stochastic-oscillator-stochastic-momentum-index.asp
https://www.investopedia.com/terms/l/law-of-supply-demand.asp
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For example, there may be three buyers who have placed orders for buying Microsoft shares at $100, 

$105 and $110, and there may be four sellers who are willing to sell Microsoft shares at $110, $112, 

$115 and $120. The exchange (through their computer operated automated trading systems) needs to 

ensure that the best buy and best sell are matched, which in this case is at $110 for the given quantity 

of trade. 

Efficient Price Discovery: Stock markets need to support an efficient mechanism for price discovery, 

which refers to the act of deciding the proper price of a security and is usually performed by assessing 

market supply and demand and other factors associated with the transactions. 

Say, a U.S.-based software company is trading at a price of $100 and has a market capitalization of $5 

billion. A news item comes in that the EU regulator has imposed a fine of $2 billion on the company 

which essentially means that 40 percent of the company’s value may be wiped out. While the stock 

market may have imposed a trading price range of $90 and $110 on the company’s share price, it should 

efficiently change the permissible trading price limit to accommodate for the possible changes in the 

share price, else shareholders may struggle to trade at a fair price. 

Liquidity Maintenance: While getting the number of buyers and sellers for a particular financial 

security are out of control for the stock market, it needs to ensure that whosoever is qualified and 

willing to trade gets instant access to place orders which should get executed at the fair price. 

Security and Validity of Transactions: While more participants are important for efficient working of 

a market, the same market needs to ensure that all participants are verified and remain compliant with 

the necessary rules and regulations, leaving no room for default by any of the parties. Additionally, it 

should ensure that all associated entities operating in the market must also adhere to the rules, and work 

within the legal framework given by the regulator. 

Support All Eligible Types of Participants: A marketplace is made by a variety of participants, which 

include market makers, investors, traders, speculators, and hedgers. All these participants operate in 

the stock market with different roles and functions. For instance, an investor may buy stocks and hold 

them for long term spanning many years, while a trader may enter and exit a position within seconds. 

A market maker provides necessary liquidity in the market, while a hedger may like to trade in 

derivatives for mitigating the risk involved in investments. The stock market should ensure that all 

such participants are able to operate seamlessly fulfilling their desired roles to ensure the market 

continues to operate efficiently. 

Investor Protection: Along with wealthy and institutional investors, a very large number of small 

investors are also served by the stock market for their small amount of investments. These investors 

may have limited financial knowledge, and may not be fully aware of the pitfalls of investing in stocks 

and other listed instruments. The stock exchange must implement necessary measures to offer the 

necessary protection to such investors to shield them from financial loss and ensure customer trust. 

For instance, a stock exchange may categorize stocks in various segments depending on their risk 

profiles and allow limited or no trading by common investors in high-risk stocks. Exchanges often 

impose restrictions to prevent individuals with limited income and knowledge from getting into risky 

bets of derivatives. 

Balanced Regulation: Listed companies are largely regulated and their dealings are monitored by 

market regulators, like the Securities and Exchange Commission (SEC) of the U.S. Additionally, 

exchanges also mandate certain requirements – like, timely filing of quarterly financial reports and 

instant reporting of any relevant developments - to ensure all market participants become aware of 

https://www.investopedia.com/terms/m/marketmaker.asp
https://www.investopedia.com/terms/s/speculator.asp
https://www.investopedia.com/terms/s/sec.asp
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corporate happenings. Failure to adhere to the regulations can lead to suspension of trading by the 

exchanges and other disciplinary measures. 

 

Regulating the Stock Market 

A local financial regulator or competent monetary authority or institute is assigned the task of 

regulating the stock market of a country. The Securities and Exchange Commission (SEC) is the 

regulatory body charged with overseeing the U.S. stock markets. The SEC is a federal agency that 

works independently of the government and political pressure. The mission of the SEC is stated as: "to 

protect investors, maintain fair, orderly, and efficient markets, and facilitate capital formation." 

Stock Market Participants 

Along with long-term investors and short term traders, there are many different types of players 

associated with the stock market. Each has a unique role, but many of the roles are intertwined and 

depend on each other to make the market run effectively. 

● Stockbrokers, also known as registered representatives in the U.S., are the licensed 

professionals who buy and sell securities on behalf of investors. The brokers act as 

intermediaries between the stock exchanges and the investors by buying and selling stocks on 

the investors' behalf. An account with a retail broker is needed to gain access to the markets. 
● Portfolio managers are professionals who invest portfolios, or collections of securities, for 

clients. These managers get recommendations from analysts and make the buy or sell decisions 

for the portfolio. Mutual fund companies, hedge funds, and pension plans use portfolio 

managers to make decisions and set the investment strategies for the money they hold. 

● Investment bankers represent companies in various capacities, such as private companies that 

want to go public via an IPO or companies that are involved in pending mergers and 

acquisitions. They take care of the listing process in compliance with the regulatory 

requirements of the stock market. 

● Custodian and depot service providers, which are institutions holding customers' securities for 

safekeeping so as to minimize the risk of their theft or loss, also operate in sync with the 

exchange to transfer shares to/from the respective accounts of transacting parties based on 

trading on the stock market. 
● Market maker: A market maker is a broker-dealer who facilitates the trading of shares by 

posting bid and ask prices along with maintaining an inventory of shares. He ensures sufficient 

liquidity in the market for a particular (set of) share(s), and profits from the difference between 

the bid and the ask price he quotes. 

How Stock Exchanges Make Money? 

 

Stock exchanges operate as for-profit institutes and charge a fee for their services. The primary source 

of income for these stock exchanges are the revenues from the transaction fees that are charged for 

each trade carried out on its platform. Additionally, exchanges earn revenue from the listing fee charged 

to companies during the IPO process and other follow-on offerings. 

The exchange also earns from selling market data generated on its platform - like real-time data, 

historical data, summary data, and reference data – which is vital for equity research and other uses. 

Many exchanges will also sell technology products, like a trading terminal and dedicated network 

connection to the exchange, to the interested parties for a suitable fee. 

The exchange may offer privileged services like high-frequency trading to larger clients like mutual 

funds and asset management companies (AMC), and earn money accordingly. There are provisions for 

https://www.investopedia.com/terms/s/stockbroker.asp
https://www.investopedia.com/terms/p/portfoliomanager.asp
https://www.investopedia.com/terms/i/investmentbanker.asp
https://www.investopedia.com/terms/c/custodian.asp
https://www.investopedia.com/terms/b/bid.asp
https://www.investopedia.com/terms/a/ask.asp
https://www.investopedia.com/terms/r/real_time.asp
https://www.investopedia.com/terms/h/high-frequency-trading.asp
https://www.investopedia.com/terms/a/asset_management_company.asp
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regulatory fee and registration fee for different profiles of market participants, like the market maker 

and broker, which form other sources of income for the stock exchanges. 

The exchange also makes profits by licensing their indexes (and their methodology) which are 

commonly used as a benchmark for launching various products like mutual funds and ETFs by AMCs. 

Many exchanges also provide courses and certification on various financial topics to industry 

participants and earn revenues from such subscriptions. 

Competition for Stock Markets 

 

While individual stock exchanges compete against each other to get maximum transaction volume, 

they are facing threat on two fronts. 

Dark Pools: Dark pools, which are private exchanges or forums for securities trading and operate 

within private groups, are posing a challenge to public stock markets. Though their legal validity is 

subject to local regulations, they are gaining popularity as participants save big on transaction fees. 

Blockchain Ventures: Amid rising popularity of blockchains, many crypto exchanges have emerged. 

Such exchanges are venues for trading cryptocurrencies and derivatives associated with that asset class. 

Though their popularity remains limited, they pose a threat to the traditional stock market model by 

automating a bulk of the work done by various stock market participants and by offering zero- to low-

cost services. 

