
GALGOTIAS UNIVERSITY

Greater Noida, Uttar Pradesh

PROJECT REPORT
ON

APPLICATION OF MACHINE LEARNING
IN

DEVOPS

Submitted in Partial fulfillment of the Requirements for the

Degree of Bachelor of Technology in Computer Science &

Engineering with Specialization in Artificial Intelligence and

Machine Learning

By

Ayushi Kulshrestha

Kriti Sharma

19SCSE1180131

19SCSE1010334

Under the Guidance

of

Prof. Dr. Anupam Sharma

CERTIFICATE

Certified that the project work entitled “ APPLICATION OF MACHINE LEARNING IN DEVOPS”

carried out by Ms.Ayushi Kulshrestha, ADM. NO. 19SCSE1180131 and Ms.Kriti Sharma,

ADM NO. 19SCSE1010334, bonafide students of CMR Institute of Technology, in partial

fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of

the Galgotias University, Greater Noida, Uttar Pradesh.It is certified that all

corrections/suggestions indicated for Internal Assessment have been incorporated in the Report

deposited in the departmental library.

The project report has been approved as it satisfies the academic requirements in

respect of Project work prescribed for the said Degree.

.

DECLARATION

We, the students of Computer Science and Engineering, CMR Institute of Technology, Bangalore

declare that the work entitled "APPLICATION OF MACHINE LEARNING IN DEVOPS" has been

successfully completed under the guidance of Dr. Anupam Sharma, Computer Science and

Engineering Department,Galgotias University. This dissertation work is submitted in partial fulfillment of

the requirements for the award of Degree of Bachelor of Engineering in Computer Science and

Engineering during the academic year 2021- 2022.

Place:

Date:

Team members:

AYUSHI KULSHRESTHA (19SCSE1180131)

KRITI SHARMA (19SCSE1010334)

ABSTRACT

This project will deal with application of machine learning in Devops. The underlying notion for this is

that devops teams do not closely look at data and instead focus on thresholds that satisfy a certain

condition for action. When they do this, DevOps teams are unable to utilize the large data that they

collect. They entirely focus on outliers which can trigger alerts of certain problems but do provide the

much needed information. When ML gets induced in DevOps processes, one can be rest assured of

the data getting monitored and analyzed at a continuous pace. ML applications look at the data along

with predictive analytics to draw out meaningful insights.

ACKNOWLEDGEMENT

We take this opportunity to express my sincere gratitude and respect to Galgotias University,

Greater Noida, Uttar Pradesh for providing me a platform to pursue my studies and carry out my final

year project.

We would like to thank Prof.Dr. Anupam Sharma, Department of Computer Science and

Engineering,Galgotias University, Greater Noida, who has been a constant support and encouragement

throughout the course of this project.

We consider it a privilege and honor to express our sincere gratitude to Dr.Balbindar Kaur ,

Professor of Department of SCSE , for the valuable guidance throughout the tenure of this project.

We also extend my thanks to all the faculty of Computer Science and Engineering who directly

or indirectly encouraged me.

Finally, we would like to thank my parents and friends for all their moral support they have

given me during the completion of this work.

TABLE OF CONTENTS

Page No.

i

ii

iii

iv

v

Certificate

Declaration

Abstract

Acknowledgement

Table of contents

CHAPTER 1

INTRODUCTION

In Data science world Machine learning is core approach to resolve the important life problems today's
big data world ML plays vital role to produce best solutions to the customer Nowadays Machine
Learning is buzz word but why the proportion of AI models created but not put in production
environment is quite 90% with massive investment in data science teams platforms and infrastructure
the quality of ai projects is dramatically increasing together with the no of missed opportunities
unfortunately most projects not showing the business needs business introducing new risks that require

to be managed single technology won’t help to unravel the issue today industry need machine learning
with devops. MLops is solution to any or all problems in AI world .MLops delivers the capabilities that
data science and it ops teams must to work together to deploy monitor and manage machine learning
model in production environment and to manipulate their use in production environment MLops brings
the most effective of repetitious development involved in training machine learning models and scalable
and manageable model deployment it's currently missing puzzle within the enterprise AI world Machine
learning operations (MLOps) is DevOps for machine learning processes Mlops helps data scientists to
cooperate and increase the speed of delivery and quality of development models through monitoring
affirmation and governance of machine learning models. MLOps supports the data science life cycle
even as DevOps supports the application development life cycle.
As such, MLOps is predicted on the principles of DevOps. The goal of adopting MLOps is to push more
efficient experimentation that will result in faster development and deployment of models. Devops is a
combination of Development and operations methodology that brings developers and operators work
together DevOps life-cycle devops automate one or more phases of devops life cycle Coding, building,
testing, releasing, configuring, and monitoring.

● Coding phase: this phase includes development of code developers who write the code and
push the code into source code management tools like github, gitlab etc.

● Building phase: This phase automatically creates the environment in step with the wants as an
example team create Docker image for particular Machine learning model.

● Testing phase: This phase includes continuous testing tools, teams develop a separate
environment for testing the code and it gives the standard of the code various testing
techniques included in this phase.
They are

○ 1. Unit testing
○ 2. Integration testing
○ 3. Configuration testing
○ Performance testing

● Releasing phase: this phase consists of releasing plan and automation. The team will decide
how to release the product into the market.

● Configuring phase: this phase consists of automatic configuration management with the help of
infrastructure as the code team will create the scripts according to the requirement script and
automatically launch everything. As an example they launch running environments, databases
etc.

● Monitoring phase: this phase continuously monitors the product whenever the production
environment goes down; it notifies the developer about what number users are using the
merchandise at a particular point of time.
Pipeline: To achieve CI/CD developers create "pipelines", which demonstrate how to
automatically build, test, release and configure software release. The pipeline is an event that
tells how to execute the steps in sequential manner. If any step fails it will stop the entire
pipeline and it gives feedback to the developer. CI/CD supports small commits and a large
number of releases per day.

Phase Tools

Build Docker, Gradle.

Test pytest, Cypress.

Release Jenkins, Flux.

Configure Terraform, Ansible.

Monitor Sentry, Prometheus.

Creating CI/CD pipelines consists of different tools that are created to solve different tasks of devops
lifecycle. Tools that help to run CI/CD pipeline on host OS are Github actions and Travis, tools that help
to run CI/CD pipeline on own machines are Jenkins or argoCD. These tools provide a configuration
language to run steps and tools as a pipeline for every single release there is a master plan to roll back
the previous version in case the updated version fails.

An easy solution for rollback is running the previous version through CI/CD pipeline. A container is built
from an image which contains a set of instructions to build the container with the help of a Docker file.
We can create a container image, an image containing an operating system and software to run
particular services container runs in a container run time, a process which manages the lifecycle of a
container.

With the help of container technology we can launch the operating system in one second.
Unexpectedly if the production environment goes down, container technology launches quickly as
compared to virtualization. In a dynamic and large scale environment we have to change machines and
services frequently. It is impossible to provide high availability. Container orchestration provides
highly-available and robust service systems.

Nokia Orchestration Center automates orchestration of end-to-end services, including 5G slice-based
services, in cross-domain, multi-vendor and multi-technology networks. Together with Nokia Assurance
Center, the cloud-native microservices-based Orchestration Center module enables round-trip
operations automation as part of Nokia’s Digital Operations Center.

● Design and deploy new market driven digital services based on business-intent quickly and
efficiently leveraging Bell Labs AI & ML technology

● Single-pane-of-glass and intuitive UI design simplifies complexity by providing a unified view of
different network domains leveraging containerized, virtualized, and physical technologies

● Automation of both service fulfillment and multi-domain orchestration functions results in
significant reductions in the time-to-value for new services

As service providers strive to increase their agility to support market requirements in the 5G era, a
tighter closed-loop operating environment is required. Orchestration Center supports this objective on
two levels:

● Market facing agility: Service providers will be forging B2B partnerships with vertical industrial
players and Service Level Agreements will become an important currency for those
relationships. Service providers require orchestration systems that can adopt and support
contracted SLAs that are “designed-in” to the services during the commercial negotiations with
the B2B partners.

● Virtualized and containerized infrastructure: To control their costs in an ever-growing demand
for capacity, service providers are well along their transition to leverage cloud and virtualization
techniques. This creates a multi-fold increase in network and infrastructure complexity—more
moving parts—and this cannot be effectively automated at scale on legacy orchestration
systems.

https://www.nokia.com/networks/bss-oss/nokia-assurance-center/
https://www.nokia.com/networks/bss-oss/nokia-assurance-center/

Modules

Orchestration Center leverages a modular concept with user/role-based interfaces for service and resource
visibility, service design and service deployment.
DesignHub

DesignHub is used to create service compositions from re-usable building blocks and to publish service
designs to northbound systems for consumption.

OrderHub

OrderHub provides 360° visibility and management of in-progress, service modifiable orders with an
intuitive portal and fully amendable templates.

IntelligenceHub

IntelligenceHub capabilities include advanced root-cause analysis, automated capacity management,
insights for automation, topology views and machine-learning algorithms.

Service Orchestration

Service Orchestration is the main sub-module of Orchestration Center. It automates and optimizes the
service delivery utilizing AI and ML to decompose business-intent and deploy it accordingly to the network.

Service Design

The Service Design sub-module provides service modelling capabilities that enable business-intent driven
orchestration. Services can be composed with re-usable components that can be stored in the service
catalog for further use.

Service Catalog

The Service Catalog manages and stores the designed service components with related technical service
composition and workflow models. It also enables services to be published to CRM/CPQ systems for
consumption when they are ready.

Domain Adaptation
The Domain Adaptation layer provides an abstracted view of the underlaying network domains towards
service orchestration. This hides service design and orchestration complexity and enables end-to-end,
high-level service design and operation.

LITERATURE REVIEW:

In literature, we can find studies which shows how to apply machine learning with devops Machine
learning with operations (MLOPS) using tools and platforms to automate machine learning models
the authors develop continuous integration for machine learning to allow user to provide wide range
of integration in order to achieve continuous improvement one of the most critical challenges are
data collection data extraction data cleaning.

Authors create application life cycle model based on MLOPs to optimize the manufacturing process
the study shows how to apply Devops CI/CD pipelines with machine learning applications several
researchers Karamitsos,Virmani, Erich have agreed that Agile transformation is essential to improve
the efficiency of the companies, MLops fills the gap between business users and development teams
they highlight the devops principles and guidelines to adapt continuous integration and continuous
deployment which results increment in development process and improve the quality.

Many applications use machine learning techniques nowadays but which is not enough to produce
great results when we integrate with devops. It gives great efficiency in any field like healthcare
safety etc. The main goal of devops is to create cross functional teams where both operational and
development tools work together. The entire goal of devops is to improve the business value in the
IT industry, it produces best results in an agile world with the help of continuous integration and
continuous deployment. Devops overcome the hurdles between operations and development and
they collaborate both machine learning and devops, Machine learning+Devops (MLOPS).

1.5 Methodology

The industry Standard Process for Data processing(CRISP-DM)could be a process model with six phases
that describes the data science life cycle.it helps to implement machine learning projects It was published
in 1999 it's one among the foremost common methodology for data science projects. CRISP DM
Methodology has six steps

● Business understanding phase: during phase specialized to understand the objectives and
needs of the project.

● Data understanding phase: This phase contains initial data for experimental analysis this phase
focus identify collect and analyzes the information to succeed in the project goal

● Data preparation phase: during this phase data preparation takes place steps included in this
process are feature extraction, data cleaning, data reduction, data selection, and transformation.

● Modeling Phase: This phase selects the machine learning model based on the requirement.
Evaluation Phase: This phase looks at which model connects the business requirement. And also a
review decides whether the business requirement is achieved or not.

● Deployment Phase: This final phase contains four tasks :

1. Plan deployment.
2. Plan monitoring and maintenance.
3. Produce final report.
4. Review project.

Machine learning automate pipeline with CI/CD The main purpose of this approach is continuous training
and testing the machine learning model with the help of pipeline the term mlops combines various
principles of Continuous integration and continuous deployment to automate the machine learning pipeline

The process of automatic model retrain in machine learning is possible with the 2 elements of devops such
as 1) continuous integration 2) continuous deployment the automated CI/CD helps the data scientists in
feature engineering model architecture and hyper parameters data scientists implement lot of things like
building the model ,push the code into github, build deployment environment etc.

Main elements required for the implementation of machine learning CI/CD pipeline

1) Business problem analysis
2) Dataset features and storage
3) ML methodology
4) CI components
5) CD components
6) Automated ML triggering
7) Model registry storage
8) Monitoring and performance
9) Production ML service

First of all,we understand the business problem and How to solve this business problem using
technologies, dataset features and storage to collect the features related to the problem, In machine
learning, creating models is not a big deal. Collecting the right features is a major problem in today’s
machine learning world. Accuracy always depends on the right features.

Machine Learning methodology: This is the major step in mlops pipeline during the analysis of data we use
the methodology CRISP methodology is one of the best and common methodology for Automated machine
learning CI/CD pipeline Continuous integration: In this step build the code run the machine learning
models. outcomes of this stage is pipeline components In machine learning creating the code is not big
deal but training the machine learning models requires a lot of resources and manpower with the help of
continuous integration we can do this things with minimum resources and minimal efforts Requirements for
Continuous integration
1.Source code management tools like Git, github etc.

2.Insertion/deletion takes place in a repository that automatically updates and deploys in the production
environment.

3.Run the machine learning code

4.Test and validate the code

5. Build the container image

6. push the container image into repository Continuous delivery: outputs of

Continuous integration pipeline components deployed in the production/staging environment the output of
this step is testing machine learning model.

