

A Project Report

On

Media Player

Submitted in partial fulfillment of the

 requirement for the award of the degree of

BACHELORS OF COMPUTER APPLICATION

DEGREE

Session 2023-24

in

Capstone project

By

Kirti Kumar (21SCSE1040037)

Surlay Rao (21SCSE1040025)

Mahak Mustafa (21SCSE1040073)

Under the guidance of

Dr Neha Singh

SCHOOL OF COMPUTER APPLICATION AND TECHNOLOGY

GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

APRIL, 2024

SCHOOL OF COMPUTER APPLICATION AND TECHNOLOGY

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project, entitled “Media

Player” in partial fulfillment of the requirements for the award of the BCA (Bachelores of

Computer Application) submitted in the School of Computer Application and Technology

of Galgotias University, Greater Noida, is an original work carried out during the period of

Jan 2024 to May 2024, under the supervision of Dr Neha Singh Department of Computer

Science and Engineering/School of Computer Application and Technology , Galgotias

University, Greater Noida.

The matter presented in the thesis/project/dissertation has not been submitted by me/us for

the award of any other degree of this or any other places.

 Student Names (Admission No.)

Kirti Kumar (21SCSE1040037)

Surlay Rao (21SCSE1040025)

Mahak Mustafa (21SCSE1040073)

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

 Guide Name

 Dr Neha Singh

CERTIFICATE

This is to certify that Project Report entitled “Media Player” which is submitted by Kirti Kumar

21SCSE1040037, Surlay Rao 21SCSE1040025, Mahak Mustafa 21SCSE1040073 in

partial fulfillment of the requirement for the award of degree BCA. in Department of SCSE

School of Computer Application and Technology Galgotias University, Greater Noida, India

is a record of the candidate own work carried out by him/them under my supervision. The

matter embodied in this thesis is original and has not been submitted for the award of any

other degree.

Signature of Examiner(s) Signature of Supervisor(s)

Date: April, 2024

Place: Greater Noida

 TABLE OF CONTENTS Page

1) INTRODUCTION

1.1. INTRODUCTION .. 1

1.2. PROBLEM STATEMENT… .. 6

1.3. OBJECTIVES .. 6

1.4. METHODOLGY ...…………………………….. 7

1.5. ORGANISATION ... 8

2) LITEATURE SURVEY. ... 9

3.) SYSTEM DEVLOPMENT ... 14

4.) PERFORMANCE ANALYSIS .. 49

5.) CONCLUSION… ... 51

6.) REFERENCES ... 52

5

CHAPTER 1 : INTRODUCTION

This report provides an overview of a Media Player Android application, highlighting its features, user
experience, market analysis, and future prospects. Android media player applications have become integral
tools for users to manage and enjoy multimedia content on mobile devices, making it essential to understand
their impact on the digital landscape.

In today's digital age, the consumption of multimedia content has become an integral part of our daily lives.
Whether it's music , podcasts, or any other form of media, we rely on media player applications to effortlessly
and efficiently manage and enjoy these digital treasures. A media player application is a software tool designed
to play, organize, and sometimes even edit various types of media files, providing users with a seamless and
immersive multimedia experience.

Welcome to the next generation of music listening! We are thrilled to introduce Musify, a revolutionary music
player designed to enhance your audio journey. As passionate music enthusiasts ourselves, we understand the
importance of a seamless and immersive music experience.

Musify is not just another player; it's a comprehensive platform crafted with precision and care. Whether you're
a casual listener or a die-hard audiophile, our application is tailored to meet your unique needs and preferences.

1.1.1 Android

“Android is a mobile operating system (OS) currently developed by Google, based on the Linux kernel and

designed primarily for touchscreen mobile devices such as smartphones and tablets”. “Android's user

interface is mainly based on direct manipulation, using touch gestures that loosely correspond to real-world

actions, such as swiping, tapping and pinching, to manipulate on-screen objects, along with a virtual keyboard

for text input. In addition to touchscreen devices, Google has further developed Android TV for televisions,

Android Auto for cars, and Android Wear for wrist watches, each with a specialized user interface”.

Figure1.Android Logo

6

 1.1.2 Android Architecture

“We studied the Android system architecture. Android system is a Linux-based system, Use of the software

stack architecture design patterns . As shown in Figure 1, the Android architecture consists of four layers: Linux

kernel, Libraries and Android runtime, Application framework

Figure2. Android Architecture

A) Applications:

“Android app will be shipped with a set of core applications including client, SMS program,

calendar, maps, browser, contacts, and others. All these application programs are developed in

Java”.

