
Page|1

DATA TRANSLITERATION FROM HINDI TO

ENGLISH

A Report for the Evaluation 3 of Project 2

Submitted by

AZEEM AHMAD

(1613112014/16SCSE101893)

In partial fulfilment for the award of the degree of

Bachelor of Technology

IN

Computer Science and Engineering

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

UNDER THE SUPERVISION OF

DR. D. GANESH GOPAL (Professor)

APRIL/MAY-2020

Page|2

SCHOOL OF COMPUTER SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “TRANSLITERATION FROM HINDI TO

ENGLISH” is the Bonafide work of “AZEEM AHMAD(1613112014)” who carried

out the project work under my supervision.

Signature of Head Signature of Supervisor

 Dr. D. Ganesh Gopal

 Professor

School of Computer Science and Engg. School of Computer Science and Engg.

Page|3

ABSTRACT

Machine learning models can achieve high performance and accuracy these days

due to the large amount of research and data available to data scientists.

Transliteration is a key component of machine translation systems and software

internationalization. With increasing globalization, information access across

language barriers has become important. Given a source term, machine

transliteration refers to generating its phonetic equivalent in the target language.

This is important in many cross-language applications. This project explores

Hindi to English transliteration. We will be working on algorithms like Sequence

to Sequence modelling, RNN. Here we will be working to transliterate Hindi

words to corresponding English words. First, the vocabulary of the dataset is

created and then it is embedded and provided to the encoder and then RNN

algorithm is applied on the data to transliterate the input.

Page|4

TABLE OF CONTENTS

● ABSTRACT…………………………………………………..3

● LIST OF FIGURES …………………………………………5

1. Introduction…………………………………………………………6

1.1 Challenges...7

 2. Existing Systems.…………………………………………………..8

 3. Proposed Methodology……………………………………………11

3.1 Sample Dataset...12

3.2 Pre-processing of Dataset……….……………………..12

 3.3 Training and Testing...13

 4. Algorithms and Techniques………………………………………15

 4.1 Support Vector Machine (SVM)15

 4.2 Recurrent Neural Networks………………….………...17

 4.3 Encoder Decoder Sequence to Sequence RNNs……….18

 5. Experimental Results...24

 6. Tools Used………………………………………………..…….....26

 7. Conclusion………………………………………………..….…...28

 8. References……………………………………………...…………29

Page|5

 LIST OF FIGURES

Fig 1: Flowchart of our proposed Methodology

Fig 2: Screenshot of the Dataset

Fig 3: Illustration of proposed method

Fig 4: Representation of Linear and Non-Linear SVM

Fig 5: A Recurrent Neural Network, with a hidden state

Fig 6: Encoder Decoder Sequence to Sequence Model

Fig 7: The repeating module in a standard RNN

Fig 8: The repeating module in an LSTM

Fig 9: GRU Architecture

Fig 10: Screenshot of the Output

Page|6

1. Introduction

Transliteration allows people to read and understand articles without the need to

become proficient in a new script or language. Transliteration is particularly

used by libraries for the processing of textual data eg in messaging.There are

words that do not need to be translated as they remain same in all the languages

like names of person, place, medicines, terms used in sports etc. These entities

are known as “Named Entities” and remain the same whatever be the language

and conserve their phonetics. Our projects will be designed to perform data

transliteration from Hindi to English on word level . A dataset will be given on

which our model will be trained to perform following input and output.

 Input Text Transliterated

Output

 तेरा Tera

नीला Neela

लड़की Ladki

 दुननया Dunia

Transliteration is utilized when a word or phrase must be conveyed in a

language with a different writing system. For example, when you go to a

Chinese restaurant, the menu might feature Chinese characters that you don’t

understand. When those characters are transliterated, they approximate the

Chinese word’s pronunciation using Latin letters. If you can’t read or speak

Chinese, you still won’t understand the transliterated language. Only when that

Chinese word on the menu is translated into English will you be able to

comprehend it.

