
TWITTER DATA SENTIMENTAL ANALYSIS

USING

MULTIPLE CLASSIFICATIONS

A Project Report of Capstone Project - 2

Submitted by

RAGHAV SHARMA

(1613107044 / 16SCSE107064)

in partial fulfillment for the award of the degree

of

Bachelor of Technology

IN

Computer Science and Engineering with Specialization of Business

Analytics and Optimization

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Dr. A.JOHN

Assistant Professor

APRIL / MAY - 2020

ii

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “TWITTER DATA SENTIMENTAL

ANALYSIS USING MULTIPLE CLASSIFICATIONS” is the bonafide work

of “RAGHAV SHARMA (1613107044)” who carried out project work under

my supervision.

SIGNATURE OF HEAD

Dr. MUNISH SHABARWAL,

PhD (Management), PhD (CS)

Professor & Dean

School of Computing Science

and Engineering

SIGNATURE OF SUPERVISOR

Dr.A.JOHN

Assistant Professor

School of Computing Science

and Engineering

iii

CHAPTER NO.

1.

2.

3.

4.

TABLE OF CONTENT

TITLE

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

INTRODUCTION

1.1 About the Project

1.2 Machine Learning

1.3 Sentimental Analysis

EXISTING SYSTEM

PROPOSED SYSTEM

IMPLEMENTATION

 4.1 Pre-Processing

 4.1.1 URL

 4.1.2 User Mention

 4.1.3 Emoticon

 4.1.4 Hashtags

 4.1.5 Re-tweets

 4.2 Feature Extraction

 4.2.1 Unigram

 4.2.2 Bigram

 4.3 Feature Representation

 4.3.1 Sparse Vector Representation

 4.3.2 Dense Vector Representation

 4.4 Classifiers

 4.4.1 Naïve Bayes

 4.4.2 Maximum Entropy

 4.4.3 Decision Tree

 4.4.4 Random Forest

PAGE NO.

v

vi

vii

 01

01

01

02

04

05

06

06

07

07

08

08

08

09

10

11

12

12

12

13

13

13

14

14

iv

5.

6.

7.

 4.4.5 XGBoost

 4.4.6 SVM

 4.4.7 Multi-Layer Perceptron

 4.4.8 Convolutional Neural Network

 4.4.9 Recurrent Neural Network

 4.5 Experiment

 4.5.1 Baseline

 4.5.2 Naïve Bayes

 4.5.3 Maximum Entropy

 4.5.4 Decision Tree

 4.5.5 Random Forest

 4.5.6 XGBoost

 4.5.7 SVM

 4.5.8 Multi-Layer Perceptron

 4.5.9 Convolutional Neural Network

 4.5.10 Recurrent Neural Network

RESULT

CONCLUSION

REFERENCES

15

15

16

16

16

17

17

17

18

19

20

20

21

21

22

25

27

32

33

v

ABSTRACT

Over the past decade humans have experienced exponential growth in the use of online

resources, in particular social media and microblogging websites such as Twitter. This project

focuses on implementing various machine learning and deep learning algorithms to perform

sentimental analysis and comparing different machine learning methods for the task of

sentiment classification. In the end, the major findings were that out of the different

classification models evaluated it was found that the LSTM classifier provides the highest

classification accuracy for this domain. From the evaluation of this study, it can be concluded

that the proposed machine learning and deep learning techniques are effective for sentimental

analysis.

