

K3 (6)

K3 (9)

School of Basic Sciences

Bachelor of Science Honours in Physics Semester End Examination - Jun 2024

Duration : 180 Minutes Max Marks : 100

Sem II - C1UD201T - Mathematical Physics-II

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1) Explain what a Fourier series is and how it relates to periodic ^{K1 (3)} functions.

2) Form the PDE from
$$z = ax + by + a^2 + b^2$$
 K2 (4)

3) Find the ordinary points, Singular points, regular singular points, and ^{K2 (6)} irregular singular points of the differential equation:

$$(1-x^{2})\frac{d^{2}y}{dx^{2}} - 2x\frac{dy}{dx} + n(n+1)y = 0$$

⁴⁾ Solve in series the differential equation

$$\frac{d^2 y}{dx^2} + 4xy = 0$$

Evaluate
$$\int_{0}^{2} x^{2} (2-x)^{3} dx$$
 (6)

Evaluate
$$\int_0^\infty x^9 e^{-2x^2} dx$$
 K3 (9)

7)

5)

6)

Prove the following relation $\left[J_{\frac{1}{2}}(x)\right]^2 + \left[J_{\frac{-1}{2}}(x)\right]^2 = \frac{2}{\pi x}$

⁸⁾ Form the PDE by eliminating arbitrary constants a and b from the ^{K4 (8)} relation $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

9) Evaluate the integral $\int_{0}^{\frac{\pi}{2}} sin^{2}\theta cos^{4}\theta d\theta$ K4 (12)

10) Express $\int_{0}^{1} x^{m} (1-x^{p})^{n} dx$ in terms of gamma function and hence evaluate $\int_{0}^{1} x^{5} (1-x^{3})^{10} dx$

11) K5 (15) Find the Fourier series expansion of the periodic function f(x). $f(x) = x + x^2, -\pi < x < \pi, f(x + 2\pi) = f(x)$ and hence deduce $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} + \dots + \infty = \frac{\pi^2}{12}$ OR Given that the Fourier series expansion of K5 (15) $f(x) = \left(\frac{\pi - x}{2}\right)^2, 0 \le x \le 2\pi, f(x + 2\pi) = f(x)$ Is defined as:

 $f(x) = \frac{\pi^2}{12} + \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$ Hence deduce: $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \infty = \frac{\pi^2}{6}$

Form the partial differential equation by eliminating arbitrary function K6 (12) 12) $z = y^2 + f(\frac{1}{x} + \log y)$

Evaluate $\int_0^\infty \frac{1}{1+x^4} dx$

- OR

K6 (12)