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ABSTRACT 

 

Machine learning models can achieve high performance and accuracy these days 

due to the large amount of research and data available to data scientists. 

Transliteration is a key component of machine translation systems and software 

internationalization. With increasing globalization, information access across 

language barriers has become important. Given a source term, machine 

transliteration refers to generating its phonetic equivalent in the target language. 

This is important in many cross-language applications. This project explores 

Hindi to English transliteration. We will be working on algorithms like Sequence 

to Sequence modelling, RNN. Here we will be working to transliterate Hindi 

words to corresponding English words. First, the vocabulary of the dataset is 

created and then it is embedded and provided to the encoder and then RNN 

algorithm is applied on the data to transliterate the input. 
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1. Introduction 

Transliteration allows people to read and understand articles without the need to 

become proficient in a new script or language. Transliteration is particularly 

used by libraries  for the processing of textual data eg in messaging.There are 

words that do not need to be translated as they remain same in all the languages 

like names of person, place, medicines, terms used in sports etc. These entities 

are known as “Named Entities” and remain the same whatever be the language 

and conserve their phonetics. Our projects will be designed to perform data 

transliteration from Hindi to English on word level . A dataset will be given on 

which our model will be trained to perform following input and output. 

 

 

                  Input Text         Transliterated              

Output 

 तेरा Tera 

नीला Neela 

लड़की Ladki 

 दुननया Dunia 

 

 

Transliteration is utilized when a word or phrase must be conveyed in a 

language with a different writing system. For example, when you go to a 

Chinese restaurant, the menu might feature Chinese characters that you don’t 

understand. When those characters are transliterated, they approximate the 

Chinese word’s pronunciation using Latin letters. If you can’t read or speak 

Chinese, you still won’t understand the transliterated language. Only when that 

Chinese word on the menu is translated into English will you be able to 

comprehend it. 

For instance, let’s take the Chinese word 面条. If you just wanted 面条 

transliterated it would be mein (as in the Chinese menu item lo mein). Mein 

does not tell you what the original word means in English, but it does help you 

pronounce it the way a Chinese speaker would. If you wanted to translate the 

word it would be noodles. 
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1.1 Challenges 

Due to lack of standardization in transliteration, a single Hindi word can have 

multiple surface forms (e.g. Humara, Hamara, Hamaaraa etc.). Some Hindi 

words can take the same surface form as an English word. The words ’hi’ (an 

auxiliary verb), ’is’ (this), and ’us’ (that) are some examples. 

Our extracted datasets contain a diverse set of names from different origins, 

including many names with different linguistic conventions. Names can be 

pronounced differently depending on origin and context can play a role as well. 

One other challenge is that the models also fail on common names. 

A source language word can have more than one valid transliteration in target 

language. For example, for the Hindi word below four different transliterations 

are possible: गौतम - gautam, gautham, gowtam, gowtham Therefore, in a CLIR 

context, it becomes important to generate all possible transliterations to retrieve 

documents containing any of the given forms. Transliteration is not trivial to 

automate, but we will also be concerned with an even more challenging 

problem going from English back to Hindi, i.e., back-transliteration. 

Transforming target language approximations back into their original source 

language is called back-transliteration. The information-losing aspect of 

transliteration makes it hard to invert. Back-transliteration is less forgiving than 

transliteration. There are many ways to write a Hindi word like मीनाक्षी 

(meenakshi, meenaxi, minakshi, minaakshi), all equally valid, but we do not 

have this flexibility in the reverse direction.  
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2. Existing Systems 

G.S.Josan((2011) ) first used a base line method as a character to character 

matching approach and then compared it with a statistical method for 

transliteration. They used a Noisy channel model for the purpose. They also 

concluded that their system can be improved by using some tuning in the 

language model in terms of alignment heuristics, maximum phrase length etc. 

and by defining a better syllable similarity score. 

 

S.Reddy,(2009)a substring based transliteration model and used conditional 

random fields (CRF) sequential model which use substrings as the basic token 

unit and pronunciation data as the token level features. They considered source 

and target language strings as non-overlapping substring sequences. For 

alignment they have used Giza++ toolkit. They trained the system for English to 

Hindi, English to Tamil and English to Kannada transliteration and got accuracy 

of 41.8%, 43.5% and 36.3% respectively. 