vi

LIST OF TABLES

1. Statistics of Preprocessed Train dataset………………………………………………07

2. Statistics of Preprocessed Test dataset………………………………………………..07

3. Emoticons matched by our method…………………………………………………...08

4. Tweets in Raw and Normalized version……………………………………………....09

vii

LIST OF FIGURES

1. Frequencies of Top 20 Unigrams…………………………………………………10

2. Unigrams frequencies follows Zipf’s Law………………………………………..11

3. Frequencies of Top 20 Bigrams…………………………………………………..11

4. Prediction of Baseline Model……………………………………………………..17

5. Prediction of Naïve Bayes Model………………………………………………...18

6. Prediction of Maxent Model……………………………………………………...19

7. Prediction of Decision Tree Model……………………………………………….19

8. Prediction of Random Forest Model……………………………………………...20

9. Prediction of XGBoost Model……………………………………………………21

10. Prediction of SVM Model………………………………………………………...21

11. Architecture of MLP Model………………………………………………………22

12. Prediction of MLP Model………………………………………………………...22

13. Neural Network Architecture with 1 Conv Layer………………………………...24

14. Neural Network Architecture with 2 Conv Layers……………………………….24

15. Neural Network Architecture with 3 Conv Layers……………………………….24

16. Neural Network Architecture with 4 Conv Layers……………………………….25

17. Prediction of best CNN Model……………………………………………………25

18. Architecture of best performing LSTM – NN……………………………………26

19. Prediction of best LSTM Model………………………………………………….26

20. Accuracy achieved by Baseline Model…………………………………………...27

21. Accuracy achieved by Naïve Bayes Model………………………………………27

22. Accuracy achieved by Maxent using Unigram + Bigram………………………...27

23. Accuracy achieved by Logistic Regression Model……………………………….28

24. Accuracy achieved by Decision Tree Model……………………………………..28

25. Accuracy achieved by XGBoost Model……….…………………………………28

26. Accuracy achieved by SVM Model………………………………………………28

27. Accuracy achieved by MLP Model……………………………………………….29

28. Params in 4 Conv-NN…………………………………………………………….29

29. Accuracy achieved by 4 Conv-NN Model………………………………………..30

30. Params in LSTM Model…………………………………………………………..30

31. Accuracy achieved by LSTM Model……………………………………………..31

32. Comparison of various classifications……………………………………………31

1

CHAPTER 1

INTRODUCTION

1.1 About the Project

What do you do when you want to express yourself or reach out to a large audience? We log

on to one of our favourite social media services. Social Media has taken over in today's world,

most of the methods we use to connect and communicate are using social networks, and Twitter

is one of the major places where we express our sentiments about a specific topic or a concept.

Twitter serves as a mean for individuals to express their thoughts or feelings about different

subjects. These emotions are used in various analytics for better understanding of humans.

In this study, we will perform a sentimental analysis of "tweets" using diverse machine learning

algorithms. In this, we try to classify the polarity of the tweet where it is either positive or

negative. If the tweet has both positive and negative features, the more superior sentiment

should be preferred as the final label.

1.2 Machine Learning

Machine learning is a subfield of artificial intelligence (AI). The goal of machine learning

generally is to understand the structure of data and fit that data into models that can be

understood and utilized by people.

In general, there are two types of machine learning algorithms supervised, and unsupervised,

there are variations on these algorithms such hybrid types (semi-supervised learning) but for

this report they will be classified into one of the two categories.

The method of supervised learning consists of presenting an algorithm with a training dataset;

this dataset consists of training examples and the corresponding expected output for each

example. The expected output is general known as the target. A supervised learning algorithm

2

uses this dataset so that it can learn to map the input examples to their expected target. If the

training process is implemented correctly the machine learning algorithm should be able to

generalize the training data so that it can correctly map new data that it has never seen before.

Unsupervised machine learning algorithms do not require training data, they operate on data

where the output is unknown. The object of this form of learning is usually to discover patterns

in the data that may not be known by the researcher. An example of an unsupervised method

would be clustering where the algorithm uses a distance function to group similar data points

together.

This project focuses exclusively on supervised learning algorithms for the task of text

classification, however there are two major applications for supervised methods:

Classification:

The target output is a class or label, the simplest case is a choice between zero ore one, although

there can also be multiple alternative classes. Classification is used for many applications such

as test classification, object recognition, and voice recognition software.

Regression:

In this case the target is a real number or vector of real numbers. Regression is mostly used for

prediction. Supervised regression algorithms are used mostly for prediction. Example

applications are stock market prediction, in power systems analysis it can be to predict spikes

in a network, and most recently they have been used in memory caching to complement the

‘locality of reference’ method.

1.3 Sentimental Analysis

Sentiment analysis is predominantly implemented in software which can autonomously extract

emotions and opinions in text. It has many real-world applications such as it allows companies

3

to analyse how their products or brand is being perceived by their consumers, this usage is

particularly applicable to this project. It is difficult to classify sentiment analysis as one specific

field of study as in incorporates many different areas such as linguistics, Natural Language

Processing (NLP), and Machine Learning or Artificial Intelligence.

As the majority of the sentiment that is uploaded to the internet is of an unstructured nature it

is a difficult task for computers to process it and extract meaningful information from it. Natural

language processing techniques are used to transform this raw data into a form that it can be

processed efficiently by a computer.

4

CHAPTER 2

EXISTING SYSTEM

Over the past decade humans have experienced exponential growth in the use of online

resources, in particular social media and microblogging websites such as Twitter, Facebook

and YouTube. Many companies and organizations have identified these resources as a rich

mine of marketing knowledge. Traditionally companies used interviews, questionnaires and

surveys to gain feedback and insight into how customers felt about their products. These

traditional methods were often extremely time consuming and expensive and did not always

return the results that the companies were looking for due to environmental factors and poorly

designed surveys.