Jenkins is one of the most famous open source tool for continuous deployment it is written in java
language this tools works with SCM tools like github The components of continuous deployment

1) Production environment: First we have to push machine learning models into the production
environment. It contains all the required decencies to run that machine learning code output of this stage is
testing the machine learning model.

2) Model registry storage: output of the production environment is testing machine learning. We have to
put that machine learning model into the model registry storage.

3) Automated trigger: If there is any change in code or commit in repo trigger automatically fires and they
will initiate a new build output of this updated machine learning model pushed in the production
environment.

4) Performance monitoring: This is one of the most important steps for data scientists. Performance
monitoring contains a lot of considerations like how much resources are used, efficiency of the model,
throughput, and features available to the users.

5) Monitoring resources: In this step continuously observe the resources of the system like RAM CPU
storage etc. a lot of resource monitoring tools available in the market like zabbix windows task manager.

Application of Machine Learning with Traffic Monitoring to Intrusion Detection in Kubernetes Deployments

Irene Ann Tony, Masters in Computer Science University of Dublin, Trinity College, 2021

Supervisor: Dr. Stefan Weber

Kubernetes has many methods to detect an attacker attempting to attack a Cluster such as firewalls and
an Ingress API. However, it does not have any built-in solutions to detect whether an attacker is already
inside. There are existing solutions involving the identification of malicious traffic and they have inspired
certain aspects of the solution proposed in this dissertation.

This dissertation focuses on the ways to detect malicious activity inside the Kubernetes Cluster by
monitoring the internal network traffic and detecting suspicious traffic with the help of machine learning.
This research focuses on TCP and UDP packets between Pods and examines them to determine whether
they are malicious or not. The proposed solution involves capturing all the traffic within the Node including
the communications between Pods. The solution model sits inside a Node within a Pod and is
implemented by passing the captured internal traffic through a neural network that is trained to detect
different characteristics of malicious packets and flag the packets that seem suspicious.

This research provides a foundation for advanced studies in detecting malicious activity within a
Kubernetes Cluster using traffic monitoring and machine learning. The proposed solution can be extended
to learn to detect many different types of malicious activity.

Contents

Abstract iii Acknowledgments iv Nomenclature x

Chapter 1

Introduction 1

1.1 Overview.....................................

1 1.2 Motivation....................................

2 1.3 ResearchQuestions...............................

3.1.4 Structure&Contents..............................

Chapter 2 State of the Art 4

2.1 Kubernetes 4

 2.1.1 ArchitectureofKubernetes....................... 5
 2.1.2 NetworkinginKubernetes 8
 2.1.3 Security Considerations and Threats in Kubernetes 12

2.2 MachineLearning................................ 16

 2.2.1 SupervisedLearning 16
 2.2.2 UnsupervisedLearning......................... 17
 2.2.3 ReinforcementLearning 17

 2.2.4 DeepLearning.............................. 17

2.3 RelatedProjects 19

2.3.1 Monitoring Kubernetes Clusters with Dedicated Sidecar Network

SniffingContainers 19

2.3.2 SecuritybySimpleNetworkTrafficMonitoring. 19

2.3.3 Detecting Network Intrusions via Statistical Analysis of Network

PacketCharacteristics 20

Chapter 3

Detection of Malicious Encrypted Web Traffic Using MachineLearning............................ 20
SummaryofRelatedProjects 21

3.1 OverviewoftheApproach 23

3.2 Part1:CapturingTraffic............................ 23

3.3 Part 2: Identifying Malicious Characteristics of Packets 24

3.3.1 NetworkProtocolswithintheCluster................. 25 3.3.2 Scope 26 3.3.3
CharacteristicsofMaliciousPackets. 26

3.4 Part3:MachineLearning 27 3.4.1 SelectingaLearningMethod...................... 27
3.4.2 SelectingaNeuralNetwork 28 3.4.3 OverallMachineLearningSolution
.................. 28

3.5 Tools....................................... 29 3.5.1 Minikube 29 3.5.2
Lens................................... 30 3.5.3 MachineLearningLibraries 30

Chapter 4 Implementation 31

4.1 TrafficMonitoring................................ 31 4.1.1 SetUpKubernetesCluster....................... 31 4.1.2
CapturingTraffic 32

4.2 IntrusionDetectionModel 34 4.2.1 CreatingtheDataset.......................... 34
4.2.2 PreProcessingDatasetforNeuralNetwork. 37 4.2.3 TrainingandTesting
.......................... 39 4.2.4 Output.................................. 40

4.3 SummaryofImplementation.......................... 41

Chapter 5 Evaluation 43

5.1 AnalysingtheOutput 43 5.1.1 Metrics 43 5.1.2
Results.................................. 45

5.2 AnalysisofSolution............................... 46 5.2.1 ResultsofResearch........................... 46 5.2.2
ComparisontoExistingSolutions................... 47

5.3 AdvantagesandDisadvantages......................... 49 5.3.1 Advantages 49
5.3.2 Disadvantages.............................. 49

5.4 Challenges.................................... 50

Chapter 6 Conclusions & Future Work 51

6.1 Outcomes 51

6.2 FutureWork................................... 52 6.2.1 RealTimeMonitoring 52 6.2.2
AdditionalIPProtocolAnalysis.................... 52 6.2.3 MonitoringTrafficVolume....................... 53 6.2.4
Reduced Reliance on Training with Malicious Data 53

6.3 ClosingRemark................................. 54

Bibliography 55

Appendices 58

Appendix A1 59

A1.1PythonScriptforCreatingaDatasetfromapcapFile 59 A1.2 Python Script for Creating an
Intrusion

DetectionMLModel 65

List of Tables

2.1 ComparisonofRelatedProjects........................ 22

5.1 ContentsofDataset1.............................. 45 5.2 ContentsofDataset2.............................. 45 5.3
ContentsofDataset3.............................. 45 5.4 ResultsofMetrics................................ 46

List of Figures

2.1 KubernetesArchitecture 5 2.2 ContainertoContainerCommunication.................... 8
2.3 PodtoPodCommunicationinSameNode.................. 9 2.4 PodtoPodCommunicationinDifferentNodes. . . .
. 11 2.5 AttackMatrixofKubernetes.......................... 12

3.1 NamespacetoMonitorNetworkTraffic 24 3.2 NeuralNetworkModelDesign.........................
29

4.1 MiniKubeCluster................................ 32 4.2 InterfacesoftheMinikubeNode........................ 33 4.3
NodeTrafficCaptured 33 4.4 ExamplesofGeneratedMaliciousPackets 36 4.5
DatasetObject 37 4.6 DatasetBeforePreProcessing......................... 38 4.7
NonNumericValuesConvertedinDataset 39 4.8 NormalisedDataset............................... 40 4.9
OutputofModel 42

Abbreviations

API Application Programming Interface ARP Address Resolution Protocol

CNN Convolutional Neural Network CPU Central Processing Unit

CRI-O Container Runtime Interface using Open Container Initiative (OCI) DDoS Distributed Denial of
Service

DNS Domain Name System

Etcd /etc Distributed

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure IDE Integrated Development Environment IP Internet Protocol

ML Machine Learning

MLP Multilayer Perceptron

NDP Neighbor Discovery Protocol

RBAC Role Based Access Control

REST Representational State Transfer

SSH Secure Shell

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

Intrusion detection in Kubernetes revolves around the act of identifying an attacker who has bypassed the
security protocols of a system and gained access to resources inside. Finding a solution that can execute
this action can impact many users of the Kubernetes platform. This dissertation focuses on how these
attackers can be identified with the use of traffic monitoring and machine learning.

This section provides an overview of the research topic and the motivation behind exploring it further. It
also outlines the research questions this dissertation aims to answer.

1.1 Overview

During earlier times, virtual machines were the main way to run applications in different operating systems.
This was implemented with the use of hypervisor-based virtualised environments that utilised the host
computer’s hardware (Panagiotis (2020)). A more independent and mobile solution for virtualisation
involved the introduction of Containers. Containerisation involves the virtualisation of operating systems in
order to run an application, along with all its dependencies, in an isolated environment called a container
(IBM (2019)). Containerisation platforms, such as Docker, are used to build, deploy and manage
containerised applications (IBM (2020)).

In order to manage many Docker containers along with multiple applications, a more advanced platform
was needed. Kubernetes is a container orchestrator for containerisation platforms like Docker. It manages
multiple containers with applications across many hosts (Kubernetes (2021b)). All these new
advancements have introduced

security concerns and challenges.

In recent years, there have been multiple attacks made to Kubernetes Clusters hosting applications for
enterprises. Many attacks occur due to misconfigurations and not activating certain security features in the
Kubernetes Cluster. A famous example is an attack on Capital One (Taylor (2020)) in 2019, which was
caused by a misconfiguration in the Kubernetes Cluster that weakened the firewall. More complex attacks
occur after the attacker gains access to the Cluster and plants malicious software scripts within a container
image or Pod. An attack on Docker Hub (Taylor (2020)), in 2019, involved the attackers planting malicious
images and whoever ran those images would become compromised and deploy cryptocurrency miners as
means for the attacker to mine cryptocurrency.

Another famous attack is the compromisation of Tesla’s Kubernetes Cluster where the attackers remained
incognito even after gaining access to the Cluster. They ran scripts that used less CPU and listened on a
nonstandard port to avoid being detected by internal security monitoring features (Taylor (2020)).

A similar attack is the Kinsing Malware attack, where attackers exploited a misconfigured Docker API port
and ran a container that contained malicious software. The techniques used by the attackers involved
exploiting the open port and using evasion tactics and lateral movement to deploy the crypto miner (Singer
(2020)).

Attackers are becoming more aware of the ways malware is being detected and have adapted to becoming
more unnoticeable. New ways of closely monitoring internal communications of a Kubernetes Cluster can
benefit anti-malware software in detecting these attackers.

1.2 Motivation

Kubernetes is a popular platform used to manage numerous applications and as section 1.1 has
highlighted, attackers are targeting Kubernetes Clusters and utilizing resources to run their processes such
as crypto mining. Although Kubernetes has security protocols implemented to prevent attackers from
entering the Cluster, it is evident that, in the case of an attacker gaining access, the structure is not
equipped with processes that can immediately detect the intruder. The motivation behind this research is to
explore intrusion detection in Kubernetes with the help of network monitoring and machine

1.3 Research Questions

The following are the research questions explored in this dissertation:

●
What is an effective method to monitor network traffic in a Kubernetes Cluster?

●
How can monitoring network traffic contribute to intrusion detection within a Kubernetes Cluster?

The topics discussed in this dissertation will help form the answers to these questions.

1.4 Structure & Contents

This dissertation will explore Kubernetes, its internal structure, how its network can be monitored and how
machine learning can contribute to identifying intruders using the monitored traffic.

●
Chapter 1 provides an overview of Kubernetes and why intrusion detection is vital for its security. It
also covers how this dissertation aims to explore a solution that can contribute to intrusion detection
in Kubernetes along with the research questions proposed for this dissertation.

●
Chapter 2 explores Kubernetes along with both its structural and networking architecture. In
addition to that, it also explores machine learning and the different approaches that could benefit
this research. Moreover, it outlines and analyses the existing work that is related to the proposed
solution.

●
Chapter 3 outlines the design of the proposed solution and explains the reasoning behind the
chosen components that make up the overall solution.

●
Chapter 4 explains how the proposed solution is implemented using the chosen tools.

●
Chapter 5 evaluates the proposed solution by calculating its reliability, comparing it to the existing
solutions and explaining its advantages and disadvantages.

●
Chapter 6 concludes this dissertation by providing the answers to the research questions and
discusses how this solution can be further improved in the future, along with final remarks.

Chapter 2

State of the Art

This section explains Kubernetes, its general and network architecture and the different types of security
measures that are put in place within the platform in order to detect and prevent malicious attacks. It
provides an overview of machine learning and introduces the concept of neural networks. It also outlines
the existing research and solutions proposed to tackle the gaps within the security measures of
Kubernetes.

2.1 Kubernetes

Kubernetes is an open-source container orchestration system that is used to deploy, scale and manage
application containers automatically. Developed by Google, Kubernetes is a platform that is only accessible
via a domain-specific Representational State Transfer Application Programming Interface (REST API) and
supports a wider range of clients by applying higher-level versioning, validation, semantics, and policy
(Burns et al. (2016)). The system works with many containerising tools including Docker. It helps manage
containerised applications in different deployment environments such as physical virtual or cloud
environments. It offers many features such as high availability, scalability and disaster recovery.

2.1.1 Architecture of Kubernetes

The basic architecture of Kubernetes is a Cluster, shown in figure 2.1, that is made up of a Master Node
and multiple Worker Nodes where each Node has a kubelet process running in it. Kubelet is a process that
allows the Nodes to communicate with each other within the Cluster.

Figure 2.1: A high level view of a Kubernetes Cluster consists of a Master Node and multiple Worker
Nodes. The Master Node contains the API Server, Controller Manager, Scheduler and the Etcd, all of
which are components that are needed for the management of the Cluster and its Nodes. The Worker
Nodes each contain a Kubelet, a Kube-Proxy, a Container Runtime and one or more Pods that host
containerised applications. All Nodes communicate with each other using a virtual network within the
Cluster.

2.1.1.1 Master Node

The Master Node is also called the Control Plane and it contains certain components that are needed to
control and manage the entire Cluster (Panagiotis (2020)). These components are the Application
Programming Interface (API) Server, the Scheduler, the Controller Manager and the /etc Distributed (Etcd).
These components work together to manage the entire Kubernetes Cluster.