For instance, let’s take the Chinese word 面条. If you just wanted 面条

transliterated it would be mein (as in the Chinese menu item lo mein). Mein

does not tell you what the original word means in English, but it does help you

pronounce it the way a Chinese speaker would. If you wanted to translate the

word it would be noodles.

Page|7

1.1 Challenges

Due to lack of standardization in transliteration, a single Hindi word can have

multiple surface forms (e.g. Humara, Hamara, Hamaaraa etc.). Some Hindi

words can take the same surface form as an English word. The words ’hi’ (an

auxiliary verb), ’is’ (this), and ’us’ (that) are some examples.

Our extracted datasets contain a diverse set of names from different origins,

including many names with different linguistic conventions. Names can be

pronounced differently depending on origin and context can play a role as well.

One other challenge is that the models also fail on common names.

A source language word can have more than one valid transliteration in target

language. For example, for the Hindi word below four different transliterations

are possible: गौतम - gautam, gautham, gowtam, gowtham Therefore, in a CLIR

context, it becomes important to generate all possible transliterations to retrieve

documents containing any of the given forms. Transliteration is not trivial to

automate, but we will also be concerned with an even more challenging

problem going from English back to Hindi, i.e., back-transliteration.

Transforming target language approximations back into their original source

language is called back-transliteration. The information-losing aspect of

transliteration makes it hard to invert. Back-transliteration is less forgiving than

transliteration. There are many ways to write a Hindi word like मीनाक्षी

(meenakshi, meenaxi, minakshi, minaakshi), all equally valid, but we do not

have this flexibility in the reverse direction.

Page|8

2. Existing Systems

G.S.Josan((2011)) first used a base line method as a character to character

matching approach and then compared it with a statistical method for

transliteration. They used a Noisy channel model for the purpose. They also

concluded that their system can be improved by using some tuning in the

language model in terms of alignment heuristics, maximum phrase length etc.

and by defining a better syllable similarity score.

S.Reddy,(2009)a substring based transliteration model and used conditional

random fields (CRF) sequential model which use substrings as the basic token

unit and pronunciation data as the token level features. They considered source

and target language strings as non-overlapping substring sequences. For

alignment they have used Giza++ toolkit. They trained the system for English to

Hindi, English to Tamil and English to Kannada transliteration and got accuracy

of 41.8%, 43.5% and 36.3% respectively.

T.Rama,(2009)a phrase based translation problem for English to Hindi

transliteration and used Moses and Giza++. In case of transliteration, phrases

are basically the letters of the words. The authors varied the maximum phrase

length from 2-7 and changed the order of language model from 2-8 and

observed that on training the language model on 7-gram and using alignment

heuristic grow-diag-final gives the best results. They got an accuracy of 46.3%.

V.B.Sowmya,(2009)a transliteration based method for typing Telugu using

Roman script. They have used Edit-distance based approach using Levenshtein

Distance and considered three Levenshtein distances : Levenshtein distance

between the two words, between the consonant sets of the two words and

between the vowels set of the two words They have concluded that Levenshtein

distance gives good results because of the relation between Levenshtein

Distance and nature of typing Telugu using English. They used three databases:

general database, countries and place names and person names.

Page|9

V.Goyal,(2009)a rule based approach for transliteration from Hindi to Punjabi.

With the character level mapping of Hindi and Punjabi the authors define

approximately 55 rules for transliteration and got an accuracy of 98%.

A.Finch,(2008)phrase based techniques of machine translation for

transliteration of English to Japanese words for speech to speech machine

translation system. They expressed transliteration as a character level machine

translation problem and achieved correct or phonetically equivalent correct

words in approximately 80% of cases.