Natural language processing and sentiment analysis are playing an increasingly important role

in making educated decisions on marketing strategies and giving valuable feedback on products

and services. There are massive amounts of data containing consumer sentiment uploaded to

the internet every day, this type of data is predominantly unstructured text that is difficult for

computers to gain meaning from.

In the past it was not possible to process such large amounts of unstructured data but now with

computational, massive datasets can be now processed with relative ease.

5

CHAPTER 3

PROPOSED SYSTEM

Twitter is a popular social networking website where members create and interact with

messages known as “tweets”. This serves as a mean for individuals to express their thoughts

or feelings about different subjects. Various different parties such as consumers and marketers

have done sentiment analysis on such tweets to gather insights into products or to conduct

market analysis. Furthermore, with the recent advancements in machine learning algorithms,

we are able improve the accuracy of our sentiment analysis predictions.

In this project, we will attempt to conduct sentiment analysis on “tweets” using various

different machine learning algorithms. We attempt to classify the polarity of the tweet where it

is either positive or negative. If the tweet has both positive and negative elements, the more

dominant sentiment should be picked as the final label.

we use the datasets from Kaggle which was crawled from the internet and labeled

positive/negative. The data provided comes with emoticons (emoji), usernames and hashtags

which are required to be processed (so as to be readable) and converted into a standard form.

We also need to extract useful features from the text such unigrams and bigrams which is a

form of representation of the “tweet”.

We use various machine learning algorithms based on NLP (Natural Language Processing) to

conduct sentiment analysis using the extracted features. Finally, we report our experimental

results and findings at the end.

6

CHAPTER 4

IMPLEMENTATION

Figure 1. Machine Learning Model

4.1 Pre-Processing

Raw tweets scraped from twitter generally result in a noisy dataset. This is due to the casual

nature of people’s usage of social media. Tweets have certain special characteristics such as

retweets, emoticons, user mentions, etc. which have to be suitably extracted. Therefore, raw

twitter data has to be normalized to create a dataset which can be easily learned by various

classifiers. We have applied an extensive number of pre-processing steps to standardize the

dataset and reduce its size. We first do some general pre-processing on tweets which is as

follows.

• Convert the tweet to lower case.

• Replace 2 or more dots (.) with space.

• Strip spaces and quotes (" and ’) from the ends of tweet.

• Replace 2 or more spaces with a single space.

7

 Total Unique Average Max Positive Negative

Tweets 100000 ⸻ ⸻ ⸻ 56462 43538

User Mention 88955 ⸻ 0.8895 12 ⸻ ⸻

Emoticons 1184 ⸻ 0.0118 5 997 187

URLs 3599 ⸻ 0.0360 4 ⸻ ⸻

Unigrams 1192636 50376 11.9264 40 ⸻ ⸻

Bigrams 1093168 385113 10.9317 ⸻ ⸻ ⸻

Table 1. Statistics of Preprocessed Train dataset

 Total Unique Average Max Positive Negative

Tweets 300000 ⸻ ⸻ ⸻ ⸻ ⸻

User Mention 297470 ⸻ 0.9916 12 ⸻ ⸻

Emoticons 3410 ⸻ 0.0114 5 3043 367

URLs 9486 ⸻ 0.0316 4 ⸻ ⸻

Unigrams 3626166 93456 12.0872 40 ⸻ ⸻

Bigrams 3327647 879825 11.0922 ⸻ ⸻ ⸻

Table 2. Statistics of Preprocessed Test dataset

We handle special twitter features as follows.

4.1.1 URL

Users often share hyperlinks to other webpages in their tweets. Any particular URL is not

important for text classification as it would lead to very sparse features. Therefore, we replace

all the URLs in tweets with the word URL. The regular expression used to match URLs is

((www\.[\S]+)|(https?://[\S]+)).

4.1.2 User Mention

Every twitter user has a handle associated with them. Users often mention other users in their

tweets by @handle. We replace all user mentions with the word USER_MENTION. The

regular expression used to match user mention is @[\S]+.

8

4.1.3 Emoticon

Users often use a number of different emoticons in their tweet to convey different emotions. It

is impossible to exhaustively match all the different emoticons used on social media as the

number is ever increasing. However, we match some common emoticons which are used very

frequently. We replace the matched emoticons with either EMO_POS or EMO_NEG

depending on whether it is conveying a positive or a negative emotion. A list of all emoticons

matched by our method is given in table.

EMOTICONS TYPE REGEX REPLACEMENT

:) , :) , :-) , (: , (

: , (- : , : ‘)

Smile (: \s? \) |: -\) |\

(\s? :|\(-:|:\’\))

EMO_POS

:D, : D , :-D , xD, x-

D , XD , X-D

Laugh (: \s? D|:-D|x-?