B) Application Framework :

“The developer is allowed to access all the API framework of the core programs. The application

framework simplifies the reuse of its components. Any other app can release its functional

components and all other apps can access and use this component (but have to follow the security

of the framework). Same as the users can be able to substitute the program components with this

reuse mechanism”

7

C) Libraries and Android Runtime

“The library is divided in to two components: Android Runtime

and Android Library. Android Runtime is consisted of a Java Core

Library and Dalvik virtual machine. The Core Library provides Java

core library with most functions. Dalvik virtual machine is register

virtual machine and makes some specific improvements for mobile

device. Android system library is support the application

framework, it is also an important link connecting between

application framework and Linux Kernel. This system library is

developed in C or C++ language. These libraries can also be utilized

by the different components in the Android system. They provide

service for the developers through the application framework”.

D) Linux Kernel

“The kernel system service provided by Android inner nuclear layer is

based on Linux 2.6 kernel, Operations like internal storage, process

management, internet protocol, bottom- drive and other core service

are all based on Linux kernel”.

1.1.3 Software Development Kit(SDK)

“A software development kit (SDK or "devkit") has many definitions but it is

usually callded a set of software development tools which help us in many

ways or allows the creation of applications which can be useful in future in

a lot of things as seen from this report for a certain softwarepackage,

software framework, hardware platform, computer system, video game

console, operating system, or similar development platform. To create

applications you have to download this software development kit”. “For

example, if you want to create an Android app you require an SDK with java

programming, for iOS apps you require an iOS SDK with swift language, and

to develop MS Windows apps you require thepackage, software framework,

hardware platform, computer system, video game console, operating

8

system, or similar development platform. To create applications you have to

download this software development kit”. “For example, if you want to

create an Android app you require an SDK with java programming, for iOS

apps you require an iOS SDK with swift language, and to develop MS

Windows apps you require the .net language. There are also SDKs that are

installed in apps to provide analytics and data about activity. Prominent

examples include Google and Facebook”.

“Android Studio is an integrated development environment (IDE) for

developing for the Android platform. It was announced on May 16, 2013

at the Google I/Oconference”. “Android Studio is freely available under the

Apache License 2.0. Android Studio was in early access preview stage

starting from version 0.1 in May 2013, then entered beta stage starting from

versionconference”. “Android Studio is freely available under the Apache

License 2.0. Android Studio was in early access preview stage starting from

version 0.1 in May 2013, then entered beta stage starting from version

0.8 which was released in June 2014”. “The first stable build was released

in December 2014, starting from version 1.0. Based on JetBrains' software,

Android Studio is designed specifically for Android development. It is

available for download on Windows, Mac OS Xand Linux, and replaced

Eclipse Android Development Tools (ADT) as Google's primary IDE for

native Android application development”.

 Figure3.Android Studio Logo

9

CHAPTER 2 : LITERATURE REVIEW

Paper 1: Music player Android

“The authors have tested the app in three environments including hardware,

software and network. Test hardware environment is Lenovo Y460 laptop and

millet M1 phone; software environment is windows 11 and phone system

environment is android 12.0”. “Network environment is China Mobile which is

10M broadband, WIFI LAN and China Mobile GPRS network.By testing each

function on mobile phone and the computer simulator, the result showed that

video player and audio player run well and no advertising”. “Sina weibo client can

successfully complete OAuth2.0 certificate authority and login and collect the

basic data of the user information from sina server and no redundant

information. Expected effect is achieved after testing all the functions”. “They

says that since the Weibo client has to access to the network, when tested on an

android phone, the performance under the environment of WIFI network and

mobile 2G GPRS network can meet the expected requirements”. Paper 2:

Research on Development of android Applications.

“This article gives a detailed introduction of android application framework and

the working principal of android applications. Finally, a music player on the

android platform was put forward as an example to illustrate this mechanism”.

“The authors say that android application development college challenge has

only been held two times, but it greatly encourages and promotes the creativity

of the college students”. “With more and more competitive teams participating

the contest, it will be harder to win an award. However, many exciting

applications will be presented in the contest. This challenge gives us an

opportunity to learn about that a lot of ideas we think about can be implemented

on android platform. At the same time, the contest provides a stage for android

developer to discuss and communicate with each other. This can effectively

10

promote the development of android and attract more software engineers to

develop applications on android platform”.