Significance of the Stock Market 

 

The stock market is one of the most vital components of a free-market economy. 

It allows companies to raise money by offering stock shares and corporate bonds. It lets common 

investors participate in the financial achievements of the companies, make profits through capital gains, 

and earn money through dividends, although losses are also possible. While institutional investors and 

professional money managers do enjoy some privileges owing to their deep pockets, better knowledge 

and higher risk taking abilities, the stock market attempts to offer a level playing field to common 

individuals. 

The stock market works as a platform through which savings and investments of individuals are 

channelized into the productive investment proposals. In the long term, it helps in capital formation & 

economic growth for the country. 

 

Examples of Stock Markets 

 

The first stock market in the world was the London stock exchange. It was started in a coffeehouse, 

where traders used to meet to exchange shares, in 1773. The first stock exchange in the United States 

of America was started in Philadelphia in 1790. The Buttonwood agreement, so named because it was 

signed under a buttonwood tree, marked the beginnings of New York's Wall Street in 1792. The 

agreement was signed by 24 traders and was the first American organization of its kind to trade in 

securities. The traders renamed their venture as New York Stock and Exchange Board in 1817. 

 

 

 

https://www.investopedia.com/terms/d/dark-pool.asp
https://www.investopedia.com/terms/b/blockchain.asp
https://www.investopedia.com/terms/c/capitalgain.asp
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What is Stock Market Analysis? 

 

Stock market analysis enables investors to identify the intrinsic worth of a security even before 

investing in it. All stock market tips are formulated after thorough research by experts. Stock analysts 

try to find out activity of an instrument/sector/market in future. 

By using stock analysis, investors and traders arrive at equity buying and selling decisions. Studying 

and evaluating past and current data helps investors and traders to gain an edge in the markets to make 

informed decisions. Fundamental Research and Technical Research are two types of research used to 

first analyse and then value a security. 

Why is Stock Market Analysis important? 

Performing a research before making an investment is a must. It is only after a thorough research that 

you can make some assumptions into the value and future performance of an investment. Even if you 

are following stock trading tips, it ideal to do some research, just to ensure that you are making an 

investment that’s expected to get you maximum returns. 

When you invest in equity, you purchase some portions of a business expecting to make money upon 

increase in the value of the business. Before buying anything, be it a car or phone, you do some degree 

of research about its performance and quality. An investment is no different. It is your hard earned 

money that you are about to invest, so you must have a fair knowledge of what you are investing in. 

What is Fundamental Research? 

In fundamental research, you try to find out value of an equity share using the information provided in 

the financial statements of the company. The investor tries to analyse various aspects of the business 

like competitive advantage, financial soundness, quality of management and competition. The main 

aim is to ascertain the relative attractiveness of the underlying business. 

Here, it is assumed that the market price doesn’t reflect the true value of the company due to some 

uncontrollable external factors like investor sentiments. As the market will attain equilibrium, the real 

value will be equal to its market price in the long run. It believes that paying a higher price for a stock 

will affect return on investment adversely. Thus, by means of financial ratios, investors try to arrive at 

the true value at which a stock should ideally trade in the market. 

Which key indicators are used in Fundamental Research? 

Financial ratios form the pillars of fundamental research. Some of them are as follows: 

 

Return On Equity (ROE) 

Return On Equity tells you about how much does a company earns on shareholders’ equity. It gives 

you information apart from a simple profit figure. It shows whether the operation of the company are 

efficient or not. 

Return On Equity = [(Income – Preference Dividend)/ (Average Shareholders’ Equity)]*100 

While looking for this metric, an ideal ROE is one which is consistent, high and increasing. ROE of 

one company can be compared with its own past performance and with performance of other companies 

within the same industry. You may use it irrespective of the type of industry. 

Debt-Equity Ratio (DER) 

https://cleartax.in/s/equity-investments
https://cleartax.in/s/financial-reports
https://cleartax.in/s/profitability-ratio
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Debt-Equity Ratio shows the proportion of assets which is being used to finance the assets of the 

company. It indicates how much funds have been provided by the borrowers and owners of the 

company. This ratio can be expressed in numbers and in percentage. 

Debt-Equity (D/E) Ratio = Total Debt/Total Equity 

While looking for a debt-equity ratio, go for the ones which are lower than others and are decreasing 

in a consistent manner. You can compare D/E of one company with its own past performance and with 

performance of other companies within the same industry. You may use it to analyse performance of 

capital intensive industries like capital goods, metals, oil and gas. 

Earning Per Share (EPS) 

Earning Per Share is one such useful measure which the investors look for all the time. It shows the 

amount of money which the company is earning on every share. EPS of a company needs to increase 

in a consistent manner to show superior management performance. 

Earning Per Share = (Net Income – Preference Dividend)/Weighted Average Number of Shares 

Outstanding 

EPS of one company can be compared with its past performance and with that of other companies in 

the same industry. It can be used to ascertain what portion of profit is the company allocating to each 

outstanding share. Investors usually go for companies which have steadily increasing earnings per 

share. It can be easily used to compare performance across industries. 

Price to Earning Ratio (PER) 

Price to Earning Ratio compares the current market price of the share with the earnings per share. It 

tells you the price which the investors are willing to pay for the share depending on the current earnings. 

Price to Earning Ratio = Current Share Price/Earning Per Share 

This ratio also indicates the number of years that will be required to get back the initial invested capital 

by way of returns. You need to look for stocks which have a low price to earnings ratio. You can easily 

compare the P/E ratio of a company with its past performance and also with other companies 

operational in the same industry. Ideally, this ratio is suitable to analyse performance of companies 

present in the FMCG, pharmaceutical and technology sector. 

What is Technical Research? 

Technical research relates to the study of past stock prices to predict the trend of prices in future. It 

shows you the direction of movement of the share prices. With the help of technical research, you can 

identify whether there will be sharp rise or fall in the price of share. It is not dependent on recent news 

or events which have already been incorporated in the price of the share. 

As the stock prices are dependent on investor psychology which keeps changing according to news 

and events, technical research emphasises the use of Stop-losses. It will save investors from suffering 

a big loss in future. Technical research gives meaningful results only for stocks which are high in 

demand and traded in huge volumes. 

Technical research uses different types of charts like bar charts, candlestick charts; to understand the 

pattern of stock prices. Daily charts are used by short term traders to examine the immediate movement 

in the stock prices. Weekly / monthly charts are used by medium/long term traders to ascertain the 

probability to earn higher more in the long run. 

 

https://cleartax.in/s/price-earnings-ratio
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EXISTING SYSTEM 

Machine learning 

With the advent of the digital computer, stock market prediction has since moved into the technological 

realm. The most prominent technique involves the use of artificial neural networks (ANNs) and Genetic 

Algorithms(GA). Scholars found that the bacterial chemotaxis optimization method may perform better 

than GA. ANNs can be thought of as mathematical function approximators. The most common form 

of ANN in use for stock market prediction is the feed forward network utilizing the backward 

propagation of errors algorithm to update the network weights. These networks are commonly referred 

to as Backpropagation networks. Another form of ANN that is more appropriate for stock prediction 

is the time recurrent neural network (RNN) or time delay neural network (TDNN). Examples of RNN 

and TDNN are the Elman, Jordan, and Elman-Jordan networks. (See the Elman And Jordan Networks).. 

For stock prediction with ANNs, there are usually two approaches taken for forecasting different time 

horizons: independent and joint. The independent approach employs a single ANN for each time 

horizon, for example, 1-day, 2-day, or 5-day. The advantage of this approach is that network 

forecasting error for one horizon won't impact the error for another horizon—since each time horizon 

is typically a unique problem. The joint approach, however, incorporates multiple time horizons 

together so that they are determined simultaneously. In this approach, forecasting error for one time 

horizon may share its error with that of another horizon, which can decrease performance. There are 

also more parameters required for a joint model, which increases the risk of overfitting. 