D|X-? D)

EMO_POS

;-) , ;) , ;-D , ;D ,

(; , (-;

Wink (: \s? \ (|: -\ (|\)

\s? :|\)-:)

EMO_POS

<3 , :* Love (<3|: *) EMO_POS

:-(, : (, : (,): ,

)-:

Sad (: \s? \ (|: -\ (|\)

\s? :|\)-:)

EMO_NEG

:,(, :’(, :"(Cry (:,\(|:\’\(|:"\() EMO_NEG

Table 3. Emoticons matched by our method

4.1.4 Hashtags

Hashtags are unspaced phrases prefixed by the hash symbol (#) which is frequently used by

users to mention a trending topic on twitter. We replace all the hashtags with the words with

the hash symbol. For example, #hello is replaced by hello. The regular expression used to match

hashtags is #(\S+).

4.1.5 Re-tweet

Retweets are tweets which have already been sent by someone else and are shared by other

users. Retweets begin with the letters RT. We remove RT from the tweets as it is not an

important feature for text classification. The regular expression used to match retweets is \brt\b.

9

After applying tweet level pre-processing, we processed individual words of tweets as follows.

• Strip any punctuation [’"?!,.():;] from the word.

• Convert 2 or more letter repetitions to 2 letters. Some people send tweets like I am

sooooo happpppy adding multiple characters to emphasize on certain words. This

is done to handle such tweets by converting them to I am so happy.

• Remove - and ’. This is done to handle words like t-shirt and their’s by converting

them to the more general form tshirt and theirs.

• Check if the word is valid and accept it only if it is. We define a valid word as a

word which begins with an alphabet with successive characters being alphabets,

numbers or one of dot (.) and underscore (_).

Some example tweets from the training dataset and their normalized versions are shown in

table.

Raw misses Swimming Class. http://plurk.com/p/12nt0b

Normalized misses swimming class URL

Raw @98PXYRochester HEYYYYYYYYY!! its Fer from Chile again

Normalized USER_MENTION heyy its fer from chile again

Raw Sometimes, You gotta hate #Windows updates.

Normalized sometimes you gotta hate windows updates

Raw @Santiago_Steph hii you are so chill out person :)

Normalized USER_MENTION hii you are so chill out person EMO_POS

Raw @bolly47 oh no :’(r.i.p. your bella

Normalized USER_MENTION oh no EMO_NEG r.i.p your bella

Table 4. Tweets in Raw and Normalized version

4.2 Feature Extraction

We extract two types of features from our dataset, namely unigrams and bigrams. We create a

frequency distribution of the unigrams and bigrams present in the dataset and choose top N

unigrams and bigrams for our analysis.

10

4.2.1 Unigram

Probably the simplest and the most commonly used features for text classification is the

presence of single words or tokens in the text. We extract single words from the training dataset

and create a frequency distribution of these words. A total of 50376 unique words are extracted

from the dataset. Out of these words, most of the words at end of frequency spectrum are noise

and occur very few times to influence classification. We, therefore, only use top N words from

these to create our vocabulary where N is 15000 for sparse vector classification and 90000 for

dense vector classification. The frequency distribution of top 20 words in our vocabulary is

shown in figure 1.

Figure 1. Frequencies of Top 20 Unigrams

We can observe in figure 2 that the frequency distribution follows Zipf’s law which states that

in a large sample of words, the frequency of a word is inversely proportional to its rank in the

frequency table. This can be seen by the fact that a linear trendline with a negative slope fits

the plot of log(Frequency) vs. log(Rank). The equation of the trendline shown in figure 2 is

log(Frequency) = −0.78log(Rank) + 13.31.

11

Figure 2. Unigrams frequencies follow Zipf’s Law

4.2.2 Bigram

Bigrams are word pairs in the dataset which occur in succession in the corpus. These features

are a good way to model negation in natural language like in the phrase – This is not good. A

total of 385113 unique bigrams were extracted from the dataset. Out of these, most of the

bigrams at end of frequency spectrum are noise and occur very few times to influence

classification. We therefore use only top 10000 bigrams from these to create our vocabulary.

The frequency distribution of top 20 bigrams in our vocabulary is shown in figure 3.

Figure 3. Frequencies of Top 20 Bigrams

12

4.3 Feature Representation

After extracting the unigrams and bigrams, we represent each tweet as a feature vector in either

sparse vector representation or dense vector representation depending on the classification

method.

4.3.1 Sparse Vector Representation

Depending on whether or not we are using bigram features, the sparse vector representation of

each tweet is either of length 15000 (when considering only unigrams) or 25000 (when

considering unigrams and bigrams). Each unigram (and bigram) is given a unique index

depending on its rank. The feature vector for a tweet has a positive value at the indices of

unigrams (and bigrams) which are present in that tweet and zero elsewhere which is why the

vector is sparse. The positive value at the indices of unigrams (and bigrams) depends on the

feature type we specify which is one of presence and frequency.