 H.Surana,(2008)transliteration from English to Hindi and English to Telugu is

done by authors using mapping and fuzzy string matching. Firstly, authors

detected the origin of a word in terms of Indian / Foreign word. For foreign

words, they mapped English Phonemes to letters of Indian Language script. For

Indian words, they mapped Latin segments of the words to Indian language

letters or to a combination of letters and then used fuzzy string matching for

final transliteration and got a precision of 80 % for English-Hindi and 71% for

English-Telugu.

T.Sherif,(2007)substring based transliteration from Arabic to English text. They

implemented the method using dynamic programming and finite state

transducers. They evaluated four approaches - a deterministic mapping

algorithm (base-line method); a letter based transducer; Viterbi substring

decoder with obtained optimal substring length as 6; and substring based

transducer with obtained best length of substring as 4. The authors then

compared results of all these four methods with a fifth approach, viz., manual

transliterator. They concluded that substring based transliteration gives better

results.

P.Pingali,(2006)cross-language retrieval from Hindi and Telugu to English

language was done with translations. Authors also used transliteration for

proper names and non- dictionary words. They used phoneme mapping,

metaphone algorithm and Levenshtein’s approximate string matching for

transliteration.

Page|10

J.H.Oh,(2002)transliteration of English words to Korean words, authors used

phonetic information (phoneme and context) and orthographic information for

transliteration. They divided English words into two categories - pure English

words and those with Greek origin and found that usually pure English words

can be transliterated using phoneme and English words with Greek Origin can

be transliterated using character matching. After dividing the words in two

categories on the basis of origin (E or G) they converted English phonemes to

Korean alphabet. They claimed that their results show an increment of about

31% in word accuracy in comparison to previous works for transliteration.

Page|11

3. Proposed Methodology

 Fig 1: Flowchart of our proposed Methodology

Page|12

3.1 Sample Dataset

Our Sample Dataset

 Fig 2: Screenshot of the data set

3.2 Pre-processing of Dataset

We are given a dataset that contains both Hindi and their equivalent English

word in a single line. We separate those words and create two different List for

English and Hindi words and then we calculate the most frequent characters

existing and then create a vocabulary with the help of most frequent words and

assign different indexes accordingly. Then we encode input samples with the

help of our vocabulary and feed them into embedding layer.

Page|13

3.3 Training and Testing

We use Encoder Decoder combined with RNN to transliterate our input sample.

Create character embeddings for Hindi words. These will be the inputs to the

encoder and the decoder. Feed character by character embeds into the encoder

till the end of the Hindi word sequence. Obtain the final encoder states (hidden

and cell states) and feed them into the decoder as its initial state. At every step

of the decoder, the output of the decoder is sent to softmax layer that is

compared with the target data. Prepare the embeds for encoder input, decoder

input and the target data embeds. We will create one-hot encoding for each

character in English and Hindi separately.

The decoder output is passed through the softmax layer that will learn to

classify the correct French character.

The BLEU loss is obtained by comparing the predicted values from softmax

layer with the target data.

Now the model is ready for training. Train the entire network for the specified

number of epochs.

Once we predict the character using softmax, we now input this predicted

character along with the updated states val (updated from the previous decoder

states) for the next iteration of the while loop. Note that we reset our target seq

before we create a one-hot embed of the predicted character every time in the

while loop.

Page|14

English Character Ka Th Ma Na

Hindi Character का था म न

 Fig 3: Illustration of Proposed Method

Page|15

4. Algorithms and Techniques

With increasing globalization, information access across language barriers has

become important. Given a source term, machine transliteration refers to

generating its phonetic equivalent in the target language. This is important in

many cross-language applications. This project explores Hindi to English

transliteration. It is followed by a brief overview of the overall project, i.e.,

’transliteration involving English and Hindi languages’. The dataset is provided

in the form of CSV file. We will be working on algorithms like Sequence to

Sequence modelling, RNN.

4.1 Support Vector Machine (SVM)

The objective of the support vector machine algorithm is to find a hyperplane in

an N-dimensional space (N - the number of features) that distinctly classifies the

data points.