●
The API Server is a container that is the entry point to the entire Cluster. It exposes the Kubernetes
API, a RESTful web server, that is the main point of interaction between the outside and the
Cluster. Communication between all other components also occurs through the API Server.

●
The Scheduler is a component that monitors the API Server in order to assign newly created Pods
to a suitable Node within the Cluster. It chooses a Node based on the workload and the server
resources available on it. A container is scheduled on to Nodes that can meet the resource and
load requirement of that container.

●
The Controller-Manager is a daemon that keeps an overview of the activity within the Cluster. It is
responsible for maintaining the state of the Cluster and ensuring that it is in the preferred state. It is
made up of separate controllers which are: Node Controller, Job Controller, Endpoints Controller
and Service Account & Token Controller. Each controller is a process with a specific role. For
example, the Node Controller is in charge of keeping all Nodes up and running meaning that if a
Node goes down, the Controller will detect and respond to it (Kubernetes (2021c)).

●
The Etcd is a key value storage that holds the current state of the Cluster in the form of
configuration data of all the Nodes and Containers. It is used as a backing store for Kubernetes
Clusters.

2.1.1.2 Worker Node

The Worker Nodes are also called the Data Plane (Panagiotis (2020)). Multiple Pods that contain
containerised applications run inside Worker Nodes. There can be multiple Worker Nodes inside a Cluster
and are all controlled by the Master Node. Like the Master Node, the Worker Node also has components
that allow it to function properly.

• Kubelet is an agent that runs on all the Nodes in a Cluster, including the Master Node. It ensures that the
containers are running within a Pod and that they are healthy. Since it is not recommended to run Pods
inside the Master Node, the Kubelet agent mainly works within the Worker Nodes. It acts as a
communication link between the Master and Worker Nodes. It watches the API Server in the Master Node
for any commands associated with its Pods and executes them accordingly.

• Kube-proxy is a network proxy that runs on all the Nodes in a Cluster. It maintains the network
configurations of all the Pods within the Node. It ensures that all its Pods and the Node can communicate
with the other Pods and Nodes within the Cluster by using tools such as iptables, serves proxy and
Pass-thru traffic. It also implements the Services Concept within Kubernetes that involves exposing an
application running within a Pod as a Network Service (Kubernetes (2021e)). This involves assigning the
Pods with a tag that will not change every time the Pod has to restart and change its Internet Protocol (IP)
address.

• Container Runtime is the software that is in charge of running the containers inside the Node. Several
Container Runtimes are supported by Kubernetes such as Docker, Containers, CRI-O and any other
implementation of Kubernetes’ Container Runtime Interface.

• A Pod is the smallest deployable unit the user can create and manage in Kubernetes. It is a layer of
abstraction around a single container or multiple containers that need to work together (Kubernetes
(2021d)). Containers within a Pod are run with the same configurations and share storage, network
namespace, IP addresses and port space. The containers within a Pod communicate with each other using
localhost. Containers will have to use the shared network ports to communicate with any entity that is
outside of their Pod. Pods are managed by the Nodes they are assigned to since their creation and remain
under that Node until they are deleted. If the Node that a Pod is assigned to dies, then the Pod is
scheduled for termination. Pods are also ephemeral components meaning that they frequently go down
and need to be recreated (Panagiotis (2020)). In this scenario, an identical Pod is created as a
replacement with the same name but a different unique ID and IP address.

2.1.2 Networking in Kubernetes

A Kubernetes Cluster is made up of many components that work together to manage multiple containers.
These components need to communicate with each other to carry out the necessary tasks of these
containers. Containers that require communication with external entities also need a method to establish
their connections. This section will outline some aspects related to networking in Kubernetes.

2.1.2.1 Container to Container

The most simple connection within a Kubernetes Cluster is between two containers within the same Pod.
They communicate via localhost and port numbers. As mentioned in the previous section, containers within
the Pod share many resources including a network namespace and a virtual Ethernet connection, eth0.
From the perspective of the containers, the Pod is a single machine with its own network interface meaning
it has its own IP address and a range of ports (Palmer (n.d.)). The Pod can allocate these ports to different
containers, allowing them to associate different containers with their port numbers. For example, in figure
2.2, Container A runs on port 8080 and Container B runs on port 9000. Container A can communicate with
Container B via localhost:9000 and vice versa via localhost:8080.

Figure 2.2: Two containers in the same Pod communicate with each other via localhost using their port
numbers. Both containers share the same network namespace. Container A (left) is assigned the port
number 9000 and Container B (right) is assigned the port number 8080. Container A sends requests and
responses to Container B using localhost:8080. Container B sends requests and responses to Container A
using localhost:9000.

2.1.2.2 Pod to Pod

When containerised applications within Pods need to communicate between each other, the connection
path created between them varies depending on whether they are within the same Node or a different
Node. This section describes how Pods communicate with each other within the same Node and different
Nodes.

2.1.2.2.1 Within Same Node

As mentioned previously, each Pod has its own IP address, network namespace and virtual Ethernet
connection called eth0. This eth0 is connected to a virtual Ethernet device in the Node called vethX. Since
these connections are made for every Pod in the Node, the X in vethX is replaced by a number that
represents the Pod that it is connected to, for example, veth1 and veth2. The Node’s Network Bridge,
called cbr0, uses these connections in order to deliver packets to and from the Pods. A Network Bridge is a
bridge that connects two namespaces together (Sookocheff (2018)), in this case, it connects all the Pods in
a Node together.

Figure 2.3: Two Pods in the same Node, named Pod 1 and Pod 2, communicate with each other using a
Network Bridge called cbr0. Pod 1 sends a request through its eth0 (1) to its corresponding virtual Ethernet
device in the Node called veth1 (2). cbr0 checks and matches the destination address to the address of
Pod 2 (3). The request is sent to Pod 2 via veth2(4) and arrives at its destination (5).

Figure 2.3 shows how two Pods communicate with each other within the same Node. Pod 1 wants to send
a packet to Pod 2. All Pods within a Node know each other’s IP address. Pod 1 sends the packet to its
eth0 (1) which is connected to veth1 (2) in the Node’s namespace. Inside the Node’s namespace, the cbr0
receives a request from Pod 1 with a destination IP address, it checks all the Pods connected to it for it’s
destination address and once found, the packet is sent to the Pod (3). In this case, the packet it sent to
veth2 (4) as it is the connection associated with Pod 2. veth2 is connected to eth0 in Pod 2’s namespace
and this allows for the packet to reach its destination, Pod 2 (5).

2.1.2.2.2 Between Different Nodes

Pods can also communicate with other Pods in different Nodes. As outlined in figure 2.4, when Pod 1 in
Node 1 wants to communicate with Pod 1 from Node 2, the same steps explained in the previous section,
regarding Pod to Pod communication in the same Node, occurs. The only difference is that, when the cbr0
of Node 1 cannot find the Pod with the destination IP address, it sends the request up to the Cluster level
(1). At this level, there is a routing table containing the IP address ranges for each Node in the Cluster. For
example, all the Pods in Node 1 would have an IP address similar to 172.17.1.1 or 172.17.1.3, and all the
Pods in Node 2 would have IP addresses similar to 172.17.2.1 or 172.17.2.3. The routing table is aware of
this pattern and identifies any IP address with the format 172.17.2.x as a Pod within Node 2 and
172.17.1.x as a Pod within Node 1 (2). Once the request has been sent to the correct Node (3), the
network bridge of that Node will identify its Pod’s address (4) and send the request to the destination Pod,
Pod 1.

Figure 2.4: Two Pods in different Nodes communicate with each other using a routing table. Node 1’s cbr0
cannot find the destination address of the request sent and sends it to the routing table in the Cluster level
(1). The routing table checks and matches the destination address to an address belonging to Node 2 (2)
and sends it (3). Node 2’s cbr0 recognises the destination address and delivers the request to its
destination (4).

2.1.2.3 Services

As previously stated, Pods are ephemeral components meaning that they frequently go down and need to
be recreated. When recreated, new IP addresses are assigned to these new Pods making it difficult for
other Pods to keep track of the updated IP address associated with each Pod (Panagiotis (2020)).

The concept of Services provides a solution to this problem. It involves exposing an application running
within a Pod as a Network Service by assigning the Pods with a tag that will not change every time the Pod
has to restart and change its IP address. Services are implemented by the Kube-proxy component within
the Worker Nodes containing the Pods.

2.1.3 Security Considerations and Threats in Kubernetes

Many security and privacy considerations have been made by Kubernetes to ensure the security of their
user’s Clusters. However, as mentioned in section 1.1, many successful attacks have taken place in the
previous years as a result of utilising the attack surface of a Kubernetes Cluster. This section will outline
the attack surface of Kubernetes and a closer look at some of these threats and the way Kubernetes
prevents them from happening.

2.1.3.1 Kubernetes Threat Matrix

Azure Security Centre created a map that covers the attack surface of Kubernetes (Microsoft (2020)). This
attack matrix is based on the Mitre ATT&CK framework (ATT&CK (n.d.)) which is a knowledge base of
known cyber attack techniques categorised into nine tactics. The Kubernetes attack matrix, shown in figure
2.5, outlines the techniques attackers use to compromise the Cluster.

Figure 2.5: The attack matrix of Kubernetes lists the different techniques used by attackers to achieve the
nine tactics outlined in the Mitre ATT&CK framework (ATT&CK (n.d.)) which are Initial Access, Execution,
Persistence, Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral Movement and
Impact.

• Initial Access: The Initial Access tactic is the act of the attacker gaining access to the Cluster. This can be
attained through simple methods such as using the credentials of an authorised user or entering through
an exposed endpoint. More complex methods can also be executed such as compromising container
images in the registry and having a user run them in the Cluster.

●
Execution: Once the attacker has gained access to the Cluster, they need to run their malicious
code within it. This is the Execution tactic: how the attacker executes their code. Techniques to
achieve this include creating a new container or running an exec command, such as kubectl exec,
within an existing container if the attacker has permissions for these actions.

●
Persistence: The Persistence tactic involves techniques to allow the attacker to have a backup path
into the Cluster in case they lose their initial access. One of the techniques involves the use of
backdoor containers: containers that run malicious code. Attackers can create backdoor containers
and ensure that a number of these containers are deployed and running within the Cluster so that
they can use them to gain access again.

●
Privilege Escalation: To access more resources and classified data, attackers need to attain more
privilege within the Cluster. The Privilege Escalation tactic involves techniques that can be used to
gain higher privileges within the Cluster. One way is gaining access to a container with special
privileges that allows direct access to the host’s resources. Kubernetes implements Role-Based
Access Control within Clusters. A Cluster-admin is a role with high privilege. Binding to the
cluster-admin or any other higher privileged roles can allow an attacker to utilise those privileges.

●
Defense Evasion: As seen in some of the attacks that occurred in the real world, attackers follow
methods to stay hidden once inside the Cluster. The Defense Evasion tactic involves using
techniques such as clearing logs and giving the attacker’s backdoor containers names that follow
the naming convention used by the Cluster.

●
Credential Access: Some attackers break into a system to steal valuable data such as credentials.
Credential access tactics are used to get these valuable credentials. One technique is to retrieve
Kubernetes Secrets that are stored within the Cluster. These secrets contain sensitive data and
credentials.

●
Discovery: Discovery tactics are used as a way for the attacker to examine the Cluster before
moving around. Attackers can use the API Server, the Kubelet API, the Dashboard or the general

internal network, that is used by Pods to communicate with each other, to explore the Cluster.

●
Lateral Movement: Once the attacker has examined the environment, they use Lateral Movement
tactics to move around the Cluster. Some of the techniques used

• Impact: Many things can be achieved by the attacker once the Cluster has been compromised. The
Impact tactic consists of techniques that attackers use to change the Cluster’s normal state in a negative
way such as deleting data or changing configurations. In many of the examples mentioned, the attackers
used the Cluster to mine cryptocurrency. Attackers can also perform a denial of service attack that
prevents the availability of the service and denies its users access.

2.1.3.2 Security Measures Taken to Prevent Certain Threats

This section will discuss some of the many security methods that Kubernetes implemented in order to
prevent attackers from gaining access to Clusters.

Kubernetes Clusters are very easy for attackers to detect since they all listen to a range of distinctive ports
that are well defined (McCune (n.d.)). Etcd, a component inside a Kubernetes Cluster, is used as a key
value storage that holds the state of the Cluster in the form of configuration data of all the Nodes and
containers. If an attacker gains access to this component, they can easily explore the entire Cluster. Since
the setup of Kubernetes does not enable encryption by default, the Secrets stored inside the Etcd are in
the form of plaintext. Some users may expose the Etcd to the Worker Nodes without Transport Layer
Security (TLS), authentication and authorization (Panagiotis (2020)). As Etcd listens to port 2379, it is easy
for attackers to find it since this port is indexed by Shodan: a search engine for devices connected to the
Internet (McCune (n.d.)).

Security measures have to be taken to secure the Etcd such as making it mandatory to enable the option
requiring all who require access to it need to have valid certificates. A firewall is also set up around it to
make it more difficult for attackers to gain access (Panagiotis (2020)).

All Kubernetes Clusters contain a component called the API Server. API Server is a container that is the
main entry point to the Cluster. It exposes the Kubernetes API, a RESTful web server, that is the main
point of interaction between the outside and the Cluster. Communication between all other components
also occurs through the API Server. The API has a secure endpoint that can be connected at port 6443
and an insecure endpoint at port 8080. If an attacker gains access to the insecure endpoint, then they can
avoid all authentication and authorisation protocols that are in place and

make API requests to the port. Although the default settings of a Cluster disables this insecure endpoint, it
may be still possible for an attacker to change this configuration and gain access to internal information
within the Cluster (Panagiotis (2020)).