• presence: In the case of presence feature type, the feature vector has a 1 at

indices of unigrams (and bigrams) present in a tweet and 0 elsewhere.

• frequency: In the case of frequency feature type, the feature vector has a

positive integer at indices of unigrams (and bigrams) which is the frequency of

that unigram (or bigram) in the tweet and 0 elsewhere. A matrix of such term-

frequency vectors is constructed for the entire training dataset and then each

term frequency is scaled by the inverse-document-frequency of the term (idf) to

assign higher values to important terms.

4.3.2 Dense Vector Representation

For dense vector representation we use a vocabulary of unigrams of size 90000 i.e. the top

90000 words in the dataset. We assign an integer index to each word depending on its rank

13

(starting from 1) which means that the most common word is assigned the number 1, the second

most common word is assigned the number 2 and so on. Each tweet is then represented by a

vector of these indices which is a dense vector.

4.4 Classifiers

4.4.1 Naïve Bayes

Naive Bayes is a simple model that can be used for text classification. In this model, the class

ĉ is assigned to a tweet t, where

𝑐̂ = 𝑎𝑟𝑔𝑚𝑎𝑥 P(c|t)

P(c|t) α P(c) ∏ P(𝑓𝑖|c)

𝑛

𝑖=1

In the formula above, 𝑓𝑖 represents the i-th feature of total n features. P(c) and P(𝑓𝑖 |c) can be

obtained through maximum likelihood estimates.

4.4.2 Maximum Entropy

Maximum Entropy Classifier model is based on the Principle of Maximum Entropy. The main

idea behind it is to choose the most uniform probabilistic model that maximizes the entropy,

with given constraints. Unlike Naive Bayes, it does not assume that features are conditionally

independent of each other. So, we can add features like bigrams without worrying about feature

overlap. In a binary classification problem like the one we are addressing; it is the same as

using Logistic Regression to find a distribution over the classes. The model is represented by

𝑃𝑀𝐸(𝑐|𝑑, 𝜆) =
exp [∑ 𝜆𝑖𝑓𝑖(𝑐, 𝑑)𝑖]

∑ 𝑒𝑥𝑝𝑐′ [∑ 𝜆𝑖𝑓𝑖(𝑐, 𝑑)𝑖]

Here, c is the class, d is the tweet, and λ is the weight vector. The weight vector is found by

numerical optimization of the lambdas to maximize the conditional probability.

14

4.4.3 Decision Tree

Decision trees are a classifier model in which each node of the tree represents a test on the

attribute of the data set, and its children represent the outcomes. The leaf nodes represent the

final classes of the data points. It is a supervised classifier model that uses data with known

labels to form the decision tree and then the model is applied to the test data. For each node in

the tree, the best test condition or decision has to be taken. We use the GINI factor to decide

the best split. For a given node t,

𝐺𝐼𝑁𝐼(𝑡) = 1 − ∑ [𝑝(𝑗|𝑡)]2

𝑗

where p(j|t) is the relative frequency of class j at node t, and

𝐺𝐼𝑁𝐼𝑠𝑝𝑙𝑖𝑡 = ∑
𝑛𝑖

𝑛
𝐺𝐼𝑁𝐼(𝑖)

𝑘

𝑖=1

(𝑛𝑖 = number of records at child i, n = number of records at node p) indicates the quality of

the split. We choose a split that minimizes the GINI factor.

4.4.4 Random Forest

Random Forest is an ensemble learning algorithm for classification and regression. Random

Forest generates a multitude of decision trees classifies based on the aggregated decision of

those trees. For a set of tweets 𝑥1,𝑥2,...𝑥𝑛 and their respective sentiment labels 𝑦1,𝑦2,...𝑦𝑛

bagging repeatedly selects a random sample (𝑋𝑏,𝑌𝑏) with replacement. Each classification tree

𝑓𝑏 is trained using a different random sample (𝑋𝑏, 𝑌𝑏) where b ranges from 1...B. Finally, a

majority vote is taken of predictions of these B trees.

15

4.4.5 XGBoost

XGBoost is a form of gradient boosting algorithm which produces a prediction model that is

an ensemble of weak prediction decision trees. We use the ensemble of K models by adding

their outputs in the following manner

𝑦̂𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 𝜖 𝐹

𝐾

𝑘=1

where F is the space of trees, 𝑥𝑖 is the input and 𝑦̂𝑖 is the final output. We attempt to minimize

the following loss function

𝐿(Ф) = ∑ 𝑙(𝑦𝑖̂, 𝑦𝑖) + ∑ Ω(𝑓𝑘)

𝑖

where Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆||𝑤||2

where Ω is the regularisation term.