To separate the two classes of data points, there are many possible hyperplanes

that could be chosen. Our objective is to find a plane that has the maximum

margin, i.e the maximum distance between data points of both classes.

Maximizing the margin distance provides some reinforcement so that future

data points can be classified with more confidence.

Page|16

Fig 4: Representation of linear and Non-Linear SVM

Page|17

4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) add an interesting twist to basic neural

networks. A vanilla neural network takes in a fixed size vector as input which

limits its usage in situations that involve a ‘series’ type input with no

predetermined size.A single input item from the series is related to others and

likely has an influence on its neighbors. Recurrent Neural Network remembers

the past and it’s decisions are influenced by what it has learnt from the past.Basic

feed forward networks “remember” things too, but they remember things they

learnt during training. For example, an image classifier learns what a “1” looks

like during training and then uses that knowledge to classify things in

production.While RNNs learn similarly while training, in addition, they

remember things learnt from prior input(s) while generating output(s). It’s part of

the network. RNNs can take one or more input vectors and produce one or more

output vectors and the output(s) are influenced not just by weights applied on

inputs like a regular NN, but also by a “hidden” state vector representing the

context based on prior input(s)/output(s). So, the same input could produce a

different output depending on previous inputs in the series.

 Fig 5: A Recurrent Neural Network, with a hidden state

Page|18

In summary, in a vanilla neural network, a fixed size input vector is transformed

into a fixed size output vector. Such a network becomes “recurrent” when you

repeatedly apply the transformations to a series of given input and produce a

series of output vectors. There is no pre-set limitation to the size of the vector.

And, in addition to generating the output which is a function of the input and

hidden state, we update the hidden state itself based on the input and use it in

processing the next input.

4.3 ENCODER DECODER SEQUENCE TO SEQUENCE

RNNs

Encoder Decoder or Sequence to Sequence RNNs are used a lot in

translation/transliteration services. The basic idea is that there are two RNNs,

one an encoder that keeps updating its hidden state and produces a final single

“Context” output. This is then fed to the decoder, which translates this context

to a sequence of outputs. Another key difference in this arrangement is that the

length of the input sequence and the length of the output sequence need not

necessarily be the same.The model consists of 3 parts: encoder, intermediate

(encoder) vector and decoder.

 Fig 6: Encoder-decoder sequence to sequence model

Page|19

Encoder

● A stack of several recurrent units (LSTM or GRU cells for better

performance) where each accepts a single element of the input

sequence, collects information for that element and propagates it

forward.

● The encoder simply takes the input data, and train on it then it passes

the last state of its recurrent layer as an initial state to the first

recurrent layer of the decoder part.

● In question-answering problem, the input sequence is a collection of

all words from the question. Each word is represented as x_i where i

is the order of that word.

● The hidden states h_i are computed using the formula:

This simple formula represents the result of an ordinary recurrent neural

network. As you can see, we just apply the appropriate weights to the previous

hidden state h_(t-1) and the input vector x_t.

Encoder Vector

● This is the final hidden state produced from the encoder part of the

model. It is calculated using the formula above.

● This vector aims to encapsulate the information for all input elements

in order to help the decoder make accurate predictions.

Page|20

● It acts as the initial hidden state of the decoder part of the model.

Decoder

● The decoder takes the last state of encoder’s last recurrent layer and

uses it as an initial state to its first recurrent layer

● A stack of several recurrent units where each predicts an output y_t at

a time step t.

● Each recurrent unit accepts a hidden state from the previous unit and

produces and output as well as its own hidden state.

● In the question-answering problem, the output sequence is a

collection of all words from the answer. Each word is represented as

y_i where i is the order of that word.

● Any hidden state h_i is computed using the formula:

As you can see, we are just using the previous hidden state to compute the next

one.

