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Abstract 

Computer Vision is the branch of the science of computers and software systems which 

can recognize as well as understand images and scenes. Computer Vision is consists of 
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various aspects such as image recognition, object detection, image generation, image super- 

resolution and many more. Object detection is widely used for face detection, vehicle 

detection, pedestrian counting, web images, security systems and self-driving cars. In this 

project, we are using highly accurate object detection-algorithms and methods such as R- 

CNN, Fast-RCNN, Faster-RCNN, RetinaNet and fast yet highly accurate ones like SSD 

and YOLO. Using these methods and algorithms, based on deep learning which is also 

based on machine learning require lots of mathematical and deep learning frameworks 

understanding by using dependencies such as TensorFlow, OpenCV, ImageAI etc, we can 

detect each and every object in image by the area object in an highlighted rectangular boxes 

and identify each and every object and assign its tag to the object.  

List of Figures                                                                                                           

Fig 1: YOLO Object Detection, Fig 2: Simple convolution network, Fig 3: Conversion of 

fully connected layer to convolutional layer, Fig 4: Replacing fully connected layer with 

1D convolutional layer, Fig 5: Sliding Window, Fig 6: DenseNet approach 

                                         Introduction 
A few years ago, the creation of the software and hardware image processing systems was 

mainly limited to the development of the user interface, which most of the programmers of 

each firm were engaged in. The situation has been significantly changed with the advent of 

the Windows operating system when the majority of the developers switched to solving the 

problems of image processing itself. However, this has not yet led to the cardinal progress 

in solving typical tasks of recognizing faces, car numbers, road signs, analyzing remote 

and medical images, etc. Each of these "eternal" problems is solved by trial and error by 

the efforts of numerous groups of the engineers and scientists. As modern technical 
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solutions are turn out to be excessively expensive, the task of automating the creation of 

the software tools for solving intellectual problems is formulated and intensively solved 

abroad. In the field of image processing, the required tool kit should be supporting the 

analysis and recognition of images of previously unknown content and ensure the effective 

development of applications by ordinary programmers. Just as the Windows toolkit 

supports the creation of interfaces for solving various applied problems. 

Object recognition is to describe a collection of related computer vision tasks that involve 

activities like identifying objects in digital photographs. Image classification involves 

activities such as predicting the class of one object in an image. Object localization is 

refers to identifying the location of one or more objects in an image and drawing an 

abounding box around their extent. Object detection does the work of combines these two 

tasks and localizes and classifies one or more objects in an image. 

When a user or practitioner refers to the term “object recognition“, they often mean “object 

detection“. It may be challenging for beginners to distinguish between different related 

computer vision tasks. So, we can distinguish between these three computer vision tasks 

with this example: 

 

Image Classification: This is done by Predict the type or class of an object in an image. 

Input: An image which consists of a single object, such as a photograph. 

Output: A class label (e.g. one or more integers that are mapped to class labels). 
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Object Localization: This is done through, Locate the presence of objects in an image and 

indicate their location with a bounding box. 

Input: An image which consists of one or more objects, such as a photograph.            

Output: One or more bounding boxes (e.g. defined by a point, width, and height). 

 

 

Object Detection: This is done through, Locate the presence of objects with a bounding box 

and types or classes of the located objects in an image. 

Input: An image which consists of one or more objects, such as a photograph. 

Output: One or more bounding boxes (e.g. defined by a point, width, and height), and a   

class label for each bounding box. 

 

 

 
One of the further extension to this breakdown of computer vision tasks is object 

segmentation, also called “object instance segmentation” or “semantic segmentation,” 

where instances of recognized objects are indicated by highlighting the specific pixels of 

the object instead of a coarse bounding box. From this breakdown, we can understand 

that object recognition refers to a suite of challenging computer vision tasks. For 

example, image classification is simply straight forward, but the differences between 

object localization and object detection can be confusing, especially when all three tasks 

may be just as equally referred to as object recognition. 
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Humans can detect and identify objects present in an image. The 

human visual system is fast and accurate and can also perform complex tasks like 

identifying multiple objects and detect obstacles with little conscious thought. The 

availability of large sets of data, faster GPUs, and better algorithms, we can now easily 

train computers to detect and classify multiple objects within an image with high accuracy. 