 

T.Rama,(2009)a phrase based translation problem for English to Hindi 

transliteration and used Moses and Giza++. In case of transliteration, phrases 

are basically the letters of the words. The authors varied the maximum phrase 

length from 2-7 and changed the order of language model from 2-8 and 

observed that on training the language model on 7-gram and using alignment 

heuristic grow-diag-final gives the best results. They got an accuracy of 46.3%. 

 

 

 

 

V.B.Sowmya,(2009)a transliteration based method for typing Telugu using 

Roman script. They have used Edit-distance based approach using Levenshtein 

Distance and considered three Levenshtein distances : Levenshtein distance 

between the two words, between the consonant sets of the two words and 

between the vowels set of the two words They have concluded that Levenshtein 

distance gives good results because of the relation between Levenshtein 

Distance and nature of typing Telugu using English. They used three databases: 

general database, countries and place names and person names. 
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V.Goyal,(2009)a rule based approach for transliteration from Hindi to Punjabi. 

With the character level mapping of Hindi and Punjabi the authors define 

approximately 55 rules for transliteration and got an accuracy of 98%. 

 

A.Finch,(2008)phrase based techniques of machine translation for 

transliteration of English to Japanese words for speech to speech machine 

translation system. They expressed transliteration as a character level machine 

translation problem and achieved correct or phonetically equivalent correct 

words in approximately 80% of cases. 

 

 H.Surana,(2008)transliteration from English to Hindi and English to Telugu is 

done by authors using mapping and fuzzy string matching. Firstly, authors 

detected the origin of a word in terms of Indian / Foreign word. For foreign 

words, they mapped English Phonemes to letters of Indian Language script. For 

Indian words, they mapped Latin segments of the words to Indian language 

letters or to a combination of letters and then used fuzzy string matching for 

final transliteration and got a precision of 80 % for English-Hindi and 71% for 

English-Telugu. 

 

T.Sherif,(2007)substring based transliteration from Arabic to English text. They 

implemented the method using dynamic programming and finite state 

transducers. They evaluated four approaches - a deterministic mapping 

algorithm (base-line method); a letter based transducer; Viterbi substring 

decoder with obtained optimal substring length as 6; and substring based 

transducer with obtained best length of substring as 4. The authors then 

compared results of all these four methods with a fifth approach, viz., manual 

transliterator. They concluded that substring based transliteration gives better 

results. 

P.Pingali,(2006)cross-language retrieval from Hindi and Telugu to English 

language was done with translations. Authors also used transliteration for 

proper names and non- dictionary words. They used phoneme mapping, 

metaphone algorithm and Levenshtein’s approximate string matching for 

transliteration. 
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J.H.Oh,(2002)transliteration of English words to Korean words, authors used 

phonetic information (phoneme and context) and orthographic information for 

transliteration. They divided English words into two categories - pure English 

words and those with Greek origin and found that usually pure English words 

can be transliterated using phoneme and English words with Greek Origin can 

be transliterated using character matching. After dividing the words in two 

categories on the basis of origin (E or G) they converted English phonemes to 

Korean alphabet. They claimed that their results show an increment of about 

31% in word accuracy in comparison to previous works for transliteration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page|11 

3. Proposed Methodology 

 

            Fig 1: Flowchart of our proposed Methodology 
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3.1 Sample Dataset  

Our Sample Dataset 

 

 Fig 2: Screenshot of the data set 

3.2 Pre-processing of Dataset 

We are given a dataset that contains both Hindi and their equivalent English 

word in a single line. We separate those words and create two different List for 

English and Hindi words and then we calculate the most frequent characters 

existing and then create a vocabulary with the help of most frequent words and 

assign different indexes accordingly.  Then we encode input samples with the 

help of our vocabulary and feed them into embedding layer. 
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3.3 Training and Testing 

We use Encoder Decoder combined with RNN to transliterate our input sample. 