Paper 4: “A model driven approach for android applications development”

“This paper proposes a MDE approach for android applications

development, which addresses how to model specific aspects of android

applications, as intent and a data/service request, using standard UML

notations”. “Moreover, it supports static and behavioral code generation

from UML class and sequence diagrams, according to the rules imposed by

the android platform. To demonstrate our approach, a case study was

conducted, in which an android application was modeled in UML and code

was generated from it. To generate code, the extension of GenCode was

used”. “However, the actual version of GenCode tool that supports the

proposed approach, only made an automatic transformation from UML

class and sequence diagrams to the target android Java code, without

consider any optimization in the generated code. As future work, we plan to

extend this tool in order to consider the good practices for android

development , and thus generating efficient code”.

Paper 5: Design of Android based Media Player

This paper[5] tells us that many or a lot of users use their mobile phone but

obviously, but the media player has many limitations. The increase in

development of communication and network, multimedia based

technology is adopted in media player. Different approaches of media player

“shown in this paper are plug-in extension technology, multimedia based on

hierarchy, media player based on file browser, media player based on

FFmpeg (Fast Forward Moving Picture Expert Group), media player based on

file server”.

11

Figure 4. Architecture of multimedia player software

platform

Figure 5. Android media framework

12

Figure 6. System processes of media player

Paper 6: The Android - A Widely Growing Mobile Operating System With its

Mobile based

Applications[6]

“Android operating system is one of the most widely used mobile Operating

System these days and also enhancing its use for making betterment in

different areas of life. Android mobile operating system is based on the Linux

kernel and is developed by Google and primarily designed for smartphones

and tablets. Android Operating System consist of four main layers, the

specifying architecture is given in this paper. The advanced Smart

applications of android in mobile, real-time and wireless sensor network are

widening their service areas. Android is a disruptive technology, which was

introduced initially on mobile handsets, but has much wider potential. In this

paper we are studying, one of the smart and enhancing Android operating

13

system application which are based on Automated and tracking from remote

distance. These application helps students, teachers, parents, patients and

users of home appliance as anytime and anywhere basis. Being part of

today’s advance world, using fastest acceptable and mobile Android

Operating System it’s possible to develop automated attendance system,

secure transferring of medical data and automated home appliance

monitoring system”.

Figure 7.Android Architecture

14

CHAPTER 3:SYSTEM DEVELOPMENT

3.1 Designing navigation drawer

To add a navigation drawer, declare wer user interface with aDrawerLawet

object as the root view of werlawet. “Inside theDrawerLawet, add one view

that contains the main content for the screen (wer primary lawet when the

drawer is hidden) and another view that contains the contents of the

navigation drawer”.

“For example, the following lawet uses a DrawerLawet with two child views:

a FrameLawet to contain the main content (populated by a Fragment at

runtime), and a ListView for the navigation drawer”.

15

This lawet demonstrates some important lawet characteristics:

• “The main content view (the FrameLawet above) must be the

first child in the DrawerLawet because the XML order implies z-

ordering and the drawer must be on top of the content”.

• “The main content view is set to match the parent view's width and

height, because it represents the entire UI when the navigation drawer

is hidden”.

• “The drawer view specifies its width in dp units and the height matches

the parent view. The drawer width should be no more than 320dp so

the user can always see a portion of the main content”.

Initialize the Drawer List

“In wer activity, one of the first things to do is initialize the navigation drawer's

list of items. How we do so depends on the content of wer app, but a navigation

drawer often consists of a ListView, so the list should be populated by an

Adapter (such as ArrayAdapter or SimpleCursorAdapter)”.

For example, here's how we can initialize the navigation list with a string

array:

16

“This code also calls setOnItemClickListener() to receive click events in the

navigation drawer's list. The next section shows how to implement this

interface and change the content view when the user selects an item”.

Handle Navigation Click Events

“When the user selects an item in the drawer's list, the system calls

onItemClick() on theOnItemClickListener given to setOnItemClickListener()”.

“What we do in the onItemClick() method depends on how we've

implemented wer app structure. In the following example, selecting each

item in the list inserts a different Fragment into the main content view

(theFrameLawet element identified by the R.id.content_frame ID)”:

17

Listen for Open and Close Events

“To listen for drawer open and close events, call setDrawerListener() on wer

DrawerLawet and pass it an implementation of

DrawerLawet.DrawerListener. This interface provides callbacks for drawer

events such asonDrawerOpened() and onDrawerClosed()”

“However, rather than implementing the DrawerLawet.DrawerListener, if wer

activity includes the action bar we can

 instead extend the ActionBarDrawerToggle class. The

 ActionBarDrawerToggle implementsDrawerLawet.DrawerListener so we can

still override those callbacks, but it also facilitates the proper interaction

behavior between the action bar icon and the navigation drawer (discussed

further in the next section)”. we can instead extend the

ActionBarDrawerToggle class. The ActionBarDrawerToggle

implementsDrawerLawet.DrawerListener so we can still override those

callbacks, but it also facilitates the proper interaction behavior between the

18

action bar icon and the navigation drawer (discussed further in the next

section)”.