4.4.6 SVM

SVM, also known as support vector machines, is a non-probabilistic binary linear classifier.

For a training set of points (𝑥𝑖,𝑦𝑖) where x is the feature vector and y are the class, we want to

find the maximum-margin hyperplane that divides the points with 𝑦𝑖= 1 and 𝑦𝑖= −1. The

equation of the hyperplane is as follows

w · x – b = 0

We want to maximize the margin, denoted by γ, as follows

max
𝑤,𝛾

𝛾, 𝑠. 𝑡. ∀𝑖, 𝛾 ≤ 𝑦𝑖(𝑤 · 𝑥𝑖 + 𝑏)

to separate the points well.

16

4.4.7 Multi-Layer Perceptron

MLP or Multi-Layer perceptron is a class of feed-forward neural networks, which has at least

three layers of neurons. Each neuron uses a non-linear activation function and learns with

supervision using the backpropagation algorithm. It performs well in complex classification

problems such as sentiment analysis by learning non-linear models.

4.4.8 Convolutional Neural Network

Convolutional Neural Networks or CNNs are a type of neural network which involves layers

called convolution layers that can interpret spacial data. A convolution layer has several filters

or kernels which it learns to extract specific types of features from the data. The kernel is a 2D

window which is slid over the input data performing the convolution operation. We use

temporal convolution in our experiments which is suitable for analyzing sequential data like

tweets.

4.4.9 Recurrent Neural Network

Recurrent Neural Network is a network of neuron-like nodes, each with a directed (one-way)

connection to every other node. In RNN, hidden state denoted by ℎ𝑡 acts as a memory of the

network and learns contextual information which is important for the classification of natural

language. The output at each step is calculated based on the memory ℎ𝑡 at time t and current

input 𝑥𝑡. The main feature of an RNN is its hidden state, which captures sequential dependence

in the information. We used Long Term Short Memory (LSTM) networks in our experiments

which are a special kind of RNN capable of remembering information over a long time.

17

4.5 Experiment

We perform experiments using various different classifiers. Unless otherwise specified, we use

10% of the training dataset for validation of our models to check against overfitting i.e. we use

100000 tweets for training and 80000 tweets for validation. For Naive Bayes, Maximum

Entropy, Decision Tree, Random Forest, XGBoost, SVM and Multi-Layer Perceptron we use

sparse vector representation of tweets. For Recurrent Neural Networks and Convolutional

Neural Network, we use the dense vector representation.

4.5.1 Baseline

For a baseline, we use a simple positive and negative word counting method to assign sentiment

to a given tweet. We use the Opinion Dataset of positive and negative words to classify tweets.

In cases when the number of positive and negative words are equal, we assign positive

sentiment. Using this baseline model, we achieve a classification accuracy of 65.35%.

Figure 4. Prediction of Baseline Model

4.5.2 Naïve Bayes

We used MultinomialNB from sklearn.naive_bayes package of scikit-learn for Naive Bayes

classification. We used Laplace smoothed version of Naive Bayes with the smoothing

parameter α set to its default value of 1. We used sparse vector representation for classification

18

and ran experiments using both presence and frequency feature types. We found that presence

features outperform frequency features because Naive Bayes is essentially built to work better

on integer features rather than floats. We also observed that addition of bigram features

improves the accuracy. We obtain a best validation accuracy of 77.34% using Naive Bayes

with presence of unigrams and bigrams.

Figure 5. Prediction of Naïve Bayes Model

4.5.3 Maximum Entropy

The nltk library provides several text analysis tools. We use the MaxentClassifier to perform

sentiment analysis on the given tweets. Unigrams, bigrams and a combination of both were

given as input features to the classifier. The Improved Iterative Scaling algorithm for training

provided better results than Generalised Iterative Scaling. Feature combination of unigrams

and bigrams, gave better accuracy of 76.27% compared to just unigrams (75.64%) and just

bigrams (75.40%).

For a binary classification problem, Logistic Regression is essentially the same as Maximum

Entropy. So, we implemented a sequential Logistic Regression model using keras, with

sigmoid activation function, binary cross-entropy loss and Adam’s optimizer achieving better

performance than nltk. Using frequency and presence features we get almost the same

19

accuracies, but the performance is slightly better when we use unigrams and bigrams together.

The best accuracy achieved was 77.87%.

Figure 6. Prediction of Maxent Model

4.5.4 Decision Tree

We use the DecisionTreeClassifier from sklearn.tree package provided by scikit-learn to build

our model. GINI is used to evaluate the split at every node and the best split is chosen always.