Create character embeddings for Hindi words. These will be the inputs to the 

encoder and the decoder. Feed character by character embeds into the encoder 

till the end of the Hindi word sequence. Obtain the final encoder states (hidden 

and cell states) and feed them into the decoder as its initial state. At every step 

of the decoder, the output of the decoder is sent to softmax layer that is 

compared with the target data. Prepare the embeds for encoder input, decoder 

input and the target data embeds. We will create one-hot encoding for each 

character in English and Hindi separately. 

The decoder output is passed through the softmax layer that will learn to 

classify the correct French character. 

The BLEU loss is obtained by comparing the predicted values from softmax 

layer with the target data. 

Now the model is ready for training. Train the entire network for the specified 

number of epochs. 

 

Once we predict the character using softmax, we now input this predicted 

character along with the updated states val (updated from the previous decoder 

states) for the next iteration of the while loop. Note that we reset our target seq 

before we create a one-hot embed of the predicted character every time in the 

while loop. 
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English Character                 Ka          Th                 Ma                     Na 

  

Hindi Character                     का            था             म               न 

    Fig 3: Illustration of Proposed Method 
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4. Algorithms and Techniques 

With increasing globalization, information access across language barriers has 

become important. Given a source term, machine transliteration refers to 

generating its phonetic equivalent in the target language. This is important in 

many cross-language applications. This project explores Hindi to English 

transliteration. It is followed by a brief overview of the overall project, i.e., 

’transliteration involving English and Hindi languages’. The dataset is provided 

in the form of CSV file. We will be working on algorithms like Sequence to 

Sequence modelling, RNN.  

 

4.1 Support Vector Machine (SVM) 

The objective of the support vector machine algorithm is to find a hyperplane in 

an N-dimensional space (N - the number of features) that distinctly classifies the 

data points. 

To separate the two classes of data points, there are many possible hyperplanes 

that could be chosen. Our objective is to find a plane that has the maximum 

margin, i.e the maximum distance between data points of both classes. 

Maximizing the margin distance provides some reinforcement so that future 

data points can be classified with more confidence. 
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Fig 4: Representation of linear and Non-Linear SVM 
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4.2 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) add an interesting twist to basic neural 

networks. A vanilla neural network takes in a fixed size vector as input which 

limits its usage in situations that involve a ‘series’ type input with no 

predetermined size.A single input item from the series is related to others and 

likely has an influence on its neighbors. Recurrent Neural Network remembers 

the past and it’s decisions are influenced by what it has learnt from the past.Basic 

feed forward networks “remember” things too, but they remember things they 

learnt during training. For example, an image classifier learns what a “1” looks 

like during training and then uses that knowledge to classify things in 

production.While RNNs learn similarly while training, in addition, they 

remember things learnt from prior input(s) while generating output(s). It’s part of 

the network. RNNs can take one or more input vectors and produce one or more 

output vectors and the output(s) are influenced not just by weights applied on 

inputs like a regular NN, but also by a “hidden” state vector representing the 

context based on prior input(s)/output(s). So, the same input could produce a 

different output depending on previous inputs in the series. 

 

    Fig 5: A Recurrent Neural Network, with a hidden state  
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In summary, in a vanilla neural network, a fixed size input vector is transformed 

into a fixed size output vector. Such a network becomes “recurrent” when you 

repeatedly apply the transformations to a series of given input and produce a 

series of output vectors. There is no pre-set limitation to the size of the vector. 

And, in addition to generating the output which is a function of the input and 

hidden state, we update the hidden state itself based on the input and use it in 

processing the next input. 

 

4.3 ENCODER DECODER SEQUENCE TO SEQUENCE 

RNNs 

Encoder Decoder or Sequence to Sequence RNNs are used a lot in 

translation/transliteration services. The basic idea is that there are two RNNs, 

one an encoder that keeps updating its hidden state and produces a final single 

“Context” output. This is then fed to the decoder, which translates this context 

to a sequence of outputs. Another key difference in this arrangement is that the 

length of the input sequence and the length of the output sequence need not 

necessarily be the same.The model consists of 3 parts: encoder, intermediate 

(encoder) vector and decoder. 