As this is the only endpoint that is available to the public, there are many security measures that are put in
place in order for a user to gain access to the Cluster via the API’s port. Transport Layer Security (TLS) is
implemented for the API’s security and all users requesting access will have to be authenticated and
authorised before gaining access. The Hypertext Transfer Protocol (HTTP) request is examined and the
system verifies that the Cluster knows the user through the use of either passwords, certificates or tokens.
If the user is valid, the request that they are trying to make is examined. Since Kubernetes uses

Role-Based Access Control (RBAC), the system makes sure that the existing permissions granted to the
user is enough to complete their request. Once the request has been authorised and authenticated, it has
to be checked by the admission controller. This controller ensures that any request coming from the
outside complies with a set of rules. For example, each Kubelet, a component that sits in every Node and
relays the API requests to its destination, can only make requests to Pods within its own Node and not any
other Pod (Panagiotis (2020)).

These security measures, however, do not always succeed as it is still possible to accidentally expose this
port to attackers like the incident with Tesla. The attackers gained access to Tesla’s Cluster through its
exposed dashboard as it had no authentication methods enabled (Panagiotis (2020)). Since the
Dashboard utilises the API, the attackers gained access to the Cluster.

Other than gaining access to the Cluster through exposed endpoints, attackers can get in through the help
of containers. Kubernetes Pods run containers with different applications. By default, a token that grants
access to the Kubernetes API is assigned to a container. If RBAC is not configured, then the token may
grant the container with admin-level privileges (McCune (n.d.)). If one of the containers became
compromised, then the attacker would have access to the Pod that hosts it and all the information within it.
In worse cases, if this compromised container has a privileged flag, then the attacker can use these
privileges to gain access to the rest of the Cluster and all the data within it (McCune (n.d.)). To avoid this,
users are encouraged to configure RBAC and avoid running containers as privileged.

As Kubernetes has security and privacy considerations put in to prevent attackers from entering its
Clusters, it needs to improve its ways of detecting an attacker that is already inside.

2.2 Machine Learning

This dissertation examines how machine learning can be utilised for intrusion detection in a Kubernetes
Cluster. Machine Learning (ML) is a subset of Artificial Intelligence (V K (2019)). The aim of machine
learning is to allow machines to be able to make decisions without explicit instructions coded into them
(Pant (2019)). This involves creating algorithms that can adjust themselves to generate accurate results.
For this research, algorithms can be created to identify malicious activity inside a Cluster. There are many
ways to implement an algorithm that can learn.

2.2.1 Supervised Learning

In Supervised Learning, an ML algorithm is given training data in the form of a labelled dataset. A labelled
dataset contains inputs and their expected outputs (for Geeks (2019)). Using this training data, the
algorithm has to create a function that is able to map the inputs to the outputs. Once this function has been
created, it can be tested against new data to review the output.

There are two types of supervised learning algorithms: Classification and Regression.

• Classification learning involves the output of the learning algorithm to be discrete or categorical.
Classification can either be binary such as true or false, or multi class such as small, medium or large (for
Geeks (2019)). An example of a problem that can be solved using classification learning is determining
whether an email is spam or not. The characteristics of the email is the input and the output is binary
classification of either spam or not spam. Another example is determining handwritten letters of the English

alphabet. The handwritten letters are the input and the output is multi class since it can be classified as
one of the 26 letters.

• Regression learning involves the output of the learning algorithm to be continuous or real values.
Examples include values of money, probability and metric measurements. The algorithm attempts to get an
answer as close as possible to the expected value. The closer the output is to the expected value, the
lower the error value and therefore, better accuracy.

2.2.2 Unsupervised Learning

In Unsupervised Learning, there is no form of guidance on what the right answer is. The algorithm has to
discover the patterns of a dataset on its own and categorise the differences and similarities in order to
determine the final output.

There are two types of supervised learning algorithms: Clustering and Association.

• Clustering involves the learning algorithm sorting the dataset into groups based on their similarities. An
example of a problem that can be solved using this algorithm is grouping customers by their purchasing
behaviours and patterns (Pant (2019)).

• Association involves the learning algorithm discovering patterns and linking those patterns with outcomes
such as days with temperatures over 30 degrees can be linked to the days with the highest ice cream
sales and therefore high ice cream sales can be associated with high temperatures.

2.2.3 Reinforcement Learning

In Reinforcement Learning, the algorithm learns by receiving rewards and penalties. The algorithm
receives rewards for performing correctly and penalties for performing incorrectly. This process allows the
algorithm to learn on its own and make every decision based on its past experience, similar to a child or
young animal learning about its environment.

2.2.4 Deep Learning

Deep Learning is a subset of machine learning. It contains more complex algorithms than machine
learning. These algorithms begin as simple implementations but accumulate in order to form multiple
layers therefore adding complexity and earning the name of “Deep” Learning (V K (2019)).

2.2.4.1 Neural Networks

A Neural Network is the basic method used for deep learning solutions. It is designed to replicate the
function of the human brain with multiple neurons connected to form a network of layers. It contains an

input layer, output layer and multiple hidden layers used to process all the data. These layers contain
neurons with weights that give priority to certain characteristics of the input data. Neurons contain
activation functions that also contribute to determining the output (Sharma (2017)). These weights and
activation functions work together to decide how the neuron processes the data before passing it onto the
next layer and generating a suitable output.

Neural networks can be designed differently with the basic functionality. Two types in particular are the
Multilayer Perceptron and Convolutional Neural Networks.

• Multilayer Perceptron: A Multilayer Perceptron (MLP) is made up of the most simple type of neural
network, a perceptron. A perceptron is a neural network with only an input and output layer. It does not
contain any hidden layers, making it simple. An MLP is similar to a regular perceptron but it contains a
hidden layer. It utilises backpropagation, in order to become more accurate with every iteration.
Backpropagation is a supervised learning algorithm that is used to train feedforward neural networks. All
the nodes within the hidden layer and the output layer contain non linear activation functions that, along
with the multiple layers, help to sort and categorise data that is not linearly separable (Uniqtech (2018)).

• Convolutional Neural Networks: A Convolutional Neural Network (CNN) is more complex than an MLP.
Unlike an MLP which requires weights to determine the importance of data, a CNN can prioritise the data
on its own (V K (2019)). This feature allows for a reduction of preprocessing time for the data making it
easier to train. It contains a convolution layer that performs a convolution operation along with an activation
function. It also contains a Kernel, which is a small grid of parameters used to extract features from the
data. It is used to process images due to its composition of data in the form of a grid pattern (Yamashita et
al. (2018)).

2.3 Related Projects

This section will give an overview of the existing research and implementations that are relevant or closely
related to intrusion detection in Kubernetes and the solution proposed in this paper.

2.3.1 Monitoring Kubernetes Clusters with Dedicated Sidecar Network Sniffing Containers

A research recently completed by Karode (2020) involves the use of sidecar network sniffing containers
that utilise deep packet inspection in order to inspect the network traffic within a Kubernetes Cluster. Both
the completed research and this current dissertation research share the same aim: Intrusion detection in
Kubernetes. The paper introduces the idea of monitoring the internal traffic by inspecting each packet that
is transmitted within each Pod. The solution also consists of a dashboard where users can monitor the
network and evaluate the flagged malicious activity. The design is based on the architecture of Prometheus
which is an open-source network tool used to monitor the network traffic.

A downside to this solution is that the sidecar container needs to be deployed within every Pod in the
Cluster in order to inspect all the packets being transmitted within the Cluster. This allows each instance
inside all the Pods to consume a large and uncommon amount of resources that belong to the containers
in the Pod. To avoid this, a similar solution can be implemented that only has to be deployed once inside
every Node within the Cluster instead of every Pod. Another limitation to this solution is that the user
configures the rules that are used during the deep packet inspection of a packet. The user’s knowledge of
a malicious pattern may not be enough to create a specific rule that captures it.

2.3.2 Security by Simple Network Traffic Monitoring

Tsunoda & Keeni (2012) discuss the method of monitoring network traffic in order to detect a security
breach. They introduce a technique that can be used to analyse network traffic called Category Transform.
This technique allows the dissection of many packets in detail and studies the characteristics of each of the
packet’s fields. The study also mentions how monitoring the Address Resolution Protocols (ARP) and
Neighbour Discovery Protocols (NDP) can allow the monitoring of all the devices connected to the network.

The paper also discusses how traffic volume monitoring can help to detect intruders. Large variations in
the traffic flow can be a sign of suspicious activity. It analyses the traffic volume by converting it using the
category transform technique and discusses how this can help detect suspicious activity such as port
scans and attacks such as Distributed Denial of Service (DDoS) attacks.

2.3.3 Detecting Network Intrusions via Statistical Analysis of Network Packet Characteristics

Bykova et al. (2001) outlines how to detect network intrusions by analysing the characteristics of network
packets. The study aims to gather and examine Transmission Control Protocol (TCP) packets on a
network that violate the existing standards and understand how they are capable of causing harm. This
paper points out specific traits that suspicious packets will have within different attributes of the packet
including the packet size, IP header, the IP address and the source and destination port numbers. Many of
these characteristics are believed to be caused by poor TCP implementations but some of the packets
analysed were not a part of the normal network traffic. Checking for these characteristics in network
packets within the Cluster can help to detect malicious activity.

2.3.4 Detection of Malicious Encrypted Web Traffic Using Machine Learning

This research aims to focus on detecting malicious HyperText Transfer Protocol Secure (HTTPS) traffic
without decrypting the packet. Shah (2018) proposes an ML solution that analyses the characteristics of
HTTPS certificates. The ML solution utilises the Extreme Gradient Boosting (XGBoost) Algorithm to
determine if the characteristics of the HTTPS certificate indicate malicious activity. The characteristics of
the certificates are extracted from log files that are generated using a network security monitoring tool
called Zeek (Zeek (n.d.)). The extracted characteristics become the input for the ML algorithm and are
classified based on whether they are suspicious or not. This idea proves that it is possible to create an ML
solution model that takes in packet characteristics as its input to determine if it is a normal or malicious
packet.

2.3.5 Summary of Related Projects

It is evident that, from examining the works of Karode (2020) and Shah (2018), the idea of intrusion
detection using network monitoring has been proven to be effective. Tsunoda & Keeni (2012) and Bykova
et al. (2001) have also proven that certain characteristics exist that can lead to the identification of
malicious traffic. While Karode’s solution requires manual configuration of rules that the system will use to
detect the malicious activity, Shah utilises machine learning to identify the patterns in the traffic. Karode
utilises deep packet inspection that involves examining the different fields of an IP packet whereas Shah
examines the HTTPS certificates of the normal and malicious packets.

These papers prove that it is possible to implement an intrusion detection system that utilises traffic
monitoring and machine learning to identify a malicious packet using the characteristics defined with
training data.

Table 2.1 highlights the aims of the different papers, their findings and what influence they have on the
design of the solution being proposed in this dissertation.

Title of Paper Aim Findings/Solution Inspirations for Current Research

Monitoring Kubernetes
Clusters with
Dedicated Sidecar
Network Sniffing
Containers

Inspect network traffic
within Kubernetes

Container can be
deployed in

every

perform

packet inspection on
all the Custer traffic

Create a solution that
does not need to be
deployed on every
Pod.

Pod to deep

Security by Simple
Network Traffic
Monitoring

Show how network
security management

can be obtained using
basic traffic monitoring

A new traffic analysis
technique called
Category Transform

that involves
transforming

traffic volume to traffic
category.

Use traffic patterns to
determine irregular
activity within the
network.

This

identifies

usage

within the network.

technique illegal
patterns

Detecting Network
Intrusions via
Statistical Analysis of
Network Packet
Characteristics

Obtain information A list of traits found
within packet headers
that include invalid IP
address, port numbers
and TCP flags.

Use packet
characteristics

to identify irregular
packets within the
network.

on

attacks

examining
characteristics of
malicious Packet
headers

malicious by the

Detection

of Malicious Encrypted
Web Traffic Using
Machine Learning

Detect malicious
HTTPS traffic without
decrypting the packet.

Extract traffic data
from log files and use
XGBoost Algorithm to
classify the packets as
malicious or not.

Use machine learning
to determine whether
the packet is malicious
or not.

Table 2.1: A summary of the four papers related to this research and the inspirations they have provided
this solution. Both Karode (2020) and Shah (2018) propose projects that detect malicious activity and both
Tsunoda & Keeni (2012) and Bykova et al. (2001) propose characteristics that help identify malicious
packets. The solution presented in this dissertation aims to achieve similar outcomes based on these
existing projects while attempting to overcome their limitations.

Chapter 3

Design

This section explains the design of the proposed solution in this dissertation and outlines the aspects that
influenced it such as how the traffic is captured, how the malicious packets are identified and how a
machine learning algorithm can be created to classify the packets.

3.1 Overview of the Approach

This research aims to design a solution that is capable of detecting whether an intruder exists within a
Kubernetes Cluster with the help of machine learning. The proposed solution consists of a method to
capture all the traffic flowing within a Node and pass it into a neural network that is deployed and running
within a Pod in the same Node. The neural network determines whether there are suspicious packets with
the use of characteristics that can be used to identify malicious packets.

3.2 Part 1: Capturing Traffic

A Kubernetes Cluster has an internal network that all the components within it use to communicate with
each other. If an intruder enters the Cluster, they would need to move around, find valuable data and then
steal it by transferring it out of the Cluster. These actions require the use of the internal network. Monitoring
the internal network traffic can help in identifying suspicious activities and declare the Cluster to be
compromised.

