

School of University Polytechnic

Diploma in Computer Science and Engineering Semester End Examination - Jun 2024

Duration : 180 Minutes Max Marks : 100

Sem IV - N1DF405B - N1DF402B - Relational Database Management Systems

<u>General Instructions</u> Answer to the specific question asked Draw neat, labelled diagrams wherever necessary Approved data hand books are allowed subject to verification by the Invigilator

1)	Define a primary key in the context of a database, and explain its importance.	K1(2)
2)	Describe the advantages of using "Indexes" in a database and how they improve query performance.	K2(4)
3)	Explain the role of "Data Integrity Constraints" in maintaining data	K2(6)
4)	accuracy and consistency in a database. Write the significance of the DISTINCT clause in SQL queries and its impact on query results.	K3(9)
5)	Implement the concept of Multi-valued Dependencies (MVDs) and their role in database normalization.	K3(9)
6)	Evaluate the three-level architecture of a DBMS and explain the role of each level (External Level, Conceptual Level, Internal Level) in database management.	K5(10)
7)	Intent the purpose and benefits of using indexes in a relational database system. Explain how indexes improve query performance and provide examples of situations where indexes would be useful.	K4(12)
8)	Evaluate the concept of degree and cardinality in the relational model. Provide examples to illustrate each concept.	K5(15)
9)	Evaluate the key characteristics of Codd's 12 rules for relational databases and their significance in ensuring data integrity.	K5(15)
10)	Design a scalable and fault-tolerant database architecture for an e- commerce platform handling a large volume of online transactions. Consider factors such as data partitioning, replication, and disaster recovery planning to ensure high availability and data reliability in a distributed computing environment.	K6(18)