     
     Fig 6: Encoder-decoder sequence to sequence model 
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Encoder 

● A stack of several recurrent units (LSTM or GRU cells for better 

performance) where each accepts a single element of the input 

sequence, collects information for that element and propagates it 

forward. 

● The encoder simply takes the input data, and train on it then it passes 

the last state of its recurrent layer as an initial state to the first 

recurrent layer of the decoder part. 

● In question-answering problem, the input sequence is a collection of 

all words from the question. Each word is represented as x_i where i 

is the order of that word. 

● The hidden states h_i are computed using the formula:  

 

This simple formula represents the result of an ordinary recurrent neural 

network. As you can see, we just apply the appropriate weights to the previous 

hidden state h_(t-1) and the input vector x_t. 

Encoder Vector 

● This is the final hidden state produced from the encoder part of the 

model. It is calculated using the formula above. 

● This vector aims to encapsulate the information for all input elements 

in order to help the decoder make accurate predictions. 
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● It acts as the initial hidden state of the decoder part of the model. 

Decoder 

● The decoder takes the last state of encoder’s last recurrent layer and 

uses it as an initial state to its first recurrent layer  

● A stack of several recurrent units where each predicts an output y_t at 

a time step t. 

● Each recurrent unit accepts a hidden state from the previous unit and 

produces and output as well as its own hidden state. 

● In the question-answering problem, the output sequence is a 

collection of all words from the answer. Each word is represented as 

y_i where i is the order of that word. 

● Any hidden state h_i is computed using the formula: 

 

As you can see, we are just using the previous hidden state to compute the next 

one. 

● The output y_t at time step t is computed using the formula: 
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We calculate the outputs using the hidden state at the current time step together 

with the respective weight W(S). Softmax is used to create a probability vector 

which will help us determine the final output. 

The power of this model lies in the fact that it can map sequences of different 

lengths to each other. As you can see the inputs and outputs are not correlated 

and their lengths can differ. This opens a whole new range of problems which 

can now be solved using such architecture. 

● In the world of deep learning, the RNN is considered as the go-to model 

whenever the problem requires sequence-based learning and this has 

propelled the research community to come up with interesting 

improvements over the vanilla RNN. One such prominent improvement is 

the introduction of gated RNNs: the LSTM and GRU. 

 

LSTM 

● Long Short Term Memory networks – usually just called “LSTMs” – are 

a special kind of RNN, capable of learning long-term dependencies. They 

work tremendously well on a large variety of problems, and are now 

widely used. 

 

● LSTMs are explicitly designed to avoid the long term dependency 

problem. Remembering information for long periods of time is practically 

their default behaviour, not something they struggle to learn! 

 

● All recurrent neural networks have the form of a chain of repeating 

modules of neural network. In standard RNNs, this repeating module will 

have a very simple structure, such as a single tanh layer. 
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Fig 7: The repeating module in a standard RNN. 

 

 

● LSTMs also have this chain-like structure, but the repeating module has a 

different structure. Instead of having a single neural network layer, there 

are four, interacting in a very special way. 

 

 

   Fig 8: The repeating module in an LSTM. 
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GRU 

The Gated Recurrent Units have the above-mentioned modification along with 

few others due to which it has an edge over LSTM and is getting adopted by 

most of them in the practical world. 

GRU uses the so called, update gate and reset gate. The Sigma notation below 

represents those gates: which allows a GRU to carry forward information over 

many time periods in order to influence a future time period. In other words, the 

value is stored in memory for a certain amount of time and at a critical point 

pulling that value out and using it with the current state to update at a future 

date. 

 

 

 

     Fig 9: GRU Architecture 

𝑧𝑡- update gate 

𝑟𝑡- reset gate 

ℎ𝑡- Current memory content 

ℎ𝑡-Final memory at current time step 

 

GRUs using the internal memory capability are valuable to store and filter 

information using their update and reset gates. That said the issues faced by 

RNNs (vanishing gradient problem) are eliminated offering us a powerful tool 

to handle sequence data.      

 

           



Page|24 

5. EXPERIMENTAL RESULTS 

We applied two different models namely RNN, Support Vector Machine on our 

training data since our original data was very huge hence, we filtered out words 

based on their frequency giving us 30823 English-Hindi words. Using these 

words, we generated our training data set and the following results were 

obtained for the given models. 