Of late, the majority of academic research groups studying ANNs for stock forecasting seem to be 

using an ensemble of independent ANNs methods more frequently, with greater success. An ensemble 

of ANNs would use low price and time lags to predict future lows, while another network would use 

lagged highs to predict future highs. The predicted low and high predictions are then used to form stop 

prices for buying or selling. Outputs from the individual "low" and "high" networks can also be input 

into a final network that would also incorporate volume, intermarket data or statistical summaries of 

prices, leading to a final ensemble output that would trigger buying, selling, or market directional 

change. A major finding with ANNs and stock prediction is that a classification approach (vs. function 

approximation) using outputs in the form of buy(y=+1) and sell(y=-1) results in better predictive 

reliability than a quantitative output such as low or high price.  

Since NNs require training and can have a large parameter space; it is useful to optimize the network 

for optimal predictive ability. 

Data sources for market prediction 

Tobias Preis et al. introduced a method to identify online precursors for stock market moves, using 

trading strategies based on search volume data provided by Google Trends. Their analysis of Google 

search volume for 98 terms of varying financial relevance, published in Scientific Reports, suggests 

that increases in search volume for financially relevant search terms tend to precede large losses in 

financial markets. Out of these terms, three were significant at the 5% level (|z| > 1.96). The best term 

in the negative direction was "debt", followed by "color". 

In a study published in Scientific Reports in 2013, Helen Susannah Moat, Tobias Preis and colleagues 

demonstrated a link between changes in the number of views of English Wikipedia articles relating to 

financial topics and subsequent large stock market moves.  

The use of Text Mining together with Machine Learning algorithms received more attention in the last 

years, with the use of textual content from the Internet as input to predict price changes in Stocks, 

Stocks and other financial markets. 

The collective mood of Twitter messages has been linked to stock market performance. The study, 

however, has been criticized for its methodology. 

https://en.wikipedia.org/wiki/Digital_computer
https://en.wikipedia.org/wiki/Artificial_neural_networks
https://en.wikipedia.org/wiki/Mathematical_function
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Time_delay_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network#Elman_networks_and_Jordan_networks
https://en.wikipedia.org/wiki/Tobias_Preis
https://en.wikipedia.org/wiki/Google_Trends
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Scientific_Reports
https://en.wikipedia.org/wiki/Scientific_Reports
https://en.wikipedia.org/wiki/Tobias_Preis
https://en.wikipedia.org/wiki/English_Wikipedia
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Twitter
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The activity in stock message boards has been mined in order to predict asset returns. The enterprise 

headlines from Yahoo! Finance and Google Finance were used as news feeding in a Text mining 

process, to forecast the Stocks price movements from the Dow Jones Industrial Average.  

Market mimicry 

Using new statistical analysis tools of complexity theory, researchers at the New England Complex 

Systems Institute (NECSI) performed research on predicting stock market crashes. It has long been 

thought that market crashes are triggered by panics that may or may not be justified by external news. 

This research indicates that it is the internal structure of the market, not external crises, which is 

primarily responsible for crashes. The number of different stocks that move up or down together were 

shown to be an indicator of the mimicry within the market, how much investors look to one another 

for cues. When the mimicry is high, many stocks follow each other's movements - a prime reason for 

panic to take hold. It was shown that a dramatic increase in market mimicry occurred during the entire 

year before each market crash of the past 25 years, including the financial crisis of 2007–08. 

Time series aspect structuring 

Aspect structuring, also referred to as Jacaruso Aspect Structuring (JAS) is a trend forecasting method 

which has been shown to be valid for anticipating trend changes on various stock market and 

geopolitical time series datasets. The method addresses the challenge that arises with high dimensional 

data in which exogenous variables are too numerous or immeasurable to be accounted for and used to 

make a forecast. The method identifies the single variable of primary influence on the time series, or 

"primary factor", and observes trend changes that occur during times of decreased significance in the 

said primary variable. Presumably, trend changes in these instances are instead due to so-called 

"background factors". Although this method cannot elucidate the multivariate nature of background 

factors, it can gauge the effects they have on the time-series at a given point in time even without 

measuring them. This observation can be used to make a forecast. 
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PROPOSED SYSTEM 

Downloading the Data  

We will be using data from the following sources:  

1. Alpha Vantage. Before you start, however, you will first need an API key, which we can  

obtain for free here. After that, we can assign that key to the api_key variable. 2. Use the data from this 

page. we will need to copy the Stocks folder in the zip file to your  

project home folder.  

Stock prices come in several different flavours. They are,  

• Open: Opening stock price of the day  

• Close: Closing stock price of the day  

• High: Highest stock price of the data  

• Low: Lowest stock price of the day  

Getting Data from Alphavantage  

We will first load in the data from Alpha Vantage. Since you're going to make use of the American 

Airlines Stock market prices to make your predictions, you set the ticker to "AAL". Additionally, you 

also define a url_string, which will return a JSON file with all the stock market data for American 

Airlines within the last 20 years, and a file_to_save, which will be the file to which you save the data. 

You'll use the ticker variable that you defined beforehand to help name this file.  

Next, you're going to specify a condition: if you haven't already saved data, you will go ahead and grab 

the data from the URL that you set in url_string; You'll store the date, low, high, volume, close, open 

values to a pandas DataFrame df and you'll save it to file_to_save. However, if the data is already there, 

you'll just load it from the CSV.  

Getting Data from Kaggle Data found on Kaggle is a collection of csv files and you don't have to do 

any preprocessing, so you can directly load the data into a Pandas DataFrame.  

Data Exploration Here you will print the data you collected in to the DataFrame. You should also make 

sure that the data is sorted by date, because the order of the data is crucial in time series modelling.  

Splitting Data into a Training set and a Test set  

You will use the mid price calculated by taking the average of the highest and lowest recorded prices 

on a day. Now you can split the training data and test data. The training data will be the first 11,000 

data points of the time series and rest will be test data.  

Normalizing the Data Now you need to define a scaler to normalize the data. MinMaxScalar scales all 

the data to be in the region of 0 and 1. You can also reshape the training and test data to be in the shape 

[data_size, num_features].  
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Due to the observation you made earlier, that is, different time periods of data have different value 

ranges, you normalize the data by splitting the full series into windows. If you don't do this, the earlier 

data will be close to 0 and will not add much value to the learning process. Here you choose a window 

size of 2500.  

Tip: when choosing the window size make sure it's not too small, because when you perform 

windowed-normalization, it can introduce a break at the very end of each window, as each window is 

normalized independently.  

In this example, 4 data points will be affected by this. But given you have 11,000 data points, 4 points 

will not cause any issue Reshape the data back to the shape of [data_size]  

You can now smooth the data using the exponential moving average. This helps you to get rid of the 

inherent raggedness of the data in stock prices and produce a smoother curve.  

Note that you should only smooth training data.  

One-Step Ahead Prediction via Averaging  

Averaging mechanisms allow you to predict (often one time step ahead) by representing the future 

stock price as an average of the previously observed stock prices. Doing this for more than one time 

step can produce quite bad results. You will look at two averaging techniques below; standard 

averaging and exponential moving average. You will evaluate both qualitatively (visual inspection) 

and quantitatively (Mean Squared Error) the results produced by the two algorithms.  

The Mean Squared Error (MSE) can be calculated by taking the Squared Error between the true value 

at one step ahead and the predicted value and averaging it over all the predictions.  

Standard Average  

You can understand the difficulty of this problem by first trying to model this as an average calculation 

problem. First you will try to predict the future stock market prices (for example, xt+1) as an average 

of the previously observed stock market prices within a fixed size window (for example, xt-N, ..., xt) 

(say previous 100 days). Thereafter you will try a bit more fancier "exponential moving average" 

method and see how well that does. Then you will move on to the "holy-grail" of time-series prediction; 

Long Short-Term Memory models.   