We need to understand terms such as object detection, object localization, loss function for 

object detection and localization, and finally explore an object detection algorithm known 

as “You only look once” (YOLO). 

 

Image classification also involves assigning a class label to an image, whereas object 

localization involves drawing a bounding box around one or more objects in an image. 

Object detection is always more challenging and combines these two tasks and draws a 

bounding box around each object of interest in the image and assigns them a class label. 

Together, all these problems are referred to as object recognition. 

 

Object recognition refers to a collection of related tasks for identifying objects in digital 

photographs. Region-based Convolutional Neural Networks, or R-CNNs, is a family of 

techniques for addressing object localization and recognition tasks, designed for model 

performance. You Only Look Once, or YOLO is known as the second family of 

techniques for object recognition designed for speed and real-time use 
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Background 
 

 

The aim of object detection is to detect all instances of objects from a known class, such 

as people, cars or faces in an image. Generally, only a small number of instances of the 

object are present in the image, but there is a very large number of possible locations and 

scales at which they can occur and that need to somehow be explored. Each detection of 

the image is reported with some form of pose information. This is as simple as the location 

of the object, a location and scale, or the extent of the object defined in terms of a 

bounding box. In some other situations, the pose information is more detailed and 

contains the parameters of a linear or non-linear transformation. For example for face 

detection in a face detector may compute the locations of the eyes, nose and mouth, in 

addition to the bounding box of the face. An example of a bicycle detection in an image 

that specifies the locations of certain parts is shown in Figure 1. The pose can also be 

defined by a three-dimensional transformation specifying the location of the object relative 

to the camera. Object detection systems always construct a model for an object class from 

a set of training examples. In the case of a fixed rigid object in an image, only one example 

may be needed, but more generally multiple training examples are necessary to capture 

certain aspects of class variability. 
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                                                   Fig 1:YOLO Object Detection 

 
 

Convolutional implementation of the sliding windows Before we discuss the 

implementation of the sliding window using convents, let us analyze how we can convert 

the fully connected layers of the network into convolutional layers. Fig. 2 shows a simple 

convolutional network with two fully connected layers each of shape . 
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Figure 2: Simple convolution network 

 

A fully connected layer can be converted to a convolutional layer with the help of a 1D 

convolutional layer. The width and height of this layer is equal to one and the number of 

filters are equal to the shape of the fully connected layer. An example of this is shown in 

Fig 3. 

 

 

Figure 3: Conversion of fully connected layer to 

convolutional layer 

 

We can apply the concept of conversion of a fully connected layer into a convolutional 

layer to the model by replacing the fully connected layer with a 1-D convolutional layer. 

The number of filters of the 1D convolutional layer is equal to the shape of the fully 
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connected layer. This representation is shown in Fig 4. Also, the output softmax layer is 

also a convolutional layer of shape (1, 1, 4), where 4 is the number of classes to predict. 

 

 
 

 

 

 

Figure 4: Replacing fully connected layer with 1D 

convolutional layer 

 

 

 

 

Now, let’s extend the above approach to implement a convolutional version of the sliding 

window. First, let us consider the ConvNet that we have trained to be in the following 

representation (no fully connected layers). 
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Let’s assume the size of the input image to be 16 × 16 × 3. If we are using the sliding 

window approach, then we would have passed this image to the above ConvNet four times, 

where each time the sliding window crops the part of the input image matrix of size 14 × 

14 × 3 and pass it through the ConvNet. But instead of this, we feed the full image (with 

shape 16 × 16 × 3) directly into the trained ConvNet (see Fig. 6). This results will give an 

output matrix of shape 2 × 2 × 4. Each cell in the output matrix represents the result of the 

possible crop and the classified value of the cropped image. For example, the left cell of 

the output matrix(the green one) in Fig. 6 represents the result of the first sliding window. 

The other cells in the matrix represent the results of the remaining sliding window 

operations. 

The stride of the sliding window is decided by the number of filters 

used in the Max Pool layer. In the example above, the Max Pool layer has two filters, and 

for the result, the sliding window moves with a stride of two resulting in four possible 

outputs to the given input. The main advantage of using this technique is that the sliding 

window runs and computes all values simultaneously. Consequently, this technique is 

really fast. The weakness of this technique is that the position of the bounding boxes is not 

very accurate. A better algorithm that tackles the issue of predicting accurate bounding 

boxes while using the convolutional sliding window technique is the YOLO algorithm. 

