K5(10)

School of Computing Science and Engineering

Bachelor of Science in Computer Science Semester End Examination - Jun 2024

Duration : 180 Minutes Max Marks : 100

Sem IV - E1UP401T - Theory of Computation

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

- 1) Write CFG for regular expression $r = 0^{*}1(0+1)^{*}$ K1(2)
- ²⁾ Construct the DFA over $\Sigma = \{a, b\}$ which accepts all strings of odd ^{K2(4)} length
- Consider the following finite automata and check the given strings K2(6) are acceptable or not.(i) 1110 (ii) 0001 (iii) 1010

States	Input Alphabtes	
(Q)	0	1
->d0	q1	q3
q1	q0	q2
(q2)	q3	q1
03 q3	q2	q0

- 4) Convert the following CFG into CNF S \rightarrow ASA | aB, A \rightarrow B | S, B \rightarrow K₃₍₉₎ b | ϵ
- 5) Construct the PDA for the following language: $L = a^m b^n | n < m$ K3(9)
- ⁶⁾ Prove R=Q+RP has unique solution, R=QP*
- ⁷⁾ Construct a finite automata for the regular expression $(0+1)^*$ ^{K4(12)} $(00+11)(0+1)^*$.
- 8) Show that $L = \{a^p \ I \ is \ a \ prime\}$ is not a context-free language, K5(15)
- 9) Show that $L = \{a"b"c" | n \ge 1\}$ is not context-free but contextsensitive.
- ¹⁰⁾ Define Mealy machine as (Q, q0, Σ, O, δ, λ') where λ' is the output function that maps $Q \times \Sigma \rightarrow O$ and Moore machine as (Q, q0, Σ, O, δ, λ) where λ is the output function which maps Q → O and Construct a Mealy Machine (finite state machines) from The following transition table.

States	Next States		Output
(Q)	I/P=0	I/P=1	Output
→q1	q1	q2	0
q2	q1	q3	0
q3	q1	q3	1