In other words, you say the prediction at t+1t+1 is the average value of all the stock prices you observed 

within a window of tt to t−Nt−N.  

t seems that it is not too bad of a model for very short predictions (one day ahead). Given that stock 

prices don't change from 0 to 100 overnight, this behavior is sensible. Next, you will look at a fancier 

averaging technique known as exponential moving average.  

Exponential Moving Average  

You might have seen some articles on the internet using very complex models and predicting almost 

the exact behavior of the stock market. But beware! These are just optical illusions and not due to 

learning something useful. You will see below how you can replicate that behavior with a simple 

averaging method.  

In the exponential moving average method, you calculate xt+1xt+1 as,  
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• xt+1 = EMAt = γ × EMAt-1 + (1-γ) xt where EMA0 = 0 and EMA is the exponential moving average 

value you maintain over time.  

The above equation basically calculates the exponential moving average from t+1t+1 time step and 

uses that as the one step ahead prediction. γγ decides what the contribution of the most recent prediction 

is to the EMA. For example, a γ=0.1γ=0.1 gets only 10% of the current value into the EMA. Because 

you take only a very small fraction of the most recent, it allows to preserve much older values you saw 

very early in the average.  

If Exponential Moving Average is this Good, Why do You Need Better Models? You see that it fits a 

perfect line that follows the True distribution (and justified by the very low MSE). Practically speaking, 

you can't do much with just the stock market value of the next day. Personally what I'd like is not the 

exact stock market price for the next day, but would the stock market prices go up or down in the next 

30 days. Try to do this, and you will expose the incapability of the EMA method.  

You will now try to make predictions in windows (say you predict the next 2 days window, instead of 

just the next day). Then you will realize how wrong EMA can go. Here is an example:  

Predict More Than One Step into the Future  

To make things concrete, let's assume values, say xt=0.4xt=0.4, EMA=0.5EMA=0.5 and γ=0.5γ=0.5  

• Say you get the output with the following equation o Xt+1 = EMAt = γ × EMAt-1 + (1 - γ)Xt o So 

you have xt+1=0.5×0.5+(1−0.5)×0.4=0.45xt+1=0.5×0.5+(1−0.5)×0.4=0.45 o So 

xt+1=EMAt=0.45xt+1=EMAt=0.45  

• So the next prediction xt+2xt+2 becomes, o Xt+2 = γ × EMAt + (1-γ)Xt+1 o Which is 

xt+2=γ×EMAt+(1−γ)EMAt=EMAtxt+2=γ×EMAt+(1−γ)EMAt=EMAt  

o Or in this example, Xt+2 = Xt+1 = 0.45  

So no matter how many steps you predict in to the future, you'll keep getting the same answer for all 

the future prediction steps.  

One solution you have that will output useful information is to look at momentum-based algorithms. 

They make predictions based on whether the past recent values were going up or going down (not the 

exact values). For example, they will say the next day price is likely to be lower, if the  

prices have been dropping for the past days, which sounds reasonable. However, you will use a more 

complex model: an LSTM model.  

These models have taken the realm of time series prediction by storm, because they are so good at 

modelling time series data. You will see if there actually are patterns hidden in the data that you can 

exploit.  

Introduction to LSTMs: Making Stock Movement Predictions Far into the Future 

Long Short-Term Memory models are extremely powerful time-series models. They can predict an 

arbitrary number of steps into the future. An LSTM module (or cell) has 5 essential components which 

allows it to model both long-term and short-term data.  

• Cell state (ct) - This represents the internal memory of the cell which stores both short term memory 

and long-term memories  
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• Hidden state (ht) - This is output state information calculated w.r.t. current input, previous hidden 

state and current cell input which you eventually use to predict the future stock market prices. 

Additionally, the hidden state can decide to only retrive the short or long-term or both types of memory 

stored in the cell state to make the next prediction.  

• Input gate (it) - Decides how much information from current input flows to the cell state  

• Forget gate (ft) - Decides how much information from the current input and the previous cell state 

flows into the current cell state  

• Output gate (ot) - Decides how much information from the current cell state flows into the hidden 

state, so that if needed LSTM can only pick the long-term memories or short-term memories and long-

term memories  

And the equations for calculating each of these entities are as follows.  

• $it = \sigma(W{ix}xt + W{ih}h_{t-1}+b_i)$  

• $\tilde{c}t = \sigma(W{cx}xt + W{ch}h_{t-1} + b_c)$  

• $ft = \sigma(W{fx}xt + W{fh}h_{t-1}+b_f)$  

• $c_t = ft c{t-1} + i_t \tilde{c}_t$  

• $ot = \sigma(W{ox}xt + W{oh}h_{t-1}+b_o)$  

• ht=ottanh(ct)ht=ottanh(ct)  

For a better (more technical) understanding about LSTMs you can refer to this article.  

TensorFlow provides a nice sub API (called RNN API) for implementing time series models. You will 

be using that for your implementations.  

Data Generator  

You are first going to implement a data generator to train your model. This data generator will have a 

method called .unroll_batches(...) which will output a set of num_unrollings batches of input data 

obtained sequentially, where a batch of data is of size [batch_size, 1]. Then each batch of input data 

will have a corresponding output batch of data.  

For example if num_unrollings=3 and batch_size=4 a set of unrolled batches it might look like,  

• input data: [x0,x10,x20,x30],[x1,x11,x21,x31],[x2,x12,x22,x32][x0,x10,x20,x30],[x1,x11,x21,x3 

1],[x2,x12,x22,x32]  

• output data: [x1,x11,x21,x31],[x2,x12,x22,x32],[x3,x13,x23,x33][x1,x11,x21,x31],[x2,x12,x22,x3 

2],[x3,x13,x23,x33]  

Data Augmentation  

Also to make your model robust you will not make the output for $xtalwaysalwaysx{t+1}.Rather you 

will randomly sample an output from the set.  

x{t+1},x{t+2},\ldots,x_{t+N}                  where N is a small window size.  
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Here you are making the following assumption:  

• $x{t+1},x{t+2},\ldots,x_{t+N}will not be very far from each other  

 

CODE:- 

# Make sure that you have all these libaries available to run the code successfully 
 
from pandas_datareader import data 
import matplotlib.pyplot as plt 
import as pd 
import datetime as dt 
import urllib.request 
import os 
import numpy as np 
import tensorflow as tf # This code has been tested with TensorFlow 1.6 

from sklearn.preprocessing import MinMaxscaler  

data_source='kaggle'# alphavantage or kaggle 

 
if data_source=='alphavantage'  
 
# ====================== Loading Data from Alpha Vantage ================================= 
 
url_string= 
"https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=%s&outputsize=full&apikey=%
s" %tkinter, api_key 
# Save data to this 
file_to_save= 'stock_market_data-%s.csv %ticker 
 
# If you haven't already saved data, 
# Go ahead and grab the data from the url 
# And store date, low, high, volume, close, open values to a Pandas DataFrame 
if not os.path.exists(file_to_save): 
 with urllib.request.urlopen(url_string) as url: 
 data = json.loads(url.read().decode()) 
 # extract stock market data 
 data = data['Time Series (Daily)'] 
 df = pd.DataFrame(columns=['Date','Low','High','Close','Open']) 
 for k,v in data.items(): 
 date = dt.datetime.strptime(k, '%Y-%m-%d') 
 data_row = [date.date(),float(v['3. low']),float(v['2. high']), 
 float(v['4. close']),float(v['1. open'])] 
 df.loc[-1,:] = data_row 
 df.index = df.index + 1 
 print('Data saved to : %s'%file_to_save)  
 df.to_csv(file_to_save) 
 