YOLO stands for you only look once which was developed in 2015 by Joseph Redmon, 

Santosh Divvala, Ross Girshick, and Ali Farhadi. It is popular because it achieves high 

accuracy while running in real-time. This algorithm requires only one forward propagation 

pass through the network to make the predictions. This algorithm divides the image into 
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grids and then runs the image classification and localization algorithm (discussed under 

object localization) on each of the grid cells. For example, we can give an input image of 

size 256 × 256. We place a 3 × 3 grid on the image. 

 

 

 

 

 

Figure 5: Sliding Window 

 

 

 

 
Next, we shall apply the image classification and localization algorithm on each grid 

cell.In the image each grid cell, the target variable is defined as 

Yi,j=[pcbxbybhbwc1c2c3c4]T(6) Do everything once with the convolution sliding 

window. Since the shape of the target variable for each grid cell in the image is 1 × 9 and 

there are 9 (3 × 3) grid cells, the final output of the model will be: 
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final output = 3x3x9 

 

The advantages of the YOLO algorithm is that it is very fast and predicts much more 

accurate bounding boxes. Also, in practice to get the more accurate predictions, we use a 

much finer grid, say 19 × 19, in which case the target output is of the shape 19 × 19 × 9. 

 

 

 

 

LITERATURE SURVEY 

 

 

In various fields, there is a necessity to detect the target object and also track them 

effectively while handling occlusions and other included complexities. Many researchers 

(Almeida and Guting 2004, Hsiao-Ping Tsai 2011, Nicolas Papadakis and Aure lie Bugeau 

2010 ) attempted for various approaches in object tracking. The nature of the techniques 

largely depends on the application domain. Some of the research works which made the 

evolution to proposed work in the field of object tracking are depicted as follows. 

 

OBJECT DETECTION is an important task, yet challenging vision task. It is a critical 

part of many applications such as image search, image auto-annotation and scene 

understanding, object tracking. Moving object tracking of video image sequences was one 

of the most important subjects in computer vision. It had already been applied in many 

computer vision fields, such as smart video surveillance (Arun Hampapur 2005), artificial 
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intelligence, military guidance, safety detection and robot navigation, medical and 

biological application. 

In recent years, a number of successful single-object tracking 

system appeared, but in the presence of several objects, object detection becomes difficult 

and when objects are fully or partially occluded, they are obtruded from the human vision 

which further increases the problem of detection. Decreasing illumination and acquisition 

angle. The proposed MLP based object tracking system is made robust by an optimum 

selection of unique features and also by implementing the Adaboost strong classification 

method. 

 

Background Subtraction method by Horprasert et al (1999), was able to cope with local 

illumination changes, such as shadows and highlights, even globe illumination changes. In 

this method, the background model was statistically modelled on each pixel. 

Computational colour mode, include the brightness distortion and the chromaticity 

distortion which was used to distinguish shading background from the ordinary background 

or moving foreground objects. 

The background and foreground subtraction method used the 

following approach. A pixel was modelled by a 4-tuple [Ei, si, ai, bi], where Ei- a vector 

with expected colour value, si - a vector with the standard deviation of colour value, ai the 

variation of the brightness distortion and bi was the variation of the chromaticity distortion 

of the ith pixel. In the next step, the difference between the background image and the 

current image was evaluated. Each pixel was finally classified into four categories: original 
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background, shaded background or shadow, highlighted background and moving 

foreground object. Liyuan Li et al (2003), contributed a method for detecting foreground 

objects in non-stationary complex environments containing moving background objects. A 

Bayes decision rule was used for classification of background and foreground changes 

based on inter-frame colour co-occurrence statistics. An approach to store and fast retrieve 

colour cooccurrence statistics was also established. In his method, foreground objects were 

detected in two steps. First, both the foreground and the background changes are extracted 

using background subtraction and temporal differencing. The frequent background changes 

were then recognized using the Bayes decision rule based on the learned colour co- 

occurrence statistics. Both short-term and long term strategies to learn the frequent 

background changes were used. An algorithm focused on obtaining the stationary 

foreground regions as said by Álvaro Bayona et al (2010), which was useful for 

applications like the detection of abandoned/stolen objects and parked vehicles. This 

algorithm mainly used two steps Firstly, a sub-sampling scheme based on background 

subtraction techniques was implemented to obtain stationary foreground regions. This 

detects foreground changes at different time instants in the same pixel locations. This was 

done by using a Gaussian distribution function. Secondly, som modifications were 

introduced on this base algorithm such as thresh holding the previously computed 

subtraction. The main purpose of this algorithm was reducing the amount of stationary 

foreground detected. 