The model performed slightly better using the presence feature compared to frequency. Also

using unigrams with or without bigrams didn’t make any significant improvements. The best

accuracy achieved using decision trees was 69.06%.

Figure 7. Prediction of Decision Tree Model

20

4.5.5 Random Forest

We implemented random forest algorithm by using RandomForestClassifier from

sklearn.ensemble provided by scikit-learn. We experimented using 10 estimators (trees) using

both presence and frequency features. presence features performed better than frequency

though the improvement was not substantial. We get an accuracy of 76.23%.

Figure 8. Prediction of Random Forest Model

4.5.6 XGBoost

We also attempted tackling the problem with XGboost classifier. We set max tree depth to 25

where it refers to the maximum depth of a tree and is used to control over-fitting as a high value

might result in the model learning relations that are tied to the training data. Since XGboost is

an algorithm that utilises an ensemble of weaker trees, it is important to tune the number of

estimators that is used. We realised that setting this value to 400 gave the best result. The best

result was 77.11% which came from the configuration of presence with Unigrams + Bigrams.

21

Figure 9. Prediction of XGBoost Model

4.5.7 SVM

We utilise the SVM classifier available in sklearn. We set the C term to be 0.1. C term is the

penalty parameter of the error term. In other words, this influences the misclassification on the

objective function. We run SVM with both Unigram as well Unigram + Bigram. We also run

the configurations with frequency and presence. The best result was 78.73% which came with

the configuration of frequency and Unigram + Bigram.

Figure 10. Prediction of SVM Model

4.5.8 Multi-Layer Perceptron

We used keras with TensorFlow backend to implement the Multi-Layer Perceptron model. We

used a 1-hidden layer neural network with 500 hidden units. The output from the neural

network is a single value which we pass through the sigmoid non-linearity to squish it in the

22

range [0,1]. The architecture of the model is shown in figure. Red hidden layers represent layers

with sigmoid non-linearity. We trained our model using binary cross entropy loss with the

weight update scheme being the one defined by Adam et. al. We ran our model up to 20 epochs

after which it began to overfit. We used sparse vector representation of tweets for training. We

found that the presence of bigrams features significantly improved the accuracy. We achieved

the best accuracy of 76.48%.

Figure 11. Architecture of MLP model

Figure 12. Prediction of MLP Model

4.5.9 Convolutional Neural Network

We used keras with TensorFlow backend to implement the Convolutional Neural Network

model. We used the dense vector representation of the tweets to train our CNN models. We

23

used a vocabulary of top 90000 words from the training dataset. We represent each word in our

vocabulary with an integer index from 1...90000 where the integer index represents the rank of

the word in the dataset. The integer index 0 is reserved for the special padding word. Further

each of these 90000+1 words is represented by a 200-dimensional vector. The first layer of our

models is the Embedding layer which is a matrix of shape (v+1)×d where v is vocabulary size

(=90000) and d is the dimension of each word vector (=200). We initialize the embedding layer

with random weights from N(0, 0.01). Each row of this embedding matrix represents the 200-

dimensional word vector for a word in the vocabulary. For words in our vocabulary which

match Glove word vectors provided by the StanfordNLP group, we seed the corresponding row

of the embedding matrix from Glove vectors. Each tweet i.e. its dense vector representation is

padded with 0s at the end until its length is equal to max_length which is a parameter we tweak

in our experiments. We trained our model using binary cross entropy loss with the weight

update scheme being the one defined by Adam et. al. We also conducted experiments using

SGD + Momentum weight updates and found out that it takes longer (≈100 epochs) to converge

compared to validation accuracy equivalent to Adam. We ran our model up to 10 epochs. Using

the Adam weight update scheme, the model converges very fast (≈4 epochs) and begins to

overfit badly after that. We, therefore, use models from 3rd or 4th epoch for our results. We

tried four different CNN architectures which are as follows.

1-Conv-NN: The complete architecture of the network is embedding_layer (800001×200) →

dropout (0.2) → conv_1 (500 filters) → relu → global_maxpool → dense (500) → relu →

dropout (0.2) → dense (1) → sigmoid

24

Figure 13. Neural Network Architecture with 1 Conv Layer

2-Conv-NN: The complete architecture of the network is embedding_layer (900001×200) →

dropout (0.4) → conv_1 (600 filters) → relu → conv_2 (300 filters) → relu → flatten → dense

(600) → relu → dropout (0.5) → dense (1) → sigmoid

Figure 14. Neural Network Architecture with 2 Conv Layers

3-Conv-NN: The complete architecture of the network is embedding_layer (900001×200) →

dropout (0.4) → conv_1 (600 filters) → relu → conv_2 (300 filters) → relu → conv_3 (150

filters) → relu → flatten → dense (600) → relu → dropout (0.5) → dense (1) → sigmoid