“As discussed in the Navigation Drawer design guide, we should modify the

contents of the action bar when the drawer is visible, such as to change the

title and remove action items that are contextual to the main content. The

following code shows how we can do so by overriding

DrawerLawet.DrawerListener callback methods with an instance of the

ActionBarDrawerToggle

3.2 Creating another activity

19

Respond to the Send Button

1. “In Android Studio, from the res/lawet directory, edit

thecontent_my.xml file”.

2. “Add the android:onClick attribute to the <Button>element”.

res/lawet/content_my.xml

“The android:onClick attribute’s value, "sendMessage", is the name of a

method in wer activity that the system calls when the user clicks the

button”.

3. “In the java/com.shashwat.iciip directory, open the MainActivity.java

file”.

4. “Within the MainActivity class, add the sendMessage() method stub

shown below”.

MainActivity.java

publicvoidsendMessage(View view){

}

“In order for the system to match this method to the method name given

to android:onClick, the signature must be exactly as shown. Specifically,

the method

 must”: o Be public

20

o Have a void return value

o “Have a View as the only parameter (this will be the View that was

clicked)”

Next, we’ll fill in this method to read the contents of the text field and deliver

that text to another activity.

Build an Intent

1. “In MainActivity.java, inside the sendMessage() method, create an

Intent to start an activity calledDisplayMessageActivity with the

following code”:

java/com.shashwat.iciip/MainActivity.java

The constructor used here takes two parameters: o “A Context as its

first parameter (this is used because the Activity class is a subclass

of Context)”

 o “The Class of the app component to which the system should deliver the

Intent (in this case, the activity that should be started)”

“Android Studio indicates that we must import the Intent class”.

2. At the top of the file, import the Intent class:

MainActivity.java

21

importandroid.content.Intent;

3. Inside the sendMessage() method, use findViewById() to get the

EditText element.

4. “At the top of the file, import the EditText class.

In Android Studio, press Alt + Enter (option + return on Mac) to import

missing classes”.

5. Assign the text to a local message variable, and use the putExtra()

method to add its text value to the intent.

MainActivity.java

“An Intent can carry data types as key-value pairs called extras. The

putExtra() method takes the key name in the first parameter and the

value in the second parameter”.

6. At the top of the MyActivity class, add the EXTRA_MESSAGE definition

as follows:

MainActivity.java

22

“For the next activity to query the extra data, we should define the key

for wer intent's extra using a public constant. It's generally a good

practice to define keys for intent extras using wer app's package name

as a prefix. This ensures the keys are unique, in case wer app interacts

with other apps”.

7. “In the sendMessage() method, to finish the intent, call the

startActivity() method, passing it theIntent object created in step 1”.

 With this new code, the complete sendMessage() method that's invoked

by the Send button now looks like this:

MainActivity.java

23

“The system receives this call and starts an instance of the Activity specified

by the Intent. Now we need to create the DisplayMessageActivity class in

order for this to work”.

Create the Second Activity

1. “In Android Studio, in the java directory, select the package,

com.mycompany.iciip, right- click, and select New > Activity > Blank

Activity”.

2. In the Choose options window, fill in the activity details:

o Activity Name: DisplayMessageActivity o

 Lawet Name: activity_display_message o

 Title: My Message

o Hierarchical Parent:

com.mycompany.myfirstapp.MyActivity o

 Package name: com.mycompany.myfirstapp

Click Finish.

3. Open the DisplayMessageActivity.java file.

“The class already includes an implementation of the required

onCreate() method. We update the implementation of this method

later”.

Receive the Intent

“Every Activity is invoked by an Intent, regardless of how the user navigated

there. We can get the Intentthat started wer activity by calling getIntent()

and retrieve the data contained within the intent”.

1. “In the mainactivity directory, edit the DisplayMessageActivity.java

file”.

2. “Get the intent and assign it to a local variable”.

Intentintent=getIntent();

24

3. “At the top of the file, import the Intent class”.

4. Extract the message delivered by MyActivity with the getStringExtra()

method.

String message =intent.getStringExtra(MyActivity.EXTRA_MESSAGE);

Display the Message

1. “In the res/lawet directory, edit the content_display_message.xml file”.

2. “Add an android:id attribute to the RelativeLawet. We need this

attribute to reference the object from wer app code”.

3. “Switch back to editing DisplayMessageActivity.java”.

4. “In the onCreate() method, create a TextView object”.