● The output y_t at time step t is computed using the formula:

Page|21

We calculate the outputs using the hidden state at the current time step together

with the respective weight W(S). Softmax is used to create a probability vector

which will help us determine the final output.

The power of this model lies in the fact that it can map sequences of different

lengths to each other. As you can see the inputs and outputs are not correlated

and their lengths can differ. This opens a whole new range of problems which

can now be solved using such architecture.

● In the world of deep learning, the RNN is considered as the go-to model

whenever the problem requires sequence-based learning and this has

propelled the research community to come up with interesting

improvements over the vanilla RNN. One such prominent improvement is

the introduction of gated RNNs: the LSTM and GRU.

LSTM

● Long Short Term Memory networks – usually just called “LSTMs” – are

a special kind of RNN, capable of learning long-term dependencies. They

work tremendously well on a large variety of problems, and are now

widely used.

● LSTMs are explicitly designed to avoid the long term dependency

problem. Remembering information for long periods of time is practically

their default behaviour, not something they struggle to learn!

● All recurrent neural networks have the form of a chain of repeating

modules of neural network. In standard RNNs, this repeating module will

have a very simple structure, such as a single tanh layer.

Page|22

Fig 7: The repeating module in a standard RNN.

● LSTMs also have this chain-like structure, but the repeating module has a

different structure. Instead of having a single neural network layer, there

are four, interacting in a very special way.

 Fig 8: The repeating module in an LSTM.

Page|23

GRU

The Gated Recurrent Units have the above-mentioned modification along with

few others due to which it has an edge over LSTM and is getting adopted by

most of them in the practical world.

GRU uses the so called, update gate and reset gate. The Sigma notation below

represents those gates: which allows a GRU to carry forward information over

many time periods in order to influence a future time period. In other words, the

value is stored in memory for a certain amount of time and at a critical point

pulling that value out and using it with the current state to update at a future

date.

 Fig 9: GRU Architecture

𝑧𝑡- update gate

𝑟𝑡- reset gate

ℎ𝑡- Current memory content

ℎ𝑡-Final memory at current time step

GRUs using the internal memory capability are valuable to store and filter

information using their update and reset gates. That said the issues faced by

RNNs (vanishing gradient problem) are eliminated offering us a powerful tool

to handle sequence data.

Page|24

5. EXPERIMENTAL RESULTS

We applied two different models namely RNN, Support Vector Machine on our

training data since our original data was very huge hence, we filtered out words

based on their frequency giving us 30823 English-Hindi words. Using these

words, we generated our training data set and the following results were

obtained for the given models.

 Fig 10: Screenshot of the Output

Page|25

BLEU Score

BLEU is controlled by a number of parameters:

 • N-gram order, N. Most often, we use N=4.

 • Case sensitivity. By default, we compute case insensitive BLEU scores to

evaluate a translator. Case sensitive BLEU should be used when evaluating

true-case models.

The following is the BLEU scores after final iteration:

BLEU Score: 0.692

BLEU Score: 0.699

BLEU Score: 0.703

BLEU Score: 0.700

Page|26

6. Tools Used

Due to ease of understanding and implementation, we used the widely popular

and well-known Python 3 as our programming environment.

The tools which were used in the development of this project were as follows:

Jupyter Notebook

The Jupyter Notebook App is a server-client application that allows editing and

running notebook document via a web browser. The Jupyter Notebook App can

be executed on a local desktop requiring no internet access (as described in this

document) or can be installed on a remote server and accessed through the

internet. In addition to displaying/editing/running notebook documents,

the Jupyter Notebook App has a “Dashboard” (Notebook Dashboard), a “control

panel” showing local files and allowing to open notebook documents or shutting

down their kernels.