Template Matching is the technique of finding small parts of an image which match a 

template image. It slides the template from the top left to the bottom right of the image and 
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compares for the best match with the template. The template dimension should be equal to 

the reference image or smaller than the reference image. It recognizes the segment with the 

highest correlation as the target. Given an image S and an image T, where the dimension 

of S was both larger than T, output whether S contains a subset image I where I and T are 

suitably similar in pattern and if such I exists, output the location of I in S as in Hager and 

Bellhumear (1998). Schweitzer et al (2011), derived an algorithm which used both upper 

and lowers bound to detect ‘k’ best matches. Euclidean distance and Walsh transform 

kernels are used to calculate match measure. The positive things included the usage of 

priority queue improved quality of decision as to which bound-improved and when good 

matches exist inherent cost was dominant and it improved performance. But there were 

constraints like the absence of good matches that lead to queue cost and the arithmetic 

operation cost was higher. The proposed methods dint use queue thereby avoiding the 

queue cost rather used template matching. Visual tracking methods can be roughly 

categorized in two ways namely, the feature-based and region-based method as proposed 

by Ken Ito and Shigeyuki Sakane (2001). The featurebased approach estimates the 3D pose 

of a target object to fit the image features the edges, given a 3D geometrical model of an 

object. This method requires much computational cost. Region-based can be classified into 

two categories namely, parametric method and view-based method. The parametric method 

assumes a parametric model of the images in the target image and calculates optimal fitting 

of the model to pixel data in a region. The view-based method was used to find the best 

match of a region in a search area given the reference template. This has the advantage that 

it does not require much computational complexity as in the feature-based approach. 
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Proposed model 
 
 

SqueezeNet: 

 
SqueezeNet is name of a DNN for computer vision. SqueezNet is developed by researchers 

at DeepScale, University of California, Berkeley, and Stanford University together. In 

SqueezeNet design, the authors goal is to create a smaller neural network with few 

parameters that can more easily fit into memory of computer and can more easily be 

transmitted over a computer network. SqueezeNet is originally released in 2016. This 

original version of SqueezeNet was implemented on top of the Caffe deep learning 

software framework. The open-source research community ported SqueezeNet to a 

number of other deep learning frameworks. And is released in additions, in 2016, Eddie 

Bell released a part of SqueezeNet for the Chainer deep learning framework. in 2016, 

Guo Haria released a part of SqueezeNet for the Apache MXNet framework. 2016, Tammy 

Yang released a port of SqueezeNet for the Keras framework. In 2017, companies 

including Baidu, Xilnx, Imagination Technologies, and Synopsys demonstrated 

SqueezedNet running on low-power processing platforms such as smartphones, FPGAs, 

and custom processors. SqueezeNet ships as part of the source code of a number of deep 

learning frameworks such as PyTorch, Apache MXNet, and Apple CoreML.In addition, 

3rd party developers have created implementation of SqueezeNet that are compatible with 

frameworks such as TensorFlow. Below is summary of frameworks that support 

SqueezeNet. 
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InceptionV3: 

 
Inception v3 is widely used as image recognition model that has showed to obtain accuracy 

of greater than 78.1% on the ImageNet dataset. The model is the culmination of many ideas 

developed by researchers over years. It is based on “Rethinking the Inception Architecture 

Computer Vision” by Szegedy The model is made of symmetric and asymmetric building 

blocks, including convolutions, average pooling, max pooling, concats, dropouts, and fully 

connected layers. Batchnorm is used more throughout the model and applied to activation 

inputs. Loss is computed via Softmax. A high-level diagram of the model is shown below: 

DenseNet: 