TextViewtextView=newTextView(this);

5. “Set the text size and message with setText()”.

textView.setTextSize(40); textView.setText(message);

6. “Add the TextView to the RelativeLawet identified by R.id.content”.

25

RelativeLawetlawet=(RelativeLawet)findViewById(R.id.content); lawet.addView(textView);

7. “At the top of the file, import the TextView class”.

“In Android Studio, press Alt + Enter (option + return on Mac) to import

missing classes”. 3.3 Video Player

Video Player is achieved through the Android Studio platform.It begins with

the study of operating “mechanism, Android platform media layer structure,

xml customizable interface”, Content Providers achieves file scanning to get

a list of media files, MediaPlayer class, file parsing, “Surface Flinger

interface. After that, we could develop an Android-based mobile video

player. Realize media library, video player, file opening, audio, video,

photographs and other functions. Figure below is system flow chart”.

Figure 8.System Flow Chart

“The software interface is defined through XML files. XML layout files

control view, is not only simple, but also isolated the View control logic from

26

Java code and controlled by inserted into XML files. Reflects the MVC

principle in a better way and also reflects the principle of

separation of logic and views. This software obtains the list of media files

by scanning through

Content Providers. Content Providers is recognized as a bridge between the

data storing and searching across programs. The function is to achieve data

sharing among different Apps, it is the only way to share data with other

apps. Figure below shows the media layer structure”.

Figure 9.Media Layer Structure

“The upper applications of Android-MediaPlayer are implemented by JAVA,

realized logic processing. JAVA program realizes the playback of video file

and online video by calling the underlying media library libmedi.so through

JNI interface. MediaPlayer can be roughly divided into two parts at run time:

Client and Server. They are running in two separated processes. Binder used

between them to achieve IPC communication. Mediaplayerservice in Figure

3 is a server- side implementation repository. MediaPlayer calls media

27

playback capabilities provided by Opencore to implement video file

playback, Opencore responsible media file format parsing, decoding audio

and video data, and outputs the media data. Opencore calls SurfaceFlinger”

interface to realize the showing of video data and by applying AudioFlinger

interface to realize the playback of audio data.

“In the Android media layer, the most important class is MediaPlayer.

MediaPlayer class and its associated structures are shown in Figure below”.

 “Vitamio is an open multimedia framework for Android, with hardware

accelerated decoder and renderer. Vitamio can play 720p/1080p HD

mp4,mkv,m4v,mov,flv,avi,rmvb,rm,ts,tp and many other video formats in

Android and iOS. Almost all popular streaming protocols are supported by

Vitamio, including HLS(m3u8), MMS, RTSP, RTMP, and HTTP”.

 Integrating SDK into your application

• Create a New Android project

• import vitamiolibrary.jar into your applicaiton project /libs directory

• Add libvitamio.so into your application project /libs directory

• Copy the recourse like class,picture from Demo into app project

AUDIO PLAYER

MediaPlayer class can be used to control playback of audio files and streams.

State Diagram

28

“Playback control of audio/video files and streams is managed as a state

machine. The following diagram shows the life cycle and the states of a

MediaPlayer object driven by the supported playback control operations.

The ovals represent the states a MediaPlayer object may reside in. The arcs

represent the playback control operations that drive the object state

transition. There are two types of arcs. The arcs with a single arrow head

represent synchronous method calls, while those with a double arrow head

represent asynchronous method calls”.

Figure 10.State Diagram of audio player

“From this state diagram, one can see that a MediaPlayer object has the

following states”:

• “When a MediaPlayer object is just created using new or after reset() is

called, it is in the Idle state; and after release() is called, it is in the

29

Endstate. Between these two states is the life cycle of the MediaPlayer

object”. o “There is a subtle but important difference between a newly

constructed MediaPlayer object and the MediaPlayer object after

reset() is called. It is a programming error to invoke methods such”

“as getCurrentPosition(), getDuration(), getVideoHeight(),

getVideoWidth(),setAudioStrea mType(int), setLooping(boolean),

setVolume(float, float), pause(), start(), stop(), seekTo(int),

prepare() orprepareAsync() in the Idle state for both cases. If any of

these methods is called right after a MediaPlayer object is

constructed, the user supplied

callback method OnErrorListener.onError() won't be called”

“by the internal player engine and the object state remains

unchanged; but if these methods are called right after reset(), the

user supplied callback method OnErrorListener.onError() will be

invoked by the internal player engine and the object will be

transfered to the Error state”.

o “It is also recommended that once a MediaPlayer object is no longer

being used, call release() immediately so that resources used by the

internal player engine associated with the MediaPlayer object can

be released immediately. Resource may include singleton resources

such as hardware acceleration components and failure to call

release() may cause subsequent instances of MediaPlayer objects to

fallback to software implementations or fail altogether. Once the

MediaPlayer object is in the End state, it can no longer be used and

there is no way to bring it back to any other state”. o “Furthermore,

the MediaPlayer objects created using new is in the Idle state, while

those created with one of the overloaded convenient

createmethods are NOT in the Idle state”. fact, the objects are in the

Prepared state if the creation using create method is successful.