 # If the data is already there, just load it from the CSV 
 else: 
 print('File already exists. Loading data from CSV') 
 df = pd.read_csv(file_to_save) 

https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=%25s&outputsize=full&apikey=%25s
https://www.alphavantage.co/query?function=TIME_SERIES_DAILY&symbol=%25s&outputsize=full&apikey=%25s
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else: 
 
 # ====================== Loading Data from Kaggle ================================== 
 
 # You will be using HP's data. Feel free to experiment with other data. 
 # But while doing so, be careful to have a large enough dataset and also pay attention to the data 
normalization 
 df = pd.read_csv(os.path.join('Stocks','hpq.us.txt'),delimiter=',',usecols=['Date','Open','High','Low','Close']) 

 print('Loaded data from the Kaggle repository') 

 

# Sort DataFrame by date 
df = df.sort_values('Date') 
 
# Double check the result 

df.head() 

plt.figure(figsize = (18,9)) 
plt.plot(range(df.shape[0]),(df['Low']+df['High'])/2.0) 
plt.xticks(range(0,df.shape[0],500),df['Date'].loc[::500],rotation=45) 
plt.xlabel('Date',fontsize=18) 
plt.ylabel('Mid Price',fontsize=18) 

plt.show() 

# First calculate the mid prices from the highest and lowest 
high_prices = df.loc[:,'High'].as_matrix() 
low_prices = df.loc[:,'Low'].as_matrix() 

mid_prices = (high_prices+low_prices)/2.0 

train_data = mid_prices[:11000] 

test_data = mid_prices[11000:] 

 

# Scale the data to be between 0 and 1 
# When scaling remember! You normalize both test and train data with respect to training data 
# Because you are not supposed to have access to test data 
scaler = MinMaxScaler() 
train_data = train_data.reshape(-1,1) 

test_data = test_data.reshape(-1,1) 

 

# Train the Scaler with training data and smooth data 
smoothing_window_size = 2500 
for di in range(0,10000,smoothing_window_size): 
 scaler.fit(train_data[di:di+smoothing_window_size,:]) 
 train_data[di:di+smoothing_window_size,:] = scaler.transform(train_data[di:di+smoothing_window_size,:]) 
 
# You normalize the last bit of remaining data 
scaler.fit(train_data[di+smoothing_window_size:,:]) 

train_data[di+smoothing_window_size:,:] = scaler.transform(train_data[di+smoothing_window_size:,:]) 
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# Reshape both train and test data 
train_data = train_data.reshape(-1) 
 
# Normalize test data 

test_data = scaler.transform(test_data).reshape(-1) 

 

# Now perform exponential moving average smoothing 
# So the data will have a smoother curve than the original ragged data 
EMA = 0.0 
gamma = 0.1 
for ti in range(11000): 
 EMA = gamma*train_data[ti] + (1-gamma)*EMA 
 train_data[ti] = EMA 
 
# Used for visualization and test purposes 

all_mid_data = np.concatenate([train_data,test_data],axis=0) 

 

window_size = 100 
N = train_data.size 
std_avg_predictions = [] 
std_avg_x = [] 
mse_errors = [] 
 
for pred_idx in range(window_size,N): 
 
 if pred_idx >= N: 
 date = dt.datetime.strptime(k, '%Y-%m-%d').date() + dt.timedelta(days=1) 
 else: 
 date = df.loc[pred_idx,'Date'] 
 
 std_avg_predictions.append(np.mean(train_data[pred_idx-window_size:pred_idx])) 
 mse_errors.append((std_avg_predictions[-1]-train_data[pred_idx])**2) 
 std_avg_x.append(date) 
 

print('MSE error for standard averaging: %.5f'%(0.5*np.mean(mse_errors))) 

 

plt.figure(figsize = (18,9)) 
plt.plot(range(df.shape[0]),all_mid_data,color='b',label='True') 
plt.plot(range(window_size,N),std_avg_predictions,color='orange',label='Prediction') 
#plt.xticks(range(0,df.shape[0],50),df['Date'].loc[::50],rotation=45) 
plt.xlabel('Date') 
plt.ylabel('Mid Price') 
plt.legend(fontsize=18) 

plt.show() 

 

window_size = 100 
N = train_data.size 
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run_avg_predictions = [] 
run_avg_x = [] 
 
mse_errors = [] 
 
running_mean = 0.0 
run_avg_predictions.append(running_mean) 
 
decay = 0.5 
 
for pred_idx in range(1,N): 
 
 running_mean = running_mean*decay + (1.0-decay)*train_data[pred_idx-1] 
 run_avg_predictions.append(running_mean) 
 mse_errors.append((run_avg_predictions[-1]-train_data[pred_idx])**2) 
 run_avg_x.append(date) 
 

print('MSE error for EMA averaging: %.5f'%(0.5*np.mean(mse_errors))) 

 

plt.figure(figsize = (18,9)) 

plt.plot(range(df.shape[0]),all_mid_data,color='b',label='True') 

plt.plot(range(0,N),run_avg_predictions,color='orange', label='Prediction') 

#plt.xticks(range(0,df.shape[0],50),df['Date'].loc[::50],rotation=45) 

plt.xlabel('Date') 

plt.ylabel('Mid Price') 

plt.legend(fontsize=18) 

plt.show() 

class DataGeneratorSeq(object): 
 
 def __init__(self,prices,batch_size,num_unroll): 
 self._prices = prices 
 self._prices_length = len(self._prices) - num_unroll 
 self._batch_size = batch_size 
 self._num_unroll = num_unroll 
 self._segments = self._prices_length //self._batch_size 
 self._cursor = [offset * self._segments for offset in range(self._batch_size)] 
 
 def next_batch(self): 
 
 batch_data = np.zeros((self._batch_size),dtype=np.float32) 
 batch_labels = np.zeros((self._batch_size),dtype=np.float32) 
 
 for b in range(self._batch_size): 
 if self._cursor[b]+1>=self._prices_length: 
 #self._cursor[b] = b * self._segments 
 self._cursor[b] = np.random.randint(0,(b+1)*self._segments) 
 
 batch_data[b] = self._prices[self._cursor[b]] 
 batch_labels[b]= self._prices[self._cursor[b]+np.random.randint(0,5)] 
 
 self._cursor[b] = (self._cursor[b]+1)%self._prices_length 
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 return batch_data,batch_labels 
 
 def unroll_batches(self): 
 
 unroll_data,unroll_labels = [],[] 
 init_data, init_label = None,None 
 for ui in range(self._num_unroll): 
 
 data, labels = self.next_batch()  
 
 unroll_data.append(data) 
 unroll_labels.append(labels) 
 
 return unroll_data, unroll_labels 
 
 def reset_indices(self): 
 for b in range(self._batch_size): 
 self._cursor[b] = np.random.randint(0,min((b+1)*self._segments,self._prices_length-1)) 
 
 
 
dg = DataGeneratorSeq(train_data,5,5) 
u_data, u_labels = dg.unroll_batches() 
 
for ui,(dat,lbl) in enumerate(zip(u_data,u_labels)):  
 print('\n\nUnrolled index %d'%ui) 
 dat_ind = dat 
 lbl_ind = lbl 
 print('\tInputs: ',dat ) 

 print('\n\tOutput:',lbl) 

 

D = 1 # Dimensionality of the data. Since your data is 1-D this would be 1 
num_unrollings = 50 # Number of time steps you look into the future. 
batch_size = 500 # Number of samples in a batch 
num_nodes = [200,200,150] # Number of hidden nodes in each layer of the deep LSTM stack we're using 
n_layers = len(num_nodes) # number of layers 
dropout = 0.2 # dropout amount 
 

tf.reset_default_graph() # This is important in case you run this multiple times 

 