A Pod is the smallest deployable unit in a Kubernetes Cluster. Pods are deployed within a Worker Node in
the Cluster and communicate with each other through the Node’s network namespace. This means that
monitoring a Node’s network namespace can reveal all the traffic flowing in and out of the Pods within that
Node. An attacker with access to a container inside a Pod will need to communicate with other

components in order to execute their plan and thus, prompting them to use the network namespace of the
Pod’s Node.

Inside the Node’s network namespace, there is a network bridge, cbr0, that directs all requests going to
and from the Pods. As illustrated in figure 3.1, cbr0 has access to all the virtual Ethernet connections with
the Pods. Listening to these connection interfaces will result in a way to monitor all traffic flowing through
the Node. Once the traffic is captured, it can be sent to a Pod that runs the intrusion detection algorithm to
be examined.

Figure 3.1: The bridge, cbr0, has access to all the connection interfaces, which are represented as black
dotted lines, in the Node’s namespace. Monitoring these connections will allow the administrator to capture
the traffic.

3.3 Part 2: Identifying Malicious Characteristics of Packets

The traffic flow within the Node is expected to contain a mix of network protocols such as Address
Resolution Protocol, Domain Name System protocol, Hypertext Transfer Protocol, Transmission Control
Protocol and User Datagram Protocol.

3.3.1 Network Protocols within the Cluster

●
Address Resolution Protocol (ARP) is a data link layer network protocol (Engine (n.d.)). It is used to
find the physical machine address, also referred to as the media access control (MAC) address, of
an IP address. ARP is used by cbr0 when it checks all the Pods for the destination IP address of a
request.

●
Domain Name System protocol (DNS) is an application layer network protocol. It is used to map
hostnames to their respective IP addresses such as converting domain names of websites to IP
addresses (Engine (n.d.)). The protocol uses a distributed database containing name servers as a
lookup. In a Kubernetes Cluster, Pods can host a coreDNS server (Kubernetes (2021f)). Pods that
want to send requests to websites send a DNS query to the coreDNS server to receive the IP
address of the desired destination.

●
Hypertext Transfer Protocol (HTTP) is an application layer protocol (Engine (n.d.)). It is a stateless
protocol that requires a client-server connection where the client sends requests to the server and
the server sends back responses with the required data. Pods that require a connection with an
external web server that support this protocol will send HTTP requests to the server and receive
responses.

●
Transmission Control Protocol (TCP) is a transport layer protocol. It is a connection oriented
protocol meaning that the two applications have to establish a connection first before transferring
data between them. TCP also utilizes acknowledgements and negative acknowledgements to
ensure the data between the two applications is not lost. HTTP protocols use TCP as their
transmission protocol (Docs (2019)). Large DNS queries over 512 bytes also use TCP as their
transmission protocol (NS1 (2018)).

●
User Datagram Protocol (UDP) is a transport layer protocol. It is used for the transmission of data
that is sensitive to time (Datta (2020)). Unlike TCP, UDP is not connection-oriented. It sends data
without an initial connection being made which results in faster transmission but can result in loss of

data due to the lack of a packet recovery mechanism. DNS queries use UDP as their default
transmission protocol due to its low latency.

3.3.2 Scope

For the purpose of this research, the solution will focus on the traffic sent out from each Pod which uses
application protocols such as HTTP and DNS. These protocols utilise the TCP or UDP transmission
protocols and, therefore, produce IP packets that can be examined using the guidelines proposed by
Bykova et al. (2001).

3.3.3 Characteristics of Malicious Packets

Bykova et al. (2001) outlines specific characteristics of a TCP packet that can indicate suspicious activity.
Certain patterns observed within these three fields in an IP packet can help in designing the proposed
solution.

• Packet Size: According to Bykova et al. (2001), the total length of a packet should be larger than the
length of its header. TCP packets with extremely small lengths are also suspicious due to a method used
to bypass firewalls that involves the splitting of packet headers, therefore making the packet short. Large
packets should also be treated suspiciously as some attackers may not attempt to lay low and instead,
steal large amounts of data. This would result in a packet with an abnormally large payload that can be
detected.

• IP Address: The IP address of a packet is not protected from attackers. Attackers can spoof IP
addresses. This involves replacing the real source address of the packet with a fake address that belongs
to the attacker. This can result in the response to that packet being sent to the attacker’s fake IP address.
Keeping a track of regular IP addresses that are familiar and safe will help to detect new IP addresses
which could be from an attacker. According to Bykova et al. (2001), there is an attack named the Land
Attack that involves the source and destination IP address of a packet being the same.

• Port Number: Bykova et al. (2001) states that the source and destination port numbers of the packet
cannot be zero. Also, it is suspicious for a packet to have the same destination and source port. Another
suspicious characteristic regarding port numbers is that port 22 is assigned to Secure Shell (SSH): a
cryptographic network protocol that is utilised by applications such as command-line (Loshin & Cobb
(2019)). This means that if a packet has port 22 as its destination port, it can indicate that an attacker is
trying to SSH into the Pod with the use of a command line.

3.4 Part 3: Machine Learning

Applications of machine learning would be useful in helping detect malicious activity inside a Kubernetes
Cluster because of its ability to recognise unusual patterns and identify them as malicious using its past
experiences or training. Previous machine learning solutions have proved to be successful for network

traffic inspection such as the XGBoost algorithm used by Shah (2018). This research explores this further
and aims to design a solution that uses another machine learning algorithm.

Using the selected fields of the IP packet such as the length of the payload, and the source and destination
IP address and port numbers, a machine learning algorithm can identify malicious patterns of the IP
packet.

3.4.1 Selecting a Learning Method

The ML model needs to follow a learning method to learn using the datasets provided before being able to
examine and detect malicious traffic. There are three methods that can be used to create a machine
learning algorithm: Supervised, Unsupervised and Reinforcement Learning. A method that suits the
purpose of this project is selected.

Reinforcement learning involves the algorithm learning through its environment however, this problem set
does not contain an environment to explore. Since unsupervised learning finds its own patterns within the
dataset, there is no guarantee that it will pick up on the necessary patterns agreed on in section 3.3. In
supervised learning, the dataset is based on set patterns defined by the programmer that determine if a
packet is malicious or not. Supervised learning can take into account the characteristics of a malicious
packet that will be defined using the training dataset that is passed into the algorithm.

Within supervised learning, there are two types of algorithms that can be used: Regression or
Classification. Regression is used where a continuous value output is required such as weight, speed or
distance. However, Classification is used where a categorical output is required such as true or false, 0 or
1, or hot or cold. It is used to categorise the data into groups which, in this solution, is either Normal packet
or Malicious packet. Classification is selected as the type of algorithm suited for this solution.

3.4.2 Selecting a Neural Network

A neural network is a deep learning algorithm that can be trained to identify certain data that has different
characteristics within a dataset.

Two types of neural networks researched in this paper are the Multilayer Perceptron (MLP) and the
Convolutional Neural Network (CNN). Since CNNs are more suitable for handling grid-based datasets such
as images and this input dataset consists of IP packet fields, the MLP is selected as the type of neural
network that is used to identify malicious packets.

3.4.3 Overall Machine Learning Solution

The final design of the machine learning solution, shown in figure 3.2, consists of a Multilayer Perceptron
Neural Network that takes in the selected fields of an IP packet as inputs and labels them as malicious or
normal as outputs. The algorithm uses supervised learning meaning that it uses training data to
understand the patterns within the dataset and try to shape a function that will output the expected outputs
for its respective input training data. The algorithm is a classification algorithm meaning that the output can
be categorised into either Malicious or Normal.

Figure 3.2: The architecture of the machine learning solution consists of a Classifier Neural Network. This
model takes in the attributes of the packets captured from the Node’s internal network and determines
whether they are malicious or not.

3.5 Tools

Implementing this design requires the use of different tools and libraries. The main tools that can aid in the
implementation of this project are described in this section. It also outlines why these tools are selected to
be used in this project.

3.5.1 Minikube

In order to monitor traffic flowing within a Kubernetes Cluster, there needs to be a Cluster available for
local development. Minikube is a tool that allows a user to run Kubernetes locally as a single-node
Kubernetes Cluster inside a virtual machine (Kubernetes (2021a)). Using this tool, it is possible to create
Pods and deploy docker containers running applications inside the Node. It is a great tool to help
beginners locally explore a Kubernetes Cluster.

3.5.2 Lens

Controlling and monitoring a Kubernetes Cluster through the command line is complex, however, there are
tools to help with that such as Lens. Lens is an open-source Integrated Development Environment (IDE)
for Kubernetes Clusters (Lens (n.d.)). This tool can be used to monitor the traffic in the Node and capture it
before getting it examined by the algorithm.

3.5.3 Machine Learning Libraries

Implementing a neural network from scratch is time-consuming and complex. Fortunately, there are many
libraries available online that can be used to create a neural network. Scikit-learn is an open source
machine learning library that can be used to implement various machine learning algorithms in Python
(Scikit (n.d.b)). It provides basic machine learning algorithms and models that support supervised and
unsupervised learning. An MLP is also available to be implemented and only requires the correct training
data (Scikit (n.d.a)).

Using these tools, the design of the proposed solution can be implemented.

Chapter 4

Implementation

This chapter outlines how the proposed intrusion detection solution is implemented. It explains the steps
taken in setting up a local Kubernetes Cluster and capturing the traffic within the Node. Furthermore, it
explains how to create a dataset that can be used to train a Multi-layer Perceptron Neural Network to
detect malicious packets using classification.

4.1 Traffic Monitoring

This section describes the steps taken in capturing data from a Kubernetes Cluster.

4.1.1 Set Up Kubernetes Cluster

As mentioned in section 3.5, Minikube is used to create a single-node Kubernetes cluster that can be used
for local development. After installing the tool, the cluster can be initialised by typing the command
minikube start into the terminal.

Currently, no Pods exist in the single node cluster and, therefore, will need to be created. In order to create
a Pod, a Deployment will have to be created. A Deployment creates a ReplicaSet and a ReplicaSet can
create Pods. A Deployment can be created by running the following line in the terminal:

kubectl create deployment pod-one --image=k8s.gcr.io/echoserver:1.4

Kubectl is the command line interface for Kubernetes and is installed along with Minikube. The pod-one
argument in the command can be replaced with any other name desired for the Pod. Multiple Pods can be
created in a similar way.

Lens is used to monitor this minikube cluster as it is an IDE for Kubernetes Clusters. 31

Lens also provides a feature to deploy applications from the Helm charts to Kubernetes clusters. Helm is a
package manager for Kubernetes (Helm (2019)). Using this feature, a Wordpress (Wordpress (2015))
application is deployed into the cluster and now runs inside a Pod in its own name. Another Pod hosts a
mariadb for the Wordpress application.

The Kubernetes cluster is now ready to be monitored as it has Pods that will communicate with each other,
see figure 4.1.

Figure 4.1: The single-node cluster has four Pods: Two pods utilised by WordPress and two running a
container with an image of an echo server.

4.1.2 Capturing Traffic

In order to monitor the network traffic within the cluster, a command-line packet analyser called tcpdump is
utilised (Tcpdump (n.d.)). Lens provides a feature to SSH into the Node as the root user. This allows
command-line arguments to be executed within the Node. Using this access, tcpdump can be installed in
the Node using apt-get which is a command-line tool in Linux that handles packages (die.net (n.d.)).

As previous chapters have explained, a Kubernetes Node has a network namespace that is shared by all
the Pods and their virtual Ethernet connections also called interfaces. Tcpdump can list all these interfaces
using the following command: tcpdump -D. Figure 4.2 shows all the interfaces that are in this Node and the
Pod they are connected to. The docker0 is the network bridge instead of the expected cbr0 (Docker
(2017)). Since all packets sent to and from the Pods in the Node go through the bridge, listening to
docker0 will allow access to all the traffic within the Node.

Figure 4.2: All interfaces in the Minikube Node along with the names of the Pods they are connected to.

The following command uses tcpdump to capture all the traffic flowing through the docker0 interface and
then save it as a pcap file (ReviverSoft (n.d.)).

tcpdump -s 0 -i docker0 -w capture.pcap

The pcap file will contain a copy of the traffic captured including TCP, UDP and ARP packets. It can be
opened and read using Wireshark, a network protocol analyser (Wireshark (2017)), as seen in figure 4.3.

Figure 4.3: A glimpse into a pcap file containing internal traffic of the Minikube Node. The traffic is captured
using tcpdump and viewed using Wireshark.

4.2 Intrusion Detection Model

The intrusion detection model is implemented with the use of a multi-layer perceptron neural network
available from Scikit which is a machine learning library. As this model uses supervised learning, it will
need a training dataset that maps all the inputs to their expected outputs. This dataset is created using the

traffic captured and locally generated malicious packets that are designed using the characteristics
discussed in section 3.3.

4.2.1 Creating the Dataset

A dataset consisting of normal and malicious packets needs to be generated in order to train and test the
intrusion detection model. The normal packets are taken from the traffic captured and the malicious
packets are generated due the limitation of accessing real malicious traffic. This section describes the
steps taken in creating this dataset.

4.2.1.1 Dissect Normal Traffic Data

The packets captured in the pcap file are used as the normal data that trains the neural network to
understand what is not a malicious packet. They need to be converted into training inputs for the neural
network. To achieve this, a python module named dpkt (Song (2019)) is used to read and parse the file
along with the packets in it. The pcap file is read into the model and the desired packet fields are extracted
to create the input dataset. For each packet, its length, source IP address, destination IP address, source
port number and destination port number are extracted and stored in respective List objects. Once stored
in the Lists, the attributes of a packet can be accessed using the same index value for all the attribute
Lists.