30

• “In general, some playback control operation may fail due to various

reasons, such as unsupported audio/video format, poorly interleaved

audio/video, resolution too high, streaming timeout, and the like. Thus,

error reporting and recovery is an important concern under these

circumstances. Sometimes, due to programming errors, invoking a

playback control operation in an invalid state may also occur. Under all

these error conditions, the internal player engine invokes a user

supplied OnErrorListener.onError() method if an

OnErrorListener has been registered beforehand”

 via

setOnErrorListener(android.media.MediaPlayer.OnErrorListener).

o “It is important to note that once an error occurs, the MediaPlayer

object enters the Error state (except as noted above), even if an

error listener has not been registered by the application”.

o “In order to reuse a MediaPlayer object that is in the Error state and

recover from the error, reset() can be called to restore the object to

its Idlestate”.

o “It is good programming practice to have your application register a

OnErrorListener to look out for error notifications from the internal

player engine”. o “IllegalStateException is thrown to prevent

programming errors such as calling prepare(), prepareAsync(), or

one of the overloadedsetDataSource methods in an invalid state”.

• “Calling setDataSource(FileDescriptor), or setDataSource(String), or

setDataSource(Context, Uri) or setDataSource(FileDescriptor, long,

long), or setDataSource(FileDescriptor, long, long),

or setDataSource(MediaDataSource) transfers a MediaPlayer object

in the Idle state to the Initialized state”. o “An

31

IllegalStateException is thrown if setDataSource() is called in any other

state”.

o “It is good programming practice to

 always look out for

IllegalArgumentException and IOException that may be thrown from

the overloadedsetDataSource methods”.

• “A MediaPlayer object must first enter the Prepared state before

playback can be started”.

o “There are two ways (synchronous vs. asynchronous) that the

Prepared state can be reached: either a call to prepare()

(synchronous) which transfers the object to the Prepared state once

the method call returns, or a call

to prepareAsync() (asynchronous) which first transfers the object

to the Preparing state after the call returns (which occurs almost

right way) while the internal player engine continues working on

the rest of preparation work until the preparation work completes.

When the preparation completes or when prepare() call returns,

the internal player engine then calls a user supplied callback

method, onPrepared() of the OnPreparedListener interface, if an

OnPreparedListener is registered beforehand via

setOnPreparedListener(android.media.MediaPlayer.OnPreparedList

ener

)”.

o “It is important to note that the Preparing state is a transient state,

and the behavior of calling any method with side effect while a

MediaPlayer object is in the Preparing state is undefined”. o “An

IllegalStateException is thrown if prepare() or prepareAsync() is

called in any other state”. o “While in the Prepared state, properties

32

such as audio/sound volume, screenOnWhilePlaying, looping can be

adjusted by invoking the corresponding set methods”.

• “To start the playback, start() must be called. After start() returns

successfully, the MediaPlayer object is in the Started state. isPlaying()

can be called to test whether the MediaPlayer object is in the Started

state”. o “While in the Started state, the internal player engine calls a

user supplied OnBufferingUpdateListener.onBufferingUpdate() callback

method if a OnBufferingUpdateListener has been registered beforehand

via setOnBufferingUpdateListener(OnBufferingUpdateListener). This

callback allows applications to keep track of the buffering status while

streaming audio/video”.

o Calling start() has not effect on a MediaPlayer object that is already

in the Started state.

• “Playback can be paused and stopped, and the current playback position

can be adjusted. Playback can be paused via pause(). When the call

topause() returns, the MediaPlayer object enters the Paused state. Note

that the transition from the Started state to the Paused state and vice

versa happens asynchronously in the player engine. It may take some

time before the state is updated in calls to and it can be a number of

seconds in the case of streamed content”. and it can be a number of

seconds in the case of streamed content”. o “Calling start() to resume

playback for a paused MediaPlayer object, and the resumed playback

position is the same as where it was paused. When the call to start()

returns, the paused MediaPlayer object goes back to the Started state”.

o Calling pause() has no effect on a MediaPlayer object that is already

in the Paused state.

• “Calling stop() stops playback and causes a MediaPlayer in the Started,

Paused, Prepared or PlaybackCompleted state to enter the Stopped

state”.