# Input data. 
train_inputs, train_outputs = [],[] 
 
# You unroll the input over time defining placeholders for each time step 
for ui in range(num_unrollings): 
 train_inputs.append(tf.placeholder(tf.float32, shape=[batch_size,D],name='train_inputs_%d'%ui)) 

 train_outputs.append(tf.placeholder(tf.float32, shape=[batch_size,1], name = 'train_outputs_%d'%ui)) 
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lstm_cells = [ 
 tf.contrib.rnn.LSTMCell(num_units=num_nodes[li], 
 state_is_tuple=True, 
 initializer= tf.contrib.layers.xavier_initializer() 
 ) 
 for li in range(n_layers)] 
 
drop_lstm_cells = [tf.contrib.rnn.DropoutWrapper( 
 lstm, input_keep_prob=1.0,output_keep_prob=1.0-dropout, state_keep_prob=1.0-dropout 
) for lstm in lstm_cells] 
drop_multi_cell = tf.contrib.rnn.MultiRNNCell(drop_lstm_cells) 
multi_cell = tf.contrib.rnn.MultiRNNCell(lstm_cells) 
 
w = tf.get_variable('w',shape=[num_nodes[-1], 1], initializer=tf.contrib.layers.xavier_initializer()) 

b = tf.get_variable('b',initializer=tf.random_uniform([1],-0.1,0.1)) 

 

# Create cell state and hidden state variables to maintain the state of the LSTM 
c, h = [],[] 
initial_state = [] 
for li in range(n_layers): 
 c.append(tf.Variable(tf.zeros([batch_size, num_nodes[li]]), trainable=False)) 
 h.append(tf.Variable(tf.zeros([batch_size, num_nodes[li]]), trainable=False)) 
 initial_state.append(tf.contrib.rnn.LSTMStateTuple(c[li], h[li])) 
 
# Do several tensor transofmations, because the function dynamic_rnn requires the output to be of 
# a specific format. Read more at: https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 
all_inputs = tf.concat([tf.expand_dims(t,0) for t in train_inputs],axis=0) 
 
# all_outputs is [seq_length, batch_size, num_nodes] 
all_lstm_outputs, state = tf.nn.dynamic_rnn( 
 drop_multi_cell, all_inputs, initial_state=tuple(initial_state), 
 time_major = True, dtype=tf.float32) 
 
all_lstm_outputs = tf.reshape(all_lstm_outputs, [batch_size*num_unrollings,num_nodes[-1]]) 
 
all_outputs = tf.nn.xw_plus_b(all_lstm_outputs,w,b) 
 

split_outputs = tf.split(all_outputs,num_unrollings,axis=0) 

 

# When calculating the loss you need to be careful about the exact form, because you calculate 
# loss of all the unrolled steps at the same time 
# Therefore, take the mean error or each batch and get the sum of that over all the unrolled steps 
 
print('Defining training Loss') 
loss = 0.0 
with tf.control_dependencies([tf.assign(c[li], state[li][0]) for li in range(n_layers)]+ 
 [tf.assign(h[li], state[li][1]) for li in range(n_layers)]): 
 for ui in range(num_unrollings): 
 loss += tf.reduce_mean(0.5*(split_outputs[ui]-train_outputs[ui])**2) 
 
print('Learning rate decay operations') 
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global_step = tf.Variable(0, trainable=False) 
inc_gstep = tf.assign(global_step,global_step + 1) 
tf_learning_rate = tf.placeholder(shape=None,dtype=tf.float32) 
tf_min_learning_rate = tf.placeholder(shape=None,dtype=tf.float32) 
 
learning_rate = tf.maximum( 
 tf.train.exponential_decay(tf_learning_rate, global_step, decay_steps=1, decay_rate=0.5, staircase=True), 
 tf_min_learning_rate) 
 
# Optimizer. 
print('TF Optimization operations') 
optimizer = tf.train.AdamOptimizer(learning_rate) 
gradients, v = zip(*optimizer.compute_gradients(loss)) 
gradients, _ = tf.clip_by_global_norm(gradients, 5.0) 
optimizer = optimizer.apply_gradients( 
 zip(gradients, v)) 
 

print('\tAll done') 

 

print('Defining prediction related TF functions') 
 
sample_inputs = tf.placeholder(tf.float32, shape=[1,D]) 
 
# Maintaining LSTM state for prediction stage 
sample_c, sample_h, initial_sample_state = [],[],[] 
for li in range(n_layers): 
 sample_c.append(tf.Variable(tf.zeros([1, num_nodes[li]]), trainable=False)) 
 sample_h.append(tf.Variable(tf.zeros([1, num_nodes[li]]), trainable=False)) 
 initial_sample_state.append(tf.contrib.rnn.LSTMStateTuple(sample_c[li],sample_h[li])) 
 
reset_sample_states = tf.group(*[tf.assign(sample_c[li],tf.zeros([1, num_nodes[li]])) for li in range(n_layers)], 
 *[tf.assign(sample_h[li],tf.zeros([1, num_nodes[li]])) for li in range(n_layers)]) 
 
sample_outputs, sample_state = tf.nn.dynamic_rnn(multi_cell, tf.expand_dims(sample_inputs,0), 
 initial_state=tuple(initial_sample_state), 
 time_major = True, 
 dtype=tf.float32) 
 
with tf.control_dependencies([tf.assign(sample_c[li],sample_state[li][0]) for li in range(n_layers)]+ 
 [tf.assign(sample_h[li],sample_state[li][1]) for li in range(n_layers)]):  
 sample_prediction = tf.nn.xw_plus_b(tf.reshape(sample_outputs,[1,-1]), w, b) 
 

print('\tAll done') 

 

epochs = 30 
valid_summary = 1 # Interval you make test predictions 
 
n_predict_once = 50 # Number of steps you continously predict for 
 
train_seq_length = train_data.size # Full length of the training data 
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train_mse_ot = [] # Accumulate Train losses 
test_mse_ot = [] # Accumulate Test loss 
predictions_over_time = [] # Accumulate predictions 
 
session = tf.InteractiveSession() 
 
tf.global_variables_initializer().run() 
 
# Used for decaying learning rate 
loss_nondecrease_count = 0 
loss_nondecrease_threshold = 2 # If the test error hasn't increased in this many steps, decrease learning rate 
 
print('Initialized') 
average_loss = 0 
 
# Define data generator 
data_gen = DataGeneratorSeq(train_data,batch_size,num_unrollings) 
 
x_axis_seq = [] 
 
# Points you start your test predictions from 
test_points_seq = np.arange(11000,12000,50).tolist() 
 
for ep in range(epochs):  
 
 # ========================= Training ===================================== 
 
 for step in range(train_seq_length//batch_size): 
 
 u_data, u_labels = data_gen.unroll_batches() 
 
 feed_dict = {} 
 for ui,(dat,lbl) in enumerate(zip(u_data,u_labels)):  
 feed_dict[train_inputs[ui]] = dat.reshape(-1,1) 
 feed_dict[train_outputs[ui]] = lbl.reshape(-1,1) 
 
 feed_dict.update({tf_learning_rate: 0.0001, tf_min_learning_rate:0.000001}) 
 
 _, l = session.run([optimizer, loss], feed_dict=feed_dict) 
 
 average_loss += l 
 
 # ============================ Validation ============================== 
 
 if (ep+1) % valid_summary == 0: 
 
 average_loss = average_loss/(valid_summary*(train_seq_length//batch_size)) 
 
 # The average loss 
 if (ep+1)%valid_summary==0: 
 print('Average loss at step %d: %f' % (ep+1, average_loss)) 
 
 train_mse_ot.append(average_loss) 
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 average_loss = 0 # reset loss 
 
 predictions_seq = [] 
 
 mse_test_loss_seq = [] 
 
 # ===================== Updating State and Making Predicitons ======================== 
 
 for w_i in test_points_seq: 
 mse_test_loss = 0.0 
 our_predictions = [] 
 
 if (ep+1)-valid_summary==0: 
 # Only calculate x_axis values in the first validation epoch 
 x_axis=[] 
 