        

 

               Fig 10: Screenshot of the Output 
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BLEU Score 

BLEU is controlled by a number of parameters: 

 • N-gram order, N. Most often, we use N=4. 

 • Case sensitivity. By default, we compute case insensitive BLEU scores to 

evaluate a translator. Case sensitive BLEU should be used when evaluating 

true-case models. 

  

The following is the BLEU scores after final iteration: 

BLEU Score: 0.692 

BLEU Score: 0.699 

BLEU Score: 0.703 

BLEU Score: 0.700 
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6. Tools Used 

Due to ease of understanding and implementation, we used the widely popular 

and well-known Python 3 as our programming environment. 

The tools which were used in the development of this project were as follows: 

Jupyter Notebook 

The Jupyter Notebook App is a server-client application that allows editing and 

running notebook document via a web browser. The Jupyter Notebook App can 

be executed on a local desktop requiring no internet access (as described in this 

document) or can be installed on a remote server and accessed through the 

internet. In addition to displaying/editing/running notebook documents, 

the Jupyter Notebook App has a “Dashboard” (Notebook Dashboard), a “control 

panel” showing local files and allowing to open notebook documents or shutting 

down their kernels. 

 

Natural Language Tool Kit  

The Natural Language Toolkit, or more commonly NLTK, is a suite 

of libraries and programs for symbolic and statistical natural language 

processing (NLP) for English written in the Python programming language. It 

was developed by Steven Bird and Edward Loper in the Department of 

Computer and Information Science at the University of Pennsylvania. NLTK 

includes graphical demonstrations and sample data. It is accompanied by a book 

that explains the underlying concepts behind the language processing tasks 

supported by the toolkit, plus a cookbook.  

NLTK is intended to support research and teaching in NLP or closely related 

areas, including empirical linguistics, cognitive science, artificial 

intelligence, information retrieval, and machine learning. NLTK has been used 

successfully as a teaching tool, as an individual study tool, and as a platform for 

prototyping and building research systems. There are 32 universities in the US 

and 25 countries using NLTK in their courses. NLTK supports classification, 

tokenization, stemming, tagging, parsing, and semantic reasoning 

functionalities. 

 

 

 

 

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#dashboard
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://en.wikipedia.org/wiki/Library_(computer_science)
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/University_of_Pennsylvania
https://en.wikipedia.org/wiki/Natural_Language_Processing
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Cognitive_science
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Machine_learning
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SciKit-learn 

It is a free software machine learning library for the Python  

programming language. It features various classification,  

regression and clustering algorithms including support vector machines, random 

forests, gradient boosting, k-means and DBSCAN, and is designed to 

interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. 

 

One Hot Encoder  

 It  is very useful but it can cause the number of columns to expand greatly if 

you have very many unique values in a column. For the number of values in this 

example, it is not a problem. However you can see how this gets really 

challenging to manage when you have many more options. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy
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7. Conclusion 

We described a number of design considerations that one must address when 

building a robust, multilingual named entity transliteration system. Our results 

can be extended and potentially improved in a number of ways. A way is by 

exploring 

other recurrent network architectures, such as adaptive computation time 

networks or classifier combination via boosting or other methods. Another way 

is by combining the neural network cost with a target language model cost.  

 

Since transliteration involves phonetic features, it might be useful to run a 

separate pronunciation model on the input string and then provide both the 

grapheme and the phoneme string as input to the transliteration model, 

mirroring previous non-neural approaches to transliteration. 

Perhaps one of the most important areas of improvements is that of training 

data. Right now, transliteration research (including the described work) 

performs training and evaluation on plain correspondences between strings in 

two orthographic systems. Such an approach disregards word frequencies, and 

treats predictions involving alternative, valid transcriptions as errors. 

Improvements 

to both the training datasets and the mechanisms for handling multiple 

predictions will likely result in significant improvements in model performance 

and correlate more with human evaluations. In addition to improving datasets, 

our work also points out the need for understanding the relative importance of 

character and word error rates in evaluating transliterations, since they appear to 

vary independently. 
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