33

o “Once in the Stopped state, playback cannot be started until

prepare() or prepareAsync() are called to set the MediaPlayer object

to the Preparedstate again”. o “Calling stop() has no effect on a

MediaPlayer object that is already in the Stopped state”.

• The playback position can be adjusted with a call to seekTo(int).

o “Although the asynchronuous seekTo(int) call returns right way, the

actual seek operation may take a while to finish, especially for

audio/video being streamed. When the actual seek operation

completes, the internal player engine calls a user supplied

OnSeekComplete.onSeekComplete() if an OnSeekCompleteListener

has been registered beforehand via

setOnSeekCompleteListener(OnSeekCompleteListener)”.

o “Please note that seekTo(int) can also be called in the other states,

such as Prepared, Paused and PlaybackCompleted state”.

o “Furthermore, the actual current playback position can be retrieved

with a call to getCurrentPosition(), which is helpful for applications

such as a Music player that need to keep track of the playback

progress”.

• When the playback reaches the end of stream, the playback completes.

o “If the looping mode was being set to truewith setLooping(boolean),

the MediaPlayer object shall remain in the Started state”.

o “If the looping mode was set to false , the player engine calls a user

supplied callback method, OnCompletion.onCompletion(), if a

OnCompletionListener is registered beforehand via

setOnCompletionListener(OnCompletionListener). The invoke of

the callback signals that the object is now in the PlaybackCompleted

state”.

34

Classes for audio player

35

interface “MediaStore.Audio.PlaylistsColum ns

Columns representing a

playlist”

Class “MediaStore.Audio.Radio”

Public constructors

“MediaStore.Audio()”

Public methods

staticString “keyFor(String name)”

“Converts a name to a "key" that can be used for grouping, sorting and searching.”

Features : -

1.Equalizer

“An Equalizer is used to alter the frequency response of a particular music

source or of the main output mix”.

“An application creates an Equalizer object to instantiate and control an

Equalizer engine in the audio framework. The application can either

simply use predefined presets or have a more precise control of the gain

in each frequency band controlled by the equalizer”.

“The methods, parameter types and units exposed by the Equalizer

implementation are directly mapping those defined by the OpenSL ES 1.0.1

Specification

36

(http://www.khronos.org/opensles/) for the SLEqualizerItf interface. Please

refer to this specification for more details”.

“To attach the Equalizer to a particular AudioTrack or MediaPlayer, specify

the audio session ID of this AudioTrack or MediaPlayer when constructing

the

Equalizer”.

creating an equalizer

float volu

me =

1; float speed = 0.05f;

Classes for equalizer

interface Equalizer.OnParameterChangeListener

The OnParameterChangeListener interface defines a method called by the Equalizer when a

param

Class Equalizer.Settings

The Settings class regroups all equalizer parameters.

37

38

This is my ShakeDetector code.

39

OnCompletionListener code. package

com.grifball.info;

import android.media.MediaPlayer; public class OnCompletionListener {

public void onCompletion(MediaPlayer mp) {

// TODO Auto-generated method stub

}

}

40

2. Sleep timer

• Create one service, which is going to be used for countdown of time.

• By default android broadcasts one intent call ACTION_TIME_TICK at

every minute Register that intent in your service.

• Increment your count at every minute.

41

3.4 System Requirements For Android Studio

WINDOWS

• “Microsoft® Windows® 8/7/Vista (32 or 64-bit)”.

• “2 GB RAM minimum, 4 GB RAM recommended”.

• “400 MB hard disk space”.

• “At least 1 GB for Android SDK, emulator system images”

• 1280 x 800 minimum screen resolution

42

4. Add to Favorites

import android.content.SharedPreferences;

import android.os.Bundle;

import android.widget.Button;

import android.widget.Toast;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

 private Button favoriteButton;

 private boolean isFavorite = false;

 private String songId;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

43

 songId = "song_1"; // Replace with actual song ID

 favoriteButton = findViewById(R.id.favoriteButton);

 isFavorite = isFavorite(songId);

 favoriteButton.setActivated(isFavorite);

 favoriteButton.setOnClickListener(v -> {

 isFavorite = !isFavorite;

 favoriteButton.setActivated(isFavorite);

 saveFavoriteStatus(songId, isFavorite);

 Toast.makeText(MainActivity.this, isFavorite ? "Added to
Favorites" : "Removed from Favorites", Toast.LENGTH_SHORT).show();

 });

 }

 private boolean isFavorite(String songId) {

 SharedPreferences sharedPreferences =
getSharedPreferences("Favorites", MODE_PRIVATE);

44

 return sharedPreferences.getBoolean(songId, false);