 # Feed in the recent past behavior of stock prices 
 # to make predictions from that point onwards 
 for tr_i in range(w_i-num_unrollings+1,w_i-1): 
 current_price = all_mid_data[tr_i] 
 feed_dict[sample_inputs] = np.array(current_price).reshape(1,1)  
 _ = session.run(sample_prediction,feed_dict=feed_dict) 
 
 feed_dict = {} 
 
 current_price = all_mid_data[w_i-1] 
 
 feed_dict[sample_inputs] = np.array(current_price).reshape(1,1) 
 
 # Make predictions for this many steps 
 # Each prediction uses previous prediciton as it's current input 
 for pred_i in range(n_predict_once): 
 
 pred = session.run(sample_prediction,feed_dict=feed_dict) 
 
 our_predictions.append(np.asscalar(pred)) 
 
 feed_dict[sample_inputs] = np.asarray(pred).reshape(-1,1) 
 
 if (ep+1)-valid_summary==0: 
 # Only calculate x_axis values in the first validation epoch 
 x_axis.append(w_i+pred_i) 
 
 mse_test_loss += 0.5*(pred-all_mid_data[w_i+pred_i])**2 
 
 session.run(reset_sample_states) 
 
 predictions_seq.append(np.array(our_predictions)) 
 
 mse_test_loss /= n_predict_once 
 mse_test_loss_seq.append(mse_test_loss) 
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 if (ep+1)-valid_summary==0: 
 x_axis_seq.append(x_axis) 
 current_test_mse = np.mean(mse_test_loss_seq) 
 
 # Learning rate decay logic 
 if len(test_mse_ot)>0 and current_test_mse > min(test_mse_ot): 
 loss_nondecrease_count += 1 
 else: 
 loss_nondecrease_count = 0 
 
 if loss_nondecrease_count > loss_nondecrease_threshold : 
 session.run(inc_gstep) 
 loss_nondecrease_count = 0 
 print('\tDecreasing learning rate by 0.5') 
 
 test_mse_ot.append(current_test_mse) 
 print('\tTest MSE: %.5f'%np.mean(mse_test_loss_seq)) 
 predictions_over_time.append(predictions_seq) 

 print('\tFinished Predictions') 

 

best_prediction_epoch = 28 # replace this with the epoch that you got the best results when running the 
plotting code 
 
plt.figure(figsize = (18,18)) 
plt.subplot(2,1,1) 
plt.plot(range(df.shape[0]),all_mid_data,color='b') 
 
# Plotting how the predictions change over time 
# Plot older predictions with low alpha and newer predictions with high alpha 
start_alpha = 0.25 
alpha = np.arange(start_alpha,1.1,(1.0-start_alpha)/len(predictions_over_time[::3])) 
for p_i,p in enumerate(predictions_over_time[::3]): 
 for xval,yval in zip(x_axis_seq,p): 
 plt.plot(xval,yval,color='r',alpha=alpha[p_i]) 
 
plt.title('Evolution of Test Predictions Over Time',fontsize=18) 
plt.xlabel('Date',fontsize=18) 
plt.ylabel('Mid Price',fontsize=18) 
plt.xlim(11000,12500) 
 
plt.subplot(2,1,2) 
 
# Predicting the best test prediction you got 
plt.plot(range(df.shape[0]),all_mid_data,color='b') 
for xval,yval in zip(x_axis_seq,predictions_over_time[best_prediction_epoch]): 
 plt.plot(xval,yval,color='r') 
 
plt.title('Best Test Predictions Over Time',fontsize=18) 
plt.xlabel('Date',fontsize=18) 
plt.ylabel('Mid Price',fontsize=18) 
plt.xlim(11000,12500) 

plt.show() 
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OUTPUT/RESULT/SCREEN SHOT  

Step 1: Choosing the data 

One of the most important steps in machine learning and predictive modeling is gathering good data, 

performing the appropriate cleaning steps and realizing the limitations. 

 

For this example I will be using stock price data from a single stock, Zimmer Biomet (ticker: ZBH). 

Simply go too finance.yahoo.com, search for the desired ticker. Once you are on the home page of the 

desired stock, simple navigate to the “Historical Data” tab, input the range of dates you would like to 

include, and select “Download Data.” I chose 5 years, but you can choose as far back as you would 

like. 

 

Now that we have out data, let’s go ahead and see what we have. Simply open the file in Excel. 

 

 

 

Looks like we have some goodies here. You may notice that all of the fields are numerical values, 

except that pesky date value. We need to fix this. The values that we are going to pass into our model 

need to be in a format that can be most easily understood. So, we need to perform some “data 

preprocessing” steps. In our case we are going to insert a new column after 1, name it “Date Value,” 

and copy all of the dates from column 1 into column 2. Then select all of the data and change the type 

from “Date” to “Text.” The results should look like the following: 

 

 

 

Ok, so now save the file as “choose_a_name.csv” (make sure it is a “.csv “and not one of the excel 

default formats). 

 

Before we start, lets talk about limitations. You will notice that the only data we feed this model is date 

and price. There are many external factors that affect the price outside of the historical price. Highly 

robust models might utilize external data such as news, time of the year, social media sentiment, 

weather, price of competitors, market volatility, market indices, etc. This model is very basic, but in 

time you can learn the skills to build a model that is more “aware” of the overall marketplace. That 

being said, let’s move on. 

 

Step 2: Choosing the model 
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So now that we have data cleaned up, we need to choose a model. In this case we are going to use a 

neural network to perform a regression function. A regression will spit out a numerical value on a 

continuous scale, a apposed to a model that may be used for classification efforts, which would yield 

a categorical output. In this situation, we are trying to predict the price of a stock on any given day (and 

if you are trying to make money, a day that hasn't happened yet). 

 

To build our model we are going to use TensorFlow… well, a simplified module called TFANN which 

stands for “TensorFlow Artificial Neural Network.” In order to do this, we are going to use Google 

Colab. If you are not familiar with Colab, simply navigate to colab.research.google.com, it is a free 

virtual python notebook environment. (For those of you that will be following along and don’t know 

what you are doing, just copy paste the code below into a “cell” and then hit run before creating a new 

one and copying more code). 

 

Step 3: Building the Model 
 

First we need to install TFANN. Open a new Colab notebook (python 3). Colab has numerous libraries 

which can be accessed without installation; however, TFANN is not one of them so we need to execute 

the following command: 

 

pip install TFANN 

 

 

Now let’s import our dependencies: 

 

  

 

NumPy will be used for our matrix operations, Matplotlib for graphs, sykit-learn for data processing, 

TFANN for the ML goodness, and google.colab files will help us upload data from the local machine 

to the virtual environment. 

 

Now we need to import the data that we have already processed. To do this we will execute the 

following command, which will provide us with a window to upload the .csv file. 

 

  

 

 

Now we can finally get to the meat of this project. Execute the following commands: 

 

pip install TFANN 

import numpy as np  

 import matplotlib.pyplot as mpl 

 from sklearn.preprocessing import scale 

 from TFANN import ANNR 

 from google.colab import files 

files.upload() 
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You should get a nice graph that looks like this: 

 

 
Note, that the scale is no longer in dollars on the y-axis and those arbitrary integer-date values on the 

x-axis. We have scaled the data down to make the learning process more effective. Try writing some 

code to return the scale of the y-axis back to dollars and the x-axis to years! 

 

Now, we need to construct the model. In this case we will use one input and output neuron (input date, 

output price) and will have three hidden layers of 25 neurons each. Each layer will have an “tanh” 

activation function. If you do not understand these concepts, feel free to google it and come back, 

understanding the basics for neural network principals will be very helpful as you progress. 