 
DenseNet stands for Densely Connected Convolutional Networks it is one of the latest 

neural networks for visual object recognition. It is similar to ResNet but has some 

fundamental differences. With all improvements DenseNets have one of the lowest error 

rates on CIFAR/SVHN datasets: Error rates on various datasets And for ImageNet dataset 

DenseNets require fewer parameters than ResNet with same accuracy: Comparison of the 

DenseNet and ResNet Top-1 error rates on the ImageNet classification dataset as a function 

of learned parameters and flops during test-time This post assumes past knowledge of 

neural networks and convolutions. This mainly focus on two topics: Why does dense net 

differs  from  another  convolution  networks. What are the difficulties during the 

implementation of DenseNet in TensorFlow. If you know how DenseNets works and 

interested only in TensorFlow implementation feel free to jump to the second chapter or 

check the source. If you are not familiar with any of these topics to attain knowledge 
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Compare DenseNet with other convolution networks available Usually Convolution 

networks work such a way that We have an initial image, say having a shape of (29, 34, 

31). After we apply set of convolution or pooling filters on it, squeezing dimensions of 

width and height and increasing features dimension. So the output from the Li layer is 

input to the Li+1 layer. 

ResNet architecture is proposed for Residual connection, from previous layers to the 

present layer. input to Li layer is obtain by addition of outputs from previous layers. 

In contrast, DenseNet paper proposes concatenating outputs from the previous layers 

instead of using the summation. So, let’s imagine we have an image with shape(28, 28, 3). 

First, we spread image to initial 24 channels and receive the image (28, 28, 24). Every next 

convolution layer will generate k=12 features, and remain width and height the same. The 

output from Lᵢ layer will be (28, 28, 12). But input to the Lᵢ₊₁ will be (28, 28, 24+12), for 

Lᵢ₊₂ (28, 28, 24 + 12 + 12) and so on. After a while, we receive the image with same width 

and height, but with plenty of features (28, 28, 48). All these N layers are named Block in 

the paper. There’s also batch normalization, nonlinearity and dropout inside the block. To 

reduce the size, DenseNet uses transition layers. These layers contain convolution with 

kernel size = 1 followed by 2x2 average pooling with stride = 2. It reduces height and width 

dimensions but leaves feature dimension the same. As a result, we receive the image with 

shapes (14, 14, 48) Now we can again pass the image through the block with N 

convolutions. With this approach, DenseNet improved a flow of information and gradients 

throughout the network, which makes them easy to train. Each layer has direct access to 
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the gradients from the loss function and the original input signal, leading to an implicit 

deep supervision. Also at transition layers, not only width and height will be reduced but 

features also. So if we have image shape after one block (28, 28, 48) after transition layer, 

we will get (14, 14, 24). 

 

 
 

 
Figure 6: DenseNet approach 

 

Where theta — some reduction values, in the range (0, 1). Whenusing bottleneck layers 

with DenseNet, maximum depth will be divided by 2. It means that if you have 16 3x3 

convolution layers with depth 20 previously (some layers are transition layers),you will 

now have 8 1x1 convolution layers and 8 3x3 convolutions.Last, but not least, about data 

preprocessing. In the paper per channel normalization was used. With this approach, every 

image channel should be reduced by its mean and divided by its standard deviation. In 

many implementations was another normalization used — just divide every image pixel by 

255, so we have pixels values in the range [0, 1]. Note about numpy implementation of per 

channel normalization. By default images provided with data type unit. Before any 

manipulations, It is advised to convert the images to any float representation. Because 

otherwise, a code will fail without any warnings or errors. 
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SYSTEM REQUIREMENT 

 
Install Python on your computer system 

 

1. Install ImageAI and its dependencies like TensorFlow, Numpy, OpenCV, etc. 

 

2. Download the Object Detection model file (Retinanet) 

 

5.1 Steps to be followed :- 

 

1) Download and install Python version 3 from official Python Language website 

https://python.org 

2) Install the following dependencies via pip command: 

 

i. Tensorflow: 

 

Tensorflow is an open-source software library for dataflow and differentiable programming 

across a range of tasks. It is an symbolic math library, and is also used for machine learning 

application such as neural networks,etc.. It is used for both research and production by 