4.2.1.2 Create Malicious Data

The training input dataset also requires malicious packets so that the neural network can recognise what a
malicious packet would look like. Unfortunately, generating real malicious packets was not possible during
the time this study was being conducted so the malicious packets utilised for training are designed using
certain characteristics that are outlined in section 3.3.

• Packet Size: As per the characteristic of malicious packets with unusually small or large sizes, the
malicious packets created in this study are assigned a random number within a specified range as their
size attribute. A range for the malicious packet sizes is created after observing the size of the normal
packets captured. It is observed that no packet has a size attribute below 50 bytes or above 8000 bytes.
Since the minimum size of a packet is 21 bytes (Hall (2019)), any size below that size is invalid and any
size between 21 bytes and 50 bytes is considered to be not normal compared to the patterns observed in
this cluster.

Since the maximum size of a packet is 65,535 bytes (Hall (2019)), any packet that has a size between
8000 bytes and the maximum value is considered to be not normal when compared to the non-malicious
packets within this cluster.

• IP Address: As it is difficult to determine whether the owner of an IP address is an attacker or if the
address has been spoofed, this model is designed to suspect any new IP address that has never
communicated with the cluster. The malicious packets created contain different IP addresses to those that
are observed in the normal dataset of packets.

• Port Number: As per the characteristics outlined, the malicious packets created can have the same
source and destination port number or a port number of 0. The packet can also have a destination port
number of 22 which indicates that it is an attempt to access the Pod via SSH.

All these malicious characteristics are assigned randomly to the generated dataset of malicious packets so
that they have different combinations and will be similar to real malicious packets. Figure 4.4 shows some
examples of the generated malicious packets.

4.2.1.3

Figure 4.4: Packet a) has the malicious characteristic of having a different source IP address from the ones
observed in the normal packets. Packet b) has a length greater than 8000 bytes which no normal packet
has exceeded. Packet c) has a different source address and a length shorter than 50 bytes which no
normal packet has gone below. Packet d) has an invalid source port of 0.

Dataset Object

The attributes of the generated malicious packets are inserted into the attribute lists containing the normal
packet attributes. These lists represent the final training input dataset. These lists are used to create a
dataset object described in figure 4.5. This object contains an attribute for each list and it is used to pass
the training input data to be preprocessed before being passed into the neural network.

Figure 4.5: The dataset object containing all the lists of the packet attributes. All normal packets captured
from the Minikube Node and malicious packets generated using defined characteristics are included in this
dataset object.

4.2.2 Pre Processing Dataset for Neural Network

The MLPClassifier is imported from the Scikit library to be used as the neural network in this intrusion
detection model. Once the neural network is initialised, it needs to be trained with the training dataset. The
packet attributes within the training dataset need to be preprocessed before it can be passed into the
neural network. The function that fits the model to the training data takes in an array or matrix as the input
for training and another array or matrix as the expected output.

4.2.2.1 Create Expected Output Values for Training

An array of 0’s and 1’s is where 0 means that the packet is normal and 1 means that the packet is
malicious. Its index values correspond to the index values of the lists containing the packet’s attributes.
This array is passed into the fitting function along with the processed input dataset.

4.2.2.2 Convert Non-Numerical Values

The neural network can only take in numerical data as its input. The IP address attribute is a non numerical
value and, therefore, needs to be converted into a numerical value. A LabelEncoder from Scikit is used to
assign unique numerical tags to string values as seen in the following code snippet 4.1.

Create labels to replace string values

str_cols = df.columns[df.columns.str.contains('(?:IP)')] labels = {c:LabelEncoder() for c in
str_columns}

Replace values in the dataset with their respective labels

for col, label in labels.items():
df[col] = labels[col].fit_transform(df[col])

Listing 4.1: All the columns with string values to be converted are identified and the label encoder goes
through each value and assigns a numerical value to it. For example, the IP address of 172.17.0.2 in figure
4.6 is assigned a tag of 2 in figure 4.7, 172.17.0.1 is assigned a tag of 1. These tags will replace their non
numeric values for every entry that exists in the selected column.

Figure 4.6: Input dataset containing all normal and malicious packets before any preprocessing required
for the neural network is performed on it.

Figure 4.7: Input dataset after the conversion of the IP addresses, which were initially represented as
strings, to a numeric label.

4.2.2.3 Normalisation

When the values are all numeric, they have to be normalised as the neural network can only process
values between 0 and 1. Normalisation involves scaling the values between 0 and 1. The code snippet 4.2
shows how all values in all the columns were normalised.

Listing 4.2: All values within the dataset are normalised before being passed into the neural network.

The inputs will now all be converted to numerical values between 0 and 1. Figure 4.8 shows the format the
input data set will be passed into the neural network.

4.2.3 Training and Testing

The processed dataset is split into two sub datasets. One dataset will be used to train the neural network
model and the other will be used to test it.

The input dataset and its respective expected outputs are passed into the function that fits the model to the
training data.

clfr.fit(train_df, train_results)

target_column = ['1']

col_label = list(set(list(df.columns))-set(target_column)) df[col_label] = df[col_label]/df[col_label].max()

Figure 4.8: Input dataset after normalisation. The dataset has fulfilled all the requirements to be passed
into the neural network as training and testing data

Once the model has been trained, it is tested using the test input data. The predict function takes the input
data and returns the output determined by the trained model. The generated output can be compared to
the expected output to determine the accuracy of the model.

ans = clfr.predict(test_df) 4.2.4 Output

The output of the neural network is initially an array of 1s and 0s. These values are mapped to the labels
Malicious and Normal respectively. The final output of the intrusion detection model is a table displaying
the packet attributes and whether that packet is Malicious or Normal as shown in figure 4.9.

4.3 Summary of Implementation

Using the knowledge regarding the Kubernetes Cluster architecture and machine learning models, an
intrusion detection model was developed. The traffic captured by the root user in a Kubernetes Cluster is
passed into the intrusion detection model which consists of a neural network that implements classification.
This intrusion detection model processes the traffic and converts it into a dataset object that is further
processed before being passed into the neural network. The model determines whether the packets inside
the dataset are malicious or not. The solution uses datasets to train the ML model before evaluating any
other datasets.

As displayed in figure 4.9, the model generates a table of the examined packets along with its details and
its status of either being Malicious or Normal, therefore implementing intrusion detection in a small scale
Kubernetes Cluster.

Figure 4.9: The output of the Intrusion Detection Model. Each packet is classified as either Malicious or
Normal based on the characteristics and patterns the model has been trained to identify.

Chapter 5

Evaluation

This chapter evaluates the proposed solution model by conducting tests using multiple datasets and
analyzing the results produced. In addition, the chapter explains whether the initial aims of this research
were accomplished and the strengths and weaknesses of the proposed solution when compared to the
related works and itself. It also outlines the challenges faced during this project.

5.1 Analysing the Output

The previous section mentions how the dataset for training and testing the model is created. Using these
datasets, the model is trained and then tested. The results obtained are then analysed in order to evaluate
the reliability of the solution.

5.1.1 Metrics

To evaluate the performance of the model, certain attribute values are recorded and used in calculations to
obtain metrics. These values are recorded for three different datasets and are defined below in relation to
the proposed model:

●
True Positives (TP): The number of actual malicious packets that are predicted as Malicious by the
model.

●
True Negatives (TN): The number of actual normal packets that are predicted as Normal by the
model.

●
False Positives (FP): The number of actual normal packets that are predicted as Malicious by the
model.

• False Negatives (FN): The number of actual malicious packets that are predicted as Normal by the
model.

Metrics such as Accuracy, True Positive Rate and False Positive rate are used to evaluate the reliability of
the model and are defined below (Nighania (2019)):

• Accuracy (ACC) is measured by calculating the percentage of the results that are correct such as TN and
TP out of the total number of results which is TN + TP + FN + FP. This metric is used to evaluate the
number of times the model is correct with its output. It is represented using the following formula:

ACC = TP +TN (5.1) TP +FP +TN +FN

• True Positive Rate (TPR) is measured by calculating the percentage of the correct number of positive
results predicted (TP) out of the total number of results that are actually positive which is TP + FN. This
metric is used to evaluate the number of times the model’s positive prediction is correct out of all the actual
positive results. A TPR of 80% means that the model can predict 80% of all the positive results correctly. In
this study, a TPR of 80% would indicate that 80% of the malicious packets present in the dataset is
classified as malicious by the model. It is represented using the following formula:

TPR = TP (5.2) TP +FN

• False Positive Rate (FPR) is measured by calculating the percentage of the number of negative results
that were predicted positive (FP) out of the total number of results that are actually negative which is FP +
TN. This metric is used to evaluate the number of times the model’s positive prediction is incorrect. A FPR
of 10% means that 10% of the positive predictions made by the model is incorrect. In this study, an FPR of
10% would indicate that 10% of the packets classified as malicious is incorrect. It is represented using the
following formula:

FPR = FP (5.3) FP +TN

5.1.2 Results

The model will be assessed using three datasets of different sizes. These datasets contain training and
testing data and the values of TP, FP, TN, FN are obtained from these tests. Dataset 1 is the smallest set,
as shown in figure 5.1, it is tested with a testing dataset of size 274 that is composed of 56% normal and
44% malicious packets. Dataset 2, as described in figure 5.2, has a testing dataset of size 1494 that is
composed of 73% normal and 27% malicious packets. Dataset 3, as described in figure 5.4, is the largest
dataset evaluated with a testing dataset of size 3496 that is composed of 71% normal and 29% malicious
packets. The values of TP, FP, TN, FN obtained from passing dataset 1, dataset 2 and dataset 3 into the
model are shown in figure 2.1.

Normal Packets Malicious Packets Total

Training Data

615

480 1095

Testing Data Total

154 769 120 600 274 1369

Table 5.1: The number of malicious and normal packets in Dataset 1.

Normal Packets Malicious Packets Total

Training Data

4372
1600
5972

Testing Data Total

1094 5466 400 2000 1494 7466

Table 5.2: The number of malicious and normal packets in Dataset 2

Normal Packets Malicious Packets Total

Training Data

9982

4000 13982

Testing Data

2496
1000
3496

Total

12478 5000 17478

Table 5.3: The number of malicious and normal packets in Dataset 3

Using the values of TP, FP, TN, FN obtained from passing dataset 1, dataset 2 and dataset 3 into the
model, the metrics ACC, TPR and FPR are calculated as per the formulas 5.1 , 5.2 and 5.3. The results
are described in figure 2.1.

TP TN FP FN ACC(%) TPR(%) FPR(%)

Dataset 1 Dataset 2 Dataset 3

589 753 16 11 1972 5460 6 28 4876 12443 33 124

Average

98.02 98.16 2 99.5 98.6 0.1

99.79 97.52 0.26

99.1 98.09 0.78

5.2

Table 5.4: The metrics collected from the model processing three datasets. The ACC, TPR and FPR for
this model are 99%, 98% and 0.78% respectively. This result may vary depending on the addition of real
malicious packets instead of the ones generated for this purpose.

Analysis of Solution

This section recaps on the initial aim of this research and whether the proposed solution has achieved it. It
also compares the proposed solution to the works that inspired it and highlights its strengths and limitations
compared to them.

5.2.1 Results of Research

The aim of this project was to create a solution that conducts intrusion detection within a Kubernetes
Cluster. As a popular infrastructure that deploys and manages containerised applications, Kubernetes
Clusters became a target for many attackers. Companies such as Tesla and Docker Hub are victims of
attacks that have raised awareness of the security concerns and challenges of Kubernetes Clusters.
Attackers mainly utilised the Cluster to mine cryptocurrency which meant that they would utilise the internal
communication network of the Cluster. This opened up the idea of monitoring the internal network traffic of
the Cluster in order to detect suspicious activity. In order to understand the internal network of the Cluster,
deep research into the architecture and specifically network architecture of a Kubernetes Cluster was
conducted. Once a clear understanding of the Cluster’s network architecture was reached, research began
for a solution to detect intrusion.

The idea of analysing the network traffic in order to identify malicious activity within the cluster has been
researched before and different versions of solutions exist, two of which were referred to while conducting
this research in section 2.3. One of the solutions involved the use of a machine learning algorithm which
led to the idea of using deep learning with neural networks to analyse the network traffic. To utilise machine
learning, the model would need to be trained using sample malicious traffic. As it was challenging to

capture real malicious traffic, further research was conducted into the features that identify malicious traffic
in order to create samples to train the solution model. Characteristics outlined in section 3.3 were used to
generate training data to create the solution model. As of now, the model produces promising results
however, it does not come without fault. The following section discusses how this solution compares with
the existing solutions.

5.2.2 Comparison to Existing Solutions

In section 2.3, figure 2.1 outlines a summary of the different research that exists regarding this solution.
The summary also contains a section that indicates the inspirations that came from those existing studies.
This section compares the achievements and drawbacks of those solutions to the one presented in this
dissertation and whether the inspirations defined in the summary table were implemented.

5.2.2.1 Monitoring Kubernetes Clusters with Sidecar Network Sniffing Containers

The dissertation by Karode (2020) outlines the idea of monitoring the internal traffic by inspecting each
packet that is transmitted within each Pod. It proposes a real-time traffic monitoring solution that can be
accessed using a dashboard. The malicious traffic is identified using the user-configured rules and alerts.
However, the sidecar container needs to be deployed within every Pod in the Cluster in order to inspect all
the packets being transmitted within the Cluster.

To overcome this disadvantage of this existing solution, the proposed solution is designed to only be
deployed once in every Node. Using the administrator access, the traffic flowing between all the Pods
within a Node can be captured and sent to the intrusion detection model that is deployed in only one of the
Pods in that Node. The proposed solution also does not require the configurations of rules to define
malicious traffic and instead utilises a machine learning model to identify them. The machine learning
model is trained using normal and malicious traffic in order to be able to identify suspicious packets.