Figure 15. Neural Network Architecture with 3 Conv Layers

25

4-Conv-NN: The complete architecture of the network is embedding_layer (900001×200) →

dropout (0.4) → conv_1 (600 filters) → relu → conv_2 (300 filters) → relu → conv_3 (150

filters) → relu → conv_4 (75 filters) → relu → flatten → dense (600) → relu → dropout (0.5)

→ dense (1) → sigmoid

Figure 16. Neural Network Architecture with 4 Conv Layers

We notice that each successive CNN model is better than the previous one with 1-Conv-NN,

2-Conv-NN, 3-Conv-NN and 4-Conv-NN achieving accuracies of 75.86, 76.76, 76.95 and

78.47 respectively.

Figure 17. Prediction of best CNN Model

4.5.10 Recurrent Neural Networks

We used neural networks with LSTM layers in our experiments. We used a vocabulary of top

20000 words from the training dataset. We used the dense vector representation for training

our models. We pad or truncate each dense vector representation to make it equal to max_length

26

which is a parameter we tweak in our experiments. We obtain best accuracy of 78.87% among

the different LSTM models.

Figure 18. Architecture of best performing LSTM – NN

Figure 19. Prediction of best LSTM Model

27

CHAPTER 5

RESULT

Figure 20. Accuracy achieved by Baseline Model

Figure 21. Accuracy achieved by Naïve Bayes Model

Figure 22. Accuracy achieved by Maxent using Unigrams + Bigrams

28

Figure 23. Accuracy achieved by Logistic Regression Model

Figure 24. Accuracy achieved by Decision Tree Model

Figure 25. Accuracy achieved by XGBoost Model

Figure 26. Accuracy achieved by SVM Model

29

Figure 27. Accuracy achieved by MLP Model

Figure 28. Params in 4 Conv-NN

30

Figure 29. Accuracy achieved by 4 Conv – NN

Figure 30. Params in LSTM Model

31

Figure 31. Accuracy achieved by LSTM Model

Figure 32. Comparison of various Classifications

32

CHAPTER 6

CONCLUSION

The provided tweets were a mixture of words, emoticons, URLs, hashtags, user mentions, and

symbols. Before training the we pre-process the tweets to make it suitable for feeding into

models. We implemented several machine learning algorithms like Naive Bayes, Maximum

Entropy, Decision Tree, Random Forest, XGBoost, SVM, Multi-Layer Perceptron, Recurrent

Neural networks and Convolutional Neural Networks to classify the polarity of the tweet. We

used two types of features namely unigrams and bigrams for classification and observes that

augmenting the feature vector with bigrams improved the accuracy. Once the feature has been

extracted it was represented as either a sparse vector or a dense vector. It has been observed

that presence in the sparse vector representation recorded a better performance than frequency.

Future directions

• Handling emotion ranges: We can improve and train our models to handle a range of

sentiments. Tweets don’t always have positive or negative sentiment. At times they may have

no sentiment i.e. neutral. Sentiment can also have gradations like the sentence, this is good, is

positive but the sentence, this is extraordinary. is somewhat more positive than the first. We

can therefore classify the sentiment in ranges, say from -2 to +2.

• Using symbols: During our pre-processing, we discard most of the symbols like commas,

full-stops, and exclamation mark. These symbols may be helpful in assigning sentiment to a

sentence.

33

REFERENCES

[1] A Agarwal, B Xie, I Vovsha, O Rambow, RJ Passonneau. (2011). Sentiment Analysis of Twitter

Data. Proceedings of the Workshop on Language in Social Media (LSM 2011), 30-38

[2] V Kharde, P Sonawane (2016). Sentiment analysis of twitter data: a survey of technique arXiv preprint

arXiv:1601.06971

[3] G Gautam, D Yadav, 2014, Sentiment analysis of twitter data using machine learning approaches

and semantic analysis Seventh International Conference on Contemporary Computing (IC3), 437-442

[4] B Gokulakrishnan, P Priyanthan, T Ragavan, N Prasath, AS Perera (2012). Opinion mining and

sentiment analysis on twitter data stream Advances in ICT for Emerging Regions (ICTer), 2012

International Conference …

[5] VS Pagolu, KN Reddy, G Panda, B Majhi (2016) Sentiment analysis of Twitter data for predicting

stock market movements international conference on signal processing, communication, power, and

…

[6] A Mittal, A Goel (2012) Stock prediction using twitter sentiment analysis Stanford University,

CS229 (2011 http://cs229. Stanford. edu/proj2011 …

[7] SA Bahrainian, A Dengel (2013) Sentiment analysis and summarization of twitter data 2013 IEEE

16th International Conference on Computational Science and …

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