Google. Tensorflow is developed by the Google Brain team for internal Google use. It is 

released under the Apache License 2.0 on November 9,2015. Tensorflow is Google Brain's 

second-generation system.1st Version of tensorflow was released on February 11, 

2017.While the reference implementation runs on single devices, Tensorflow can run on 

multiple CPU’s and GPU (with optional CUDA and SYCL extensions for general-

purpose computing on graphics processing units). TensorFlow is available on various 

platforms such as64-bit Linux, macOS, Windows, and mobile computing platforms 
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including Android and iOS. The architecture of tensorflow allows the easy deployment of 

computation across a variety of platforms (CPU’s, GPU’s, TPU’s), and from desktops - 

clusters of servers to mobile and edge devices. Tensorflow computations are expressed as 

stateful dataflow graphs. The name Tensorflow derives from operations that such neural 

networks perform on multidimensional data arrays, which are referred to as tensors.  

pip install tensorflow -command 

ii. Numpy: 

 

NumPy is library of Python programming language, adding support for large, 

multidimensional array and matrix, along with large collection of high-level mathematical 

function to operate over these arrays. The ancestor of NumPy, Numeric, was originally 

created by Jim Hugunin with contributions from several developers. In 2005 Travis 

Olphant created NumPy by incorporating features of computing Numarray into Numeric, 

with extension modifications. NumPy is open-source software and has many contributors. 

pip install numpy -command 

 

 

iii. SciPy: 

 

SciPy contain modules for many optimizations, linear algebra, integration, interpolation, 

special function, FFT, signal and image processing, ODE solvers and other tasks common 

in engineering. SciPy abstracts majorly on NumPy array object ,and is the part of the 

NumPy stack which include tools like Matplotlib, pandas and SymPy, etc., and an 

expanding set of scientific computing libraries. This NumPy stack has similar uses to other 

applications such as MATLAB,Octave, and Scilab. The NumPy stack is also sometimes 
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referred as the SciPy stack. The SciPy library is currently distributed under BSDlicense, 

and its development is sponsored and supported by an open communities of developers. It 

is also supported by NumFOCUS, community foundation for supporting reproducible and 

accessible science.  

pip install scipy -command 

iv. OpenCV: 

 

OpenCV is an library of programming functions mainly aimed on real time computer 

vision. originally developed by Intel, it is later supported by Willow Garage then Itseez. 

The library is a cross-platform and free to use under the open-source BSD license. 

pip install opencv-python -command 

v. Pillow: 

 

Python Imaging Library is a free Python programming language library that provides 

support to open, edit and save several different formats of image files. Windows, Mac OS 

X and Linux are available for this.  

 

pip install pillow -command 

 

vi. Matplotlib: 

 

Matplotlib is a Python programming language plotting library and its NumPy numerical 

math extension. It provides an object-oriented API to use general-purpose GUI toolkits 

such as Tkinter, wxPython, Qt, or GTK+ to embed plots into applications.  

pip install matplotlib - command 
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vii. H5py: 

 

The software h5py includes a high-level and low-level interface for Python's HDF5 library. 

The low interface expected to be complete wrapping of the HDF5 API, while the high- 

level component uses established Python and NumPy concepts to support access to 

HDF5 files, datasets and groups. A strong emphasis on automatic conversion between 

Python (Numpy) datatypes and data structures and their HDF5 equivalents vastly simplifies 

the process of reading and writing data from Python.  

pip install h5py 

viii. Keras 

 

Keras is an open-source neural-network library written in Python. It is capable of running 

on top of TensorFlow, Microsoft Cognitive Toolkit, Theano, or PlaidML. Designed to 

enable fast experimentation with deep neural networks, it focuses on being user-friendly, 

modular, and extensible. 

pip install keras 

 

ix. ImageAI  

ImageAI provides API to recognize 1000 different objects in a picture using pre-trained 

models that were trained on the ImageNet-1000 dataset. The model implementations 

provided are SqueezeNet, ResNet, InceptionV3 and DenseNet.  

pip3 install imageai --upgrade 
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3) Download the RetinaNet model file that will be used for object detection using following 

link 

https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/resnet50 
 

_coco_best_v2.0.1.h5  

 

Copy the RetinaNet model file and the image you want to detect to the folder that contains 

the python file. 
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