Natural Language Tool Kit

The Natural Language Toolkit, or more commonly NLTK, is a suite

of libraries and programs for symbolic and statistical natural language

processing (NLP) for English written in the Python programming language. It

was developed by Steven Bird and Edward Loper in the Department of

Computer and Information Science at the University of Pennsylvania. NLTK

includes graphical demonstrations and sample data. It is accompanied by a book

that explains the underlying concepts behind the language processing tasks

supported by the toolkit, plus a cookbook.

NLTK is intended to support research and teaching in NLP or closely related

areas, including empirical linguistics, cognitive science, artificial

intelligence, information retrieval, and machine learning. NLTK has been used

successfully as a teaching tool, as an individual study tool, and as a platform for

prototyping and building research systems. There are 32 universities in the US

and 25 countries using NLTK in their courses. NLTK supports classification,

tokenization, stemming, tagging, parsing, and semantic reasoning

functionalities.

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#dashboard
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html#kernel
https://en.wikipedia.org/wiki/Library_(computer_science)
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/University_of_Pennsylvania
https://en.wikipedia.org/wiki/Natural_Language_Processing
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Cognitive_science
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Machine_learning

Page|27

SciKit-learn

It is a free software machine learning library for the Python

programming language. It features various classification,

regression and clustering algorithms including support vector machines, random

forests, gradient boosting, k-means and DBSCAN, and is designed to

interoperate with the Python numerical and scientific

libraries NumPy and SciPy.

One Hot Encoder

 It is very useful but it can cause the number of columns to expand greatly if

you have very many unique values in a column. For the number of values in this

example, it is not a problem. However you can see how this gets really

challenging to manage when you have many more options.

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Random_forests
https://en.wikipedia.org/wiki/Gradient_boosting
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/NumPy
https://en.wikipedia.org/wiki/SciPy

Page|28

7. Conclusion

We described a number of design considerations that one must address when

building a robust, multilingual named entity transliteration system. Our results

can be extended and potentially improved in a number of ways. A way is by

exploring

other recurrent network architectures, such as adaptive computation time

networks or classifier combination via boosting or other methods. Another way

is by combining the neural network cost with a target language model cost.

Since transliteration involves phonetic features, it might be useful to run a

separate pronunciation model on the input string and then provide both the

grapheme and the phoneme string as input to the transliteration model,

mirroring previous non-neural approaches to transliteration.

Perhaps one of the most important areas of improvements is that of training

data. Right now, transliteration research (including the described work)

performs training and evaluation on plain correspondences between strings in

two orthographic systems. Such an approach disregards word frequencies, and

treats predictions involving alternative, valid transcriptions as errors.

Improvements

to both the training datasets and the mechanisms for handling multiple

predictions will likely result in significant improvements in model performance

and correlate more with human evaluations. In addition to improving datasets,

our work also points out the need for understanding the relative importance of

character and word error rates in evaluating transliterations, since they appear to

vary independently.

Page|29

8. References

1. [Rosca and Breuel[2016] Mihaela Rosca and Thomas Breuel. 2016.

Sequence-to-sequence neural network models for transliteration. arXiv

preprint arXiv:1610.09565

2. [Cho et al.2014] Kyunghyun Cho and Bart van Merrienboer and Caglar

Gulcehre and Dzmitry Bahdanau and Fethi Bougares and Holger

Schwenk and Yoshua Bengio.2014.Learning Phrase Representations

using RNN Encoder-Decoder for Statistical Machine Translation.arXiv

preprint arXiv:1406.1078

3. [Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and Quoc V Le.

2014. Sequence to sequence learning with neural networks. In Advances

in neural information processing systems, pages 3104–3112.

4. [Merhav and Ash2018]Yuval Merhav and Stephen Ash, "Design

Challenges in Named Entity Transliteration", arXiv.org, 2018

5. [A.Finch,2008] Finch, Andrew, and Eiichiro Sumita, "Phrase-based

machine transliteration" in Proceedings of the Workshop on Technologies

and Corpora for Asia-Pacific Speech Translation (TCAST), pp. 13-18.

2008.

