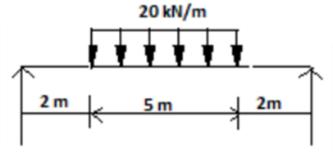


School of University Polytechnic

Diploma in Mechanical Engineering Semester End Examination - Jun 2024

Duration: 180 Minutes Max Marks: 100

Sem IV - N1DL403B - DPME2008 - Mechanics of Solid


General Instructions

Answer to the specific question asked

Draw neat, labelled diagrams wherever necessary

Approved data hand books are allowed subject to verification by the Invigilator

1) 2)	State Hooke's law. Quote the expressions for polar modulus of solid and hollow circular shaft.	K1(2) K2(4)
3)	Draw stress strain curve for mild steel and explain its salient points.	K2(6)
4)	· · · · · · · · · · · · · · · · · · ·	K3(9)
4)	Make use of graphical method draw the Mohr's Circle for two normal and tensile stresses.	K3(9)
5)	Construct the shear force and bending moment diagram for a	K3(9)
	simply supported beam having length 5m acted by a point load at mid span with magnitude 50kN.	
6)	Draw shear force and bending moment diagram for the given	K5(10)
	beam.	

- Obtain an expression for deflection of a simply supported beam carrying UDL throughout its span.

 The normal stresses acting on two perpendicular planes at a point in a strained material are 70 MN/ m2 tensile 35 MN/ m2
- in a strained material are 70 MN/ m2 tensile, 35 MN/ m2 compressive. In addition, shear stress of 40 N/mm2 act on these planes. Calculate the following: i)The magnitude of the principal stresses. (ii). The direction of the principal planes. (iii)The magnitude of the maximum shear stress.
- 9) Conclude maximum shear stress theory. K5(15)
- Formulate the expression of strain energy for impact load.

 K6(18)