On the contrary, the proposed solution, however, does not provide real-time monitoring which is an integral
part of traffic monitoring and is implemented by Karode.

5.2.2.2 Security by Simple Network Traffic Monitoring

Tsunoda & Keeni (2012) discusses the method of monitoring network traffic in order to detect a security
breach. They mention how monitoring the ARP and NDP protocols can allow the effective monitoring of all
the devices connected to the network. The research also outlines how monitoring traffic volume can help to
detect intruders.

The proposed solution did not achieve the aim of analysing traffic patterns such as traffic volume to
determine irregular activity within the network. The solution instead focused only on the individual packets
and their attributes. ARP or NDP protocols are also not analysed in the proposed solution as it focuses on
TCP and UDP packets.

5.2.2.3 Detecting Network Intrusions via Analysis of Packet Characteristics

Bykova et al. (2001) points out specific traits of the fields of a TCP packet that identify as malicious. Some
of the fields discussed include the packet size, IP header, IP address and port numbers. Checking for
these characteristics in network packets within the Cluster can help to detect malicious activity.

The proposed solution utilises this study to train and test its intrusion detection model. Characteristics that
involve packet fields such as IP address, port number and packet length are used to generate malicious
data to train this model. However, not all the characteristics outlined in the study were able to be used
while creating the malicious data, such as characteristics that involve the TCP Flag and Time To Live (TTL)
field.

5.2.2.4 Detection of Malicious Encrypted Web Traffic Using Machine Learning

Shah (2018) proposes a machine learning model that analyses the characteristics of HTTPS certificates
using the XGBoost algorithm and determines if the characteristics indicate malicious activity.

The proposed solution is inspired by the use of machine learning in this study and uses a multilayer
perceptron neural network instead of the XGBoost algorithm. However, the proposed solution examines
the fields of TCP packets and does not go into a deeper examination of HTTPS certificates. The proposed
solution does not conduct such deep checks on packets and does not take into account the encryption of
packets creating a disadvantage.

5.3 Advantages and Disadvantages

This section outlines the advantages and disadvantages of the proposed intrusion detection solution.

5.3.1 Advantages

●
Low Power Consumption: Unlike the sidecar container, which is a solution that requires to be
deployed in every Pod, this solution involves the model only to be deployed once within the Node.
In the case of the sidecar container being deployed inside every Pod, each sidecar communicates
with the central dashboard creating more traffic within the network that is being monitored. This
increase in the amount of traffic that needs to be monitored along with the multiple sidecars
processing data concurrently requires a large amount of resources such as processing power.
Compared to the sidecar container solution, the proposed ML model consumes less power and
generates less traffic as only a single instance needs to be deployed within a Node and the traffic
monitoring is carried out through a root access into the Node.

●
Automatic Recognition of Malicious Characteristics: This solution utilises the method of supervised
machine learning in order to adapt and detect unusual activity in the network. Unlike the sidecar
container solution, there is no need to configure any particular rules to detect the packets within the

flow of traffic. Instead, the multilayer perceptron neural network analyses the packets and detects
any malicious ones with the help of its previous knowledge. Any new pattern that is observed in the
traffic flow will be automatically detected once it is included in the training data.

5.3.2 Disadvantages

●

Not Realtime: The solution relies on captured pcap files which are captured by the
admin/root user. This is a disadvantage since this allows the traffic to be analysed sometime
after a delay. This increases the amount of time an attacker can stay hidden within the
cluster. The question of whether making this solution run in real-time is possible or not is
debatable.

●

Not Analysing Traffic Patterns: The current solution is restricted to checking certain fields of
the IP packet including the IP addresses, port numbers and the length of the packet. Traits
such as the volume of traffic are not monitored in the proposed solution. Tsunoda & Keeni
(2012) explain that the variations of the volume of traffic packets can indicate if there is an
attacker within the cluster performing unauthorised actions.

• Limited to TCP and UDP Packets: The current proposed solution only inspects TCP and UDP packets.
The study conducted by Tsunoda & Keeni (2012), outlines how other protocol types such as ARP and NDP
can also aid in detecting intruders. ARP Spoofing is also a technique used by attackers and it cannot be
detected by this model since it involves analysing ARP requests.

• Reliance on Previous Attack Data: As this model uses supervised machine learning, it requires sample
data to learn the patterns produced by malicious attacks. The model will need to be updated with newer
malicious packet patterns in order to keep up with the newer attack methods. As seen in section 1.1,
attackers are finding newer ways to enter and remain inside the cluster for longer periods of time. In order
for this model to remain reliable, it needs to be updated with these new methods. These constant updates
will result in the redeployment of the model’s Pod. A delay to this deployment can result in the model being
inactive for a period of time creating a vulnerability.

5.4 Challenges

One of the main challenges faced during this research is the time restriction due to the current pandemic.
Understanding the internal architecture of Kubernetes Clusters was difficult as it is a complex system with
multiple components and methods. In addition, understanding the network architecture of the Minikube
Node was also challenging as monitoring the Node’s traffic was an aim of the study. Another major
challenge faced during this research, is the attempt in simulating an attack in order to gather some training
data for the model. The difficulty in capturing real malicious data was the inspiration behind training the
model using mocked malicious data created using traits that have been identified by Bykova et al. (2001).

Chapter 6

Conclusions & Future Work

This chapter concludes this dissertation by outlining the initial research questions introduced in section 1.3,
whether the questions have been answered and the future works that can be built on top of this research.

6.1 Outcomes

This section outlines the outcome of this research and whether it answers the research questions. In
section 1.3, two research questions were addressed that this research aimed to answer. These questions
are answered below:

●
What is an effective method to monitor network traffic in a Kubernetes Cluster?

In section 2.1, the internal network of Kubernetes is explained. It highlights the paths taken by
packets from one application to another within the Cluster. Existing solutions like Karode (2020)’s
sidecar container that monitors the network activity in each Pod consumes high processing power,
however, the proposed solution monitors the network within the Node. Monitoring network activity
within the Node consumes less power, unlike the sidecar container, and all internal and external
Pod activity can be monitored with one deployment. Capturing network traffic from within a Node
gives full insight into the network traffic with less power consumption.

●
How can monitoring network traffic contribute to intrusion detection within a Kubernetes Cluster?

As explained by Bykova et al., the packets within the network traffic possess many characteristics
that can be identified with that of an attacker’s packet. Once these characteristics have been
observed, the packet can be flagged as suspicious or malicious. As pointed out in section 1.1, the
attackers mainly sat inside the Cluster and moved around in order to use the resources to mine for
cryptocurrency. Monitoring the traffic allows malicious characteristics of a packet to be detected
within the network and alert the owner if anything needs to be changed.

6.2 Future Work

In terms of intrusion detection in a Kubernetes Cluster, the ideal and optimal solution would consist of a
model with all the strengths of the previous attempts of implementing this solution. The solution will work in
real-time and will also have a 100% success rate at identifying malicious packets. This ideal solution will
make sure the entire network is monitored and will analyse every packet and traffic flow pattern in order to
detect an intruder.

The solution proposed in this dissertation demonstrates a proof of concept that describes how intrusion
detection in a Kubernetes Cluster can be achieved through the use of traffic monitoring and machine
learning. It can also be developed further to get closer to the optimal solution. This section describes the

different ways this solution can be improved in the future or how similar solutions can be implemented with
a different design.

6.2.1 Real Time Monitoring

One of the biggest drawbacks of this model is that it does not monitor the network traffic in real time. As
demonstrated in the study regarding the use of sidecar containers (Karode (2020)), it is possible to
implement a solution that supports real time monitoring. The packets captured in real time can be passed
into the trained model and evaluated individually. Only suspicious packets will alert the administrator.

6.2.2 Additional IP Protocol Analysis

The current solution only analyses TCP and UDP packets within the captured traffic. This can be improved
in the future to include other protocols such as ARP and NDP. ARP Spoofing (Imperva (n.d.)) is an attack
that allows an attacker to obstruct communication links between two devices in the network. The model
can detect this attack if it is updated to analyse ARP requests.

6.2.3 Monitoring Traffic Volume

This research has examined many characteristics of malicious network traffic and some, such as the IP
addresses and Port numbers, are used to train the intrusion detection model. However, this model focuses
on the internals of an individual packet and not the traffic as a whole. The variation in the volume of traffic
is an important indicator of malicious activity and implementing a method for analysing the traffic variations
will benefit this solution and increase its reliability. A new model will have to be designed that takes into
account not only the individual packets but also the entire traffic flow.

6.2.4 Reduced Reliance on Training with Malicious Data

One of the challenges faced while implementing this solution is generating malicious packets that are
similar to real ones. The current model depends on the quality of malicious training data in order to learn its
traits and identify them in other network packets. Future work can overcome this by creating a model that
does not rely on training data with malicious characteristics but instead learns the patterns of normal data
and only suspects anything different to be malicious. This can also solve the need of frequent updates as
the model does not need updates on malicious traffic.

6.3 Closing Remark

In this day and age, the use of containerised applications is becoming popular and container management
platforms like Kubernetes are being used by many large organisations such as Capital One, Tesla and
Microsoft Azure (Taylor (2020)). The large popularity has allowed its attack surface to be exposed and
attackers target Kubernetes Clusters. Even though Kubernetes clusters have security protocols to handle
attacks, many have gained access through different methods. This dissertation focused on an efficient
method that can be used to detect intrusion within a Kubernetes Cluster. Through this study, it is evident
that Kubernetes is not fully secure and attackers can execute their processes within the cluster without
being detected. The existing solutions have their own drawbacks such as consuming a high level of
resources or being limited to examining a certain protocol type such as HTTPS instead of the entire
network traffic.

The proposed solution in this dissertation addresses the main problem of intrusion detection in Kubernetes
by capturing internal network traffic and analysing it with the use of a neural network model in order to
determine whether the packet is malicious or not. The solution can stand as a proof of concept for those
who wish to explore further into intrusion detection in Kubernetes. The solution can also be improved
further to create a solution closer to the ideal intrusion detection system desired by Kubernetes Clusters.

Bibliography

ATT&CK, M. (n.d.), ‘Mitre att&ck’.

URL: https://attack.mitre.org

Burns, B., Grant, B., Oppenheimer, D., Brewer, E. & Wilkes, J. (2016), ‘Borg, omega,

and kubernetes’, Queue 14, 70–93.

Bykova, M., Ostermann, S. & Tjaden, B. (2001), Detecting network intrusions via a statistical analysis of
network packet characteristics, in ‘Proceedings of the 33rd Southeastern Symposium on System Theory
(Cat. No.01EX460)’, pp. 309–314.

Datta, S. (2020), ‘Popular network protocols — baeldung on computer science’.

URL: https://www.baeldung.com/cs/popular-network-protocols die.net (n.d.), ‘apt-get(8) - linux man page’.

URL: https://linux.die.net/man/8/apt-get

Docker (2017), ‘Customize the docker0 bridge’.

URL: http://docs.docker.oeynet.com/engine/userguide/networking/default network/custom- docker0/

Docs, M. W. (2019), ‘An overview of http’.

URL: https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview Engine, M. (n.d.), ‘Network protocols’.

URL: https://www.manageengine.com/network-monitoring/network-protocols.html for Geeks, G. (2019),
‘Supervised and unsupervised learning - geeksforgeeks’.

URL: https://www.geeksforgeeks.org/supervised-unsupervised-learning/

Hall, E. (2019), ‘Internet core protocols: the definitive guide by eric hall’.

URL: https://www.oreilly.com/library/view/internet-core- protocols/1565925726/re04.html

Helm (2019), ‘Helm’.

URL: https://helm.sh/

IBM (2019), ‘Containerization-a-complete-guide’.

URL: https://www.ibm.com/cloud/learn/containerization IBM (2020), ‘What is docker?’.

URL: https://www.ibm.com/cloud/learn/docker Imperva (n.d.), ‘Arp spoofing’.

URL: https://www.imperva.com/learn/application-security/arp-spoofing/

Karode, S. P. (2020), Monitoring kubernetes clusters with dedicated sidecar network sniffing containers,
Master’s thesis, School of Computer Science and Statistics at Trinity College Dublin.

Kubernetes (2021a), ‘Install tools’.

URL: https://kubernetes.io/docs/tasks/tools/

Kubernetes (2021b), ‘Kubernetes’.

URL: https://github.com/kubernetes/kubernetes/

Kubernetes (2021c), ‘Kubernetes components’.

URL: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes (2021d), ‘Pods’.

URL: https://kubernetes.io/docs/concepts/workloads/pods/

Kubernetes (2021e), ‘Service’.

URL: https://kubernetes.io/docs/concepts/services-networking/service/

Kubernetes (2021f), ‘Using coredns for service discovery’.

URL: https://kubernetes.io/docs/tasks/administer-cluster/coredns/

Lens (n.d.), ‘Lens documentation’.

URL: https://docs.k8slens.dev/v4.2.2/

Loshin, P. & Cobb, M. (2019), ‘Secure shell (ssh)’.

URL: https://searchsecurity.techtarget.com/definition/Secure-Shell McCune, R. (n.d.), ‘A hacker’s guide to
kubernetes security’.

URL: https://techbeacon.com/enterprise-it/hackers-guide-kubernetes-security

Microsoft (2020), ‘Threat matrix for kubernetes’.

URL: https://www.microsoft.com/security/blog/2020/04/02/attack-matrix- kubernetes/

Nighania, K. (2019), ‘Various ways to evaluate a machine learning models performance’.