 }

 private void saveFavoriteStatus(String songId, boolean isFavorite) {

 SharedPreferences sharedPreferences =
getSharedPreferences("Favorites", MODE_PRIVATE);

 SharedPreferences.Editor editor = sharedPreferences.edit();

 editor.putBoolean(songId, isFavorite);

 editor.apply();

 }

}

45

5. Search

import android.os.Bundle;

import android.widget.ArrayAdapter;

import android.widget.EditText;

import android.widget.ListView;

import androidx.appcompat.app.AppCompatActivity;

import java.util.ArrayList;

import java.util.List;

public class MainActivity extends AppCompatActivity {

 private EditText searchEditText;

 private ListView listView;

 private ArrayAdapter<String> adapter;

 private List<String> songs;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 searchEditText = findViewById(R.id.searchEditText);

 listView = findViewById(R.id.listView);

46

 // Initialize your song list (songs) here

 adapter = new ArrayAdapter<>(this, android.R.layout.simple_list_item_1, songs);

 listView.setAdapter(adapter);

 searchEditText.addTextChangedListener(new TextWatcher() {

 @Override

 public void beforeTextChanged(CharSequence s, int start, int count, int after) {}

 @Override

 public void onTextChanged(CharSequence s, int start, int before, int count) {

 adapter.getFilter().filter(s);

 }

 @Override

 public void afterTextChanged(Editable s) {}

 });

 }

}

47

6. Add to Play List

import android.os.Bundle;

import android.widget.ArrayAdapter;

import android.widget.Button;

import android.widget.ListView;

import androidx.appcompat.app.AppCompatActivity;

import java.util.ArrayList;

import java.util.List;

public class MainActivity extends AppCompatActivity {

 private ListView listView;

 private ArrayAdapter<String> adapter;

 private List<String> playlist;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 listView = findViewById(R.id.listView);

 Button addToPlaylistButton = findViewById(R.id.addToPlaylistButton);

48

 // Initialize your playlist (playlist) here

 adapter = new ArrayAdapter<>(this, android.R.layout.simple_list_item_1, playlist);

 listView.setAdapter(adapter);

 addToPlaylistButton.setOnClickListener(v -> {

 // Add the selected song to the playlist

 String selectedSong = "Selected Song"; // Replace with the selected song

 playlist.add(selectedSong);

 adapter.notifyDataSetChanged();

 });

 }

}

49

CHAPTER 4: PERFORMANCE ANALYSIS

A) Screenshots of Conference Application

50

51

CHAPTER 5: CONCLUSION

“Android as a full, open and free mobile device platform, with its powerful

function and good user experience rapidly developed into the most popular

mobile operating system. This report gives an overview of the different

challenges and issues faced in android app development The experience of

developing an android app is quite challenging, motivating as well as

satisfying”.

“This report shows an approach for designing of media player. Media player

should consider the improvement in scenario such as decode efficiency

needs to be improved, synchronization between multiple media streams,

and display of the original data. Use of FFmpeg decode library seems to be

an alternative method. Research shows FFmpeg supports most media

formats which gives a high decode efficiency. Different approaches that can

be considered are plug-in extension technology, multimedia based on

hierarchy, media player based on file browser, media player based on

FFmpeg, media player based on file server, etc”. There is a vast scope of

improvement in this field.

52

CHAPTER 6: REFRENCES

[1] Ma, Li, Lei Gu, and Jin Wang. "Research and Development of Mobile

Application for android Platform." (2014).

[2] Liu, Jianye, and Jiankun Yu. "Research on Development of android

Applications."

 Fourth International conference on Intelligent Networks and Intelligent

Systems. 2011.

[3] Peng, Bin, Jinming Yue, and Chen Tianzhou. "The android Application

Development College Challenge." High Performance Computing and

Communication & 2012 IEEE 9th International Conference on Embedded

Software and Systems (HPCC-ICESS), 2012 IEEE 14th International

Conference on. IEEE, 2012

[4] Parada, Abilio G., and Lisane B. de Brisolara. "A model driven approach

for android applications development." Computing System Engineering

(SBESC), 2012 Brazilian Symposium on. IEEE, 2012.

[5] Nikhil S. Sakhare , R. W. Jasutkar. “Design of Android based Media

Player”.

International Journal of Science and Research (IJSR), India Online ISSN:

23197064, February 2013.

[6] Amit M. Farkade, Miss. Sneha. R. Kaware. “The Android - A Widely

Growing Mobile Operating System With its Mobile based Applications”

International Journal of Computer Science and Mobile Applications, Vol.3

Issue.

1, January- 2015, pg. 39-45

