1/4/01

School of University Polytechnic

Diploma in Mechanical Engineering Semester End Examination - Jun 2024

Duration: 180 Minutes Max Marks: 100

Sem IV - N1DL405C- N1DL401C - DPME2009 - Concept of Heat Transfer

General Instructions

Answer to the specific question asked
Draw neat, labelled diagrams wherever necessary
Approved data hand books are allowed subject to verification by the Invigilator

1)	Define Reynold's Number.	K1(2)
2)	Compare conduction and convection.	K2(4)
3)	Explain the concept of overall heat transfer coefficient with an electrical analogy.	K2(6)
4)	Consider a metal rod of length 'L,' cross-sectional area 'A,' and thermal conductivity 'k.' If one end of the rod is maintained at a temperature 'T1' and the other end at 'T2,' derive the equation for steady-state heat conduction through the rod. Show all relevant steps in your derivation.	K3(9)
5)	Describe free convection from a vertical flat plate with a suitable example.	K3(9)
6)	State how can absorptivity of an opaque body be improved?	K5(10)
7)	Differentiate the black body, gray body and opaque body.	K4(12)
8)	Translate and outline the fundamental principles of the black body concept and emissive power into practical engineering applications.	K5(15)
9)	Determine and estimate the influence of fouling on the overall performance of a heat exchanger, considering the fouling	K5(15)
10)	resistance, reduction in heat transfer coefficient. In what medium is the lumped system analysis more likely to be applicable: in water or air? Explain.	K6(18)