URL: https://towardsdatascience.com/various-ways-to-evaluate-a-machine-learning-
models-performance-230449055f15

NS1 (2018), ‘Dns protocol explained’.

URL: https://ns1.com/resources/dns-protocol

Palmer, M. (n.d.), ‘Kubernetes networking guide for beginners’.

URL: https://matthewpalmer.net/kubernetes-app-developer/articles/kubernetes-
networking-guide-beginners.html

Panagiotis, M. (2020), Attack methods and defenses on kubernetes, Master’s thesis, Department of Digital
Systems at University of Piraeus.

URL: https://dione.lib.unipi.gr/xmlui/bitstream/handle/unipi/12888/Mytilinakis mte1822.pdf

Pant, A. (2019), ‘Introduction to machine learning for beginners’.

URL: https://towardsdatascience.com/introduction-to-machine-learning-for- beginners-eed6024fdb08

ReviverSoft (n.d.), ‘Pcap file extension - what is .pcap and how to open?’.

URL: https://www.reviversoft.com/en/file-extensions/pcap

Scikit, L. (n.d.a), ‘1.17. neural network models (supervised) — scikit-learn 0.23.1 documentation’.

URL: https://scikit-learn.org/stable/modules/neural networks supervised.html

Scikit, L. (n.d.b), ‘Getting started — scikit-learn 0.23.2 documentation’. URL:
https://scikit-learn.org/stable/gettingstarted.html

Shah, J. (2018), Detection of malicious encrypted web traffic using machine learning, Master’s thesis,
Department of Electrical and Computer Engineering at University of Victoria.

URL: http://dspace.library.uvic.ca/bitstream/handle/1828/10313/Shah Jay MEng 2018.pdf

Sharma, S. (2017), ‘Activation functions in neural networks’.

URL: https://towardsdatascience.com/activation-functions-neural-networks- 1cbd9f8d91d6

Singer, G. (2020), ‘Threat alert: Kinsing malware attacks targeting container environments’.

URL: https://blog.aquasec.com/threat-alert-kinsing-malware-container-vulnerability

Song, D. (2019), ‘Dpkt — dpkt 1.9.2 documentation’.

URL: https://dpkt.readthedocs.io/en/latest/

Sookocheff, K. (2018), ‘A guide to the kubernetes networking model’.

URL: https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking- model/#pod-to-pod

Taylor, T. (2020), ‘5 kubernetes security incidents and what we can learn from them’.

URL: https://techgenix.com/5-kubernetes-security-incidents/ Tcpdump (n.d.), ‘Tcpdump & libpcap’.

URL: https://www.tcpdump.org/index.html

Tsunoda, H. & Keeni, G. M. (2012), Security by simple network traffic monitoring, in ‘Proceedings of the
Fifth International Conference on Security of Information and Networks’, SIN ’12, Association for
Computing Machinery, New York, NY, USA, p. 201–204.

URL: https://doi-org.elib.tcd.ie/10.1145/2388576.2388608

Uniqtech (2018), ‘Multilayer perceptron (mlp) vs convolutional neural network in deep learning’.

URL: https://medium.com/data-science-bootcamp/multilayer-perceptron-mlp-vs-
convolutional-neural-network-in-deep-learning-c890f487a8f1

V K, A. (2019), ‘What is deep learning: Definition, framework, and neural networks’.

URL: https://www.toolbox.com/tech/artificial-intelligence/tech-101/what-is-deep-
learning-definition-framework-and-neural-networks/

Wireshark (2017), ‘Wireshark’.

URL: https://www.wireshark.org Wordpress (2015), ‘Wordpress.com’.

URL: https://wordpress.com/create

Yamashita, R., Nishio, M., Do, R. K. G. & Togashi, K. (2018), ‘Convolutional neural

networks: an overview and application in radiology’, Insights into Imaging 9, 611–629.

Zeek (n.d.), ‘The zeek network security monitor’.

URL: https://zeek.org

Appendix A1

A1.1 Python Script for Creating a Dataset from a pcap File

import dpkt
from dpkt.compat import compat_ord

import socket
import random

class TrafficReader():

def __init__(self):
self.srcIP_List = []
self.dstIP_List = []
self.len_List = []

self.srcPort_List = []
self.dstPort_List = []
self.malPacketCount = 5000
self.malStartIndx = 0

referenced from https://dpkt.readthedocs.io/en/latest/ →
print_packets.html

with open('capture4.pcap', 'rb') as f: pcap = dpkt.pcap.Reader(f)

for timestamp, packets in pcap:
eth = dpkt.ethernet.Ethernet(packets)

if not isinstance(eth.data, dpkt.ip.IP): print('Non␣IP␣Packet␣type␣not␣supported␣%s\n'
% eth.

→ data.__class__.__name__) continue

Extract the packet form the Ethernet frame

ip = eth.data iptype = 'None'

Extracts the Protocol type of packet for future use and → the port numbers associated
with the packet.

Referenced from https://stackoverflow.com/questions

→ /55853914/need-help-outputting-the-source-and-

→ destination-port-number-to-the-user-reading if ip.p == dpkt.ip.IP_PROTO_TCP:

TCP = ip.data iptype = 'TCP'

srcport = TCP.sport

dstport = TCP.dport
elif ip.p == dpkt.ip.IP_PROTO_UDP:

UDP = ip.data

iptype = 'UDP' srcport = UDP.sport dstport = UDP.dport

if ip.p == dpkt.dns.DNS:

print("DNS")

self.srcIP_List.append(self.inet_to_str(ip.src))
self.dstIP_List.append(self.inet_to_str(ip.dst))
self.len_List.append(ip.len)
self.srcPort_List.append(srcport)
self.dstPort_List.append(dstport)

Function is taken from https://dpkt.readthedocs.io/en/latest/ →
_modules/examples/print_packets.html#mac_addr

def mac_addr(self, address):

"""Convert a MAC address to a readable/printable string
Args:

address (str): a MAC address in hex form (e.g. '\x01\x02\x03\ → x04\x05\x06')

Returns:
str: Printable/readable MAC address

"""

return ':'.join('%02x' % compat_ord(b) for b in address)

Function is taken from https://dpkt.readthedocs.io/en/latest/ →
_modules/examples/print_packets.html#inet_to_str

def inet_to_str(self, inet):

"""Convert inet object to a string

Args:
inet (inet struct): inet network address

Returns:
str: Printable/readable IP address

"""

First try ipv4 and then ipv6 try:

return socket.inet_ntop(socket.AF_INET, inet)

except ValueError:
return socket.inet_ntop(socket.AF_INET6, inet)

Returns the index where the malicious data will start

def getMid(self):
length = len(self.dstIP_List)
mid = int(length * 0.8)
return mid

Returns a dataset object containing normal and malicious data

def getTrafficObj(self):
self.addFailData()

data = { 'Src_IP':self.srcIP_List, 'Dst_IP':self.dstIP_List

'Length':self.len_List, 'SrcPort':self.srcPort_List,

'DstPort':self.dstPort_List,

} return data

def getNormalPacketCount(self):

return len(self.len_List) - self.malPacketCount

def getMaliciousPacketCount(self):

return self.malPacketCount

def getMalDataIndex(self):
return self.malStartIndx

Create Malicious Packets and Add to dataset

def addFailData(self):
mid = self.getMid()
self.malStartIndx = mid

for x in range(self.malPacketCount):
index = mid + x

\# Malicious characteristics chosen for the current packet → being
created

port = bool(random.getrandbits(1))
ip = bool(random.getrandbits(1))
size = bool(random.getrandbits(1))

if (port == False and ip == False and size == False) :

size = True

Size is malicious

if size == True:

Small range or Large range

maliciousRange = random.getrandbits(1)

malSize = 0

length is too small

if maliciousRange == 0:
malSize = random.randint(0, 50)

length is too small

elif maliciousRange == 1:
malSize = random.randint(8000, 65535)

self.len_List.insert(index,malSize)

Size not malicious

else :
self.len_List.insert(index,random.randint(51, 7999))

Port number is malicious

if port == True:
maliciousPortChoice = random.randint(0, 2)

\# Port number is 0

if maliciousPortChoice == 0:

portType = random.randint(0, 1)
if portType == 0:

self.dstPort_List.insert(index,0)

self.srcPort_List.insert(index,72)
elif portType == 1:

self.dstPort_List.insert(index,443)
self.srcPort_List.insert(index,0)

Source port number is 22

if maliciousPortChoice == 1:
self.dstPort_List.insert(index,22)
self.srcPort_List.insert(index,8000)

Source and Destination port numbers are the same

if maliciousPortChoice ==

self.dstPort_List.insert(index,39066)
self.srcPort_List.insert(index,39066)

Port number is not malicious

else :
self.srcPort_List.insert(index,39066)
self.dstPort_List.insert(index,8443)

IP address is malicious. It is unfamiliar to the network

if ip == True: self.srcIP_List.insert(index,'192.168.0.110')

self.dstIP_List.insert(index,'192.168.49.2')

IP address is not malicious

else : self.srcIP_List.insert(index,'172.17.0.2')

self.dstIP_List.insert(index,'172.17.0.1')

Listing A1.1: This Python class creates a dataset from a pcap file

A1.2 Python Script for Creating an Intrusion Detection ML Model

from sklearn.neural_network import MLPClassifier

from sklearn.preprocessing import LabelBinarizer, LabelEncoder
from sklearn.model_selection import train_test_split
from tabulate import tabulate
import pandas as pd

import trafficReader

import numpy as np

This class is based on an example from https://www.pluralsight.com/ →
guides/machine-learning-neural-networks-scikit-learn

Intialise data of lists.

tr = trafficReader.TrafficReader()
data = tr.getTrafficObj()

Create DataFrame

df = pd.DataFrame(data)
table_df = pd.DataFrame(data)

Create labels to replace string values
Referenced from https://stackoverflow.com/questions/47312695/python-

→ sklearn-value-error-could-not-convert-string-to-float str_columns =
df.columns[df.columns.str.contains('(?:Protocol|IP)')]

labels = {c:LabelEncoder() for c in str_columns}

Replace values in the dataset with their respective labels

for col, label in labels.items():
df[col] = labels[col].fit_transform(df[col])

Normalise all the values in the dataset

target_column = ['1']

col_label = list(set(list(df.columns))-set(target_column))

df[col_label] = df[col_label]/df[col_label].max()

Create an array of expected results for the dataset

y = listofzeros = [0] * tr.getNormalPacketCount()
length = len(listofzeros)
mid = tr.malStartIndx

for x in range(tr.getMaliciousPacketCount()):
index = mid + x
y.insert(index, 1)

Divide the dataset by 8:2 to obtain the training and testing datasets → respectively.

cutoff = int(tr.getMalDataIndex() + (tr.malPacketCount * 0.8))
train_df = df.iloc[:cutoff]

test_df = df.iloc[cutoff:]

train_results = y[:cutoff]
test_results = y[cutoff:]

Initialise and train the MLP using the training dataset

clfr = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, → 2),
random_state=1, max_iter=400)

clfr.fit(train_df, train_results)

Test the trained model

ans = clfr.predict(test_df)

Draw Table to display results

test_table_df = table_df.iloc[cutoff:]
malCnt = 0
normCnt = 0
packetVerdict = []

packetAnalysis = []
for x in range(len(ans)):

val = ans[x]

CHAPTER 8

CONCLUSION

In this paper we present Machine learning integration with Devops CI/CD principles to improve

the performance and business values .we present use case of Machine Learning methodology to solve

the industry problem CRISP CM is one of the best machine learning methodology used in Data science

projects. We found that manual machine learning needs a lot of resources and manpower and it lags

the business organization. Automated machine learning with devops improves a lot of things in today’s

data science industry it produces great results in business, marketing and also it produce less waste as

compared to manual machine learning, It makes deployment and integration easier. Machine learning

model lifecycle is different from actual software development .it requires a lot of things data collection

data cleaning, feature selection, setup environment after deployment monitoring and maintenance

takes place ,Machine learning alone can’t do these things effectively, Devops provide continuous

integration and continuous deployment principles for these type of problems. development and

operational teams are working in many areas like manufacturing industry, marketing industry

,healthcare industry but they are not achieve greater efficiency because they are not integrate machine

learning with devops continuous development. This study shows that integration of machine learning

with devops (MLOPs) In this case both development and operational team work together to optimize

the process and produce great results in data science industry

REFERENCES

[1] A research paper on Application of Devops in the improvement machine learning process

[2]A research paper on Applying DevOps Practices of Continuous Automation for Machine Learning

[3] Beginning MLOps with MLFlow Deploy Models in AWS SageMaker, Google Cloud, and Microsoft

Azure by Sridhar AllaSuman and Kalyan Adar

[4] Data Science Solutions on AzureTools and Techniques Using Databricks and MLOps by Julian Soh

and Priyanshi Singh

[5] Master’s thesis Master’s Programme in Data Science Designing an open-source cloud-native MLOps

pipeline by Sasu Mäkinen March 12, 2021

[6]https://cloud.google.com/solutions/machine-learning/mlops-continuous-delivery-and-automationpipelin

es-in-machine-learning

[7]https://www.infoworld.com/article/3271126/what-is-cicd-continuous-integration-and-continuousdelivery

-explained.html

[8] https://www.datascience-pm.com/crisp-dm-2/

[9] https://en.wikipedia.org/wiki/DevOps

[10] https://www.docker.com/resources/what-container

[11] https://www.redhat.com/en/topics/devops/what-cicd-pipeline

[12] https://www.jenkins.io/doc/

https://www.datascience-pm.com/crisp-dm-2/