 

  

#reads data from the file and ceates a matrix with only the dates and the prices  

 stock_data = np.loadtxt('ZBH_5y.csv', delimiter=",", skiprows=1, usecols=(1, 4)) 

 #scales the data to smaller values 

 stock_data=scale(stock_data) 

 #gets the price and dates from the matrix 

 prices = stock_data[:, 1].reshape(-1, 1) 

 dates = stock_data[:, 0].reshape(-1, 1) 

 #creates a plot of the data and then displays it 

 mpl.plot(dates[:, 0], prices[:, 0]) 

 mpl.show() 

#Number of neurons in the input, output, and hidden layers 

 input = 1 

 output = 1 

 hidden = 50 

 #array of layers, 3 hidden and 1 output, along with the tanh activation function  

 layers = [('F', hidden), ('AF', 'tanh'), ('F', hidden), ('AF', 'tanh'), ('F', hidden), ('AF', 'tanh'), ('F', 

output)] 

 #construct the model and dictate params 

 mlpr = ANNR([input], layers, batchSize = 256, maxIter = 20000, tol = 0.2, reg = 1e-4, verbose 

= True) 
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We have now initialized the model and are ready to train! 

 

Step 4: Training the Model 
 

  

 

Once the training is complete, we can execute the following commands to see how we did. 

 

 

 

Let’s think about some ways in which we can increase the fidelity of the model. We can think of about 

this as “what knobs can we turn” to tune our model. Well the first is to simply decrease the error 

tolerance. 

 

The first trial, the error tolerance was set as .2; however, we can lower this to a smaller number, say .1, 

lets give that a try! 

Simply make the following changes. Note that I am also updating the name of the variables so that the 

values we already created/observed do not change. Certainly not the most effective method here. 

 

number of days for the hold-out period used to access progress 

 holdDays = 5 

 totalDays = len(dates) 

 #fit the model to the data "Learning" 

 mlpr.fit(dates[0:(totalDays-holdDays)], prices[0:(totalDays-holdDays)]) 

#Predict the stock price using the model 

 price Predict = mlpr.predict(dates) 

 #Display the predicted reuslts agains the actual data 

 mpl.plot(dates, prices) 

 mpl.plot(dates, pricePredict, c='#5aa9ab') 

 mpl.show() 
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Run the model again with the following commands and we get new results: 

 

 

Once it has finished training: 

 

  

 

 

As you can see, lovering the error tolerance… well… lowered the error. So you might be wondering 

“why not just set the error to a really small number?” and that would be a great question. Go ahead and 

#Number of neurons in the input, output, and hidden layers 

 input2 = 1 

 output2 = 1 

 hidden2 = 50 

 #array of layers, 3 hidden and 1 output, along with the tanh activation function  

 layers = [('F', hidden2), ('AF', 'tanh'), ('F', hidden2), ('AF', 'tanh'), ('F', hidden2), ('AF', 'tanh'), ('F', 

output2)] 

 #construct the model and dictate params 

 mlpr2 = ANNR([input2], layers, batchSize = 256, maxIter = 10000, tol = 0.1, reg = 1e-4, verbose 

= True) 

holdDays = 5 

totalDays = len(dates) 

mlpr2.fit(dates[0:(totalDays-holdDays)], prices[0:(totalDays-holdDays)]) 
 

pricePredict2 = mlpr2.predict(dates) 

 mpl.plot(dates, prices) 

 mpl.plot(dates, pricePredict, c='#5aa9ab') 

 mpl.plot(dates, pricePredict2, c='#8B008B') 

 mpl.show() 
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try it for yourself, re-execute the code you just ran with the tolerance set at .05. What you will observe 

is that the maximum number of iterations you use will stop the execution before it reached the desired 

level of error. Ok then, why not just increase the maximum number of iterations? Well, the problem 

lies in the given model parameters. The model itself has limitations, the lowest achievable error for the 

model we constructed may only be .8 (I have not checked exactly for this for this model). In this 

situation, it does not matter how many more iterations you add, the structure of the model will not yield 

better results, no matter how many iterations are run. It is simply capped out. 

 

The next logical question to ask here would be “how can we change the model to achieve greater 

error?” and that is what we are going to explore! 

 

Models have what are known as “hyperparameters.” These are the parameters that govern the model, 

they define how the model is created. Altering these can give us better (or perhaps worse) results. 

Examples include: number of neurons in each hidden layer, the number of hidden layers, the activation 

function, etc. 

 

Our goal here is to “tune” these hyperparameters to achieve a lower error tolerance than was possible 

with our first model. The simplest way to do this, in my opinion, is do increase the number of neurons 

in the hidden layers. I am by no means a leading source of knowledge on this topic, but I will venture 

far enough to say that increasing the number of neurons and/or the number of hidden layers increases 

the level of abstraction with which the model can represent the given data. So lets give that a try! 

Increasing the number of neurons in each hidden layer from 50 to 100 and setting the tolerance to .075: 

  

 

Much much better! The orange line is out newest prediction. Notice how much better it tracks the more 

recent prices than the last model did. 

 

Try changing the activation function to something besides “tanh”, or perhaps adding an additional 

layer. 

 

To add another layer, reference this line of code: 

 

layers = [('F', hidden), ('AF', 'tanh'), ('F', hidden), ('AF', 'tanh'), ('F', hidden), ('AF', 'tanh'), ('F', output)] 
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Add one additional layer by adding another 

 

(‘AF’, hidden), (‘AF’, ‘tanh’)  

 

before the output node. This adds the layer and the activation function applied to it before it is fed into 

the next layer. 

 

layers = [('F', hidden), ('AF', 'tanh'), ('F', hidden), ('AF', 'tanh'), ('F', hidden), ('AF', 'tanh'),('F', hidden), 

('AF', 'tanh'), ('F', output)] 

 

Or perhaps you want a different number of neurons at each hidden layer, tapering them down is a 

common method. The example below tapers from 100 down to 25 nodes before the output: 

 

layers = [('F', 100), ('AF', 'tanh'), ('F', 50), ('AF', 'tanh'), ('F', 25), ('AF', 'tanh'), ('F', output)] 
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IMPLIMANTION AND ARCHITECTURE DIAGRAM 
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CONCLUSION  

In this, we learnt how difficult it can be to device a model that is able to correctly predict stock 

price movements.We started with a motivation for why we need to model stock prices. This was 

followed by an explanation and code for downloading data. Then we looked at two averaging 

techniques that allow you to make predictions one step into the future. we next saw that these methods 

are futile when you need to predict more than one step into the future. Thereafter we discussed how 

you can use LSTMs to make predictions many steps into the future. Finally we visualized the results 

and saw that your model (though not perfect) is quite good at correctly predicting stock price 

movements.  

Here, I'm stating several takeaways.  

1. Stock price/movement prediction is an extremely difficult task. Personally I don't think any of the 

stock prediction models out there shouldn't be taken for granted and blindly rely on them. However 

models might be able to predict stock price movement correctly most of the time, but not always.  

2. Do not be fooled by articles out there that shows predictions curves that perfectly overlaps the true 

stock prices. This can be replicated with a simple averaging technique and in practice it's useless. A 

more sensible thing to do is predicting the stock price movements.  

3. The model's hyperparameters are extremely sensitive to the results you obtain. So a very good thing 

to do would be to run some hyperparameter optimization technique (for example, Grid search / Random 

search) on the hyperparameters. Below I listed some of the most critical hyperparameters  

o The learning rate of the optimizer  

o Number of layers and the number of hidden units in each layer  

o The optimizer. I found Adam to perform the best  

o Type of the model. You can try GRU/ Standard LSTM/ LSTM with Peepholes and evaluation 

performance difference  

4. In this we did something faulty (due to the small size of data)! That is we used the test loss to decay 

the learning rate. This indirectly leaks information about test set into the training procedure. A better 

way of handling this is to have a separate validation set (apart from the test set) and decay learning rate 

with respect to performance of the validation set.  
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