
                                               
 

                     SIGN LANGUAGE TRANSLATOR 

                          

                             A Project Report of Capstone Project – 2 

 

            Submitted by 

 

        ASHISH KUMAR SAH 

                                             (1613101194) 

 

                          in partial fulfillment for the award of the degree 

                                                               of 

 

                         BACHELOR OF TECHNOLOGY 

                                                 IN 

                     COMPUTER SCIENCE AND ENGINEERING 

              

               SCHOOL OF COMPUTING SCIENCE AND ENGINEERING 

                                             Under the Supervision of 

                         Mr. A.Arul Prakash 

                          Assistant Professor 

                           APRIL / MAY- 2020 



 

 

                                               

 

                                        

 SCHOOL OF COMPUTING AND SCIENCE AND 

 

                               BONAFIDE CERTIFICATE
 
 
 
 

Certified that this project report 

bonafide work of “ASHISH KUMAR SAH

project work under my supervision.

 
 
 
 
 
 
 
 
 

SIGNATURE OF HEAD
 
Dr. MUNISH SHABARWAL, 
PhD (Management), PhD (CS) 
Professor & Dean,  
School of Computing Science & 
Engineering 
 

                               

   

OL OF COMPUTING AND SCIENCE AND 
ENGINEERING 

BONAFIDE CERTIFICATE 

ified that this project report “SIGN LANGUAGE TRANSLATOR”

ASHISH KUMAR SAH (1613101194)” who carried out the 

project work under my supervision. 

SIGNATURE OF HEAD 

Dr. MUNISH SHABARWAL, 
PhD (Management), PhD (CS) 

School of Computing Science & 

 
 
 
 
 
 
 
 
 
SIGNATURE OF SUPERVISOR
 
Mr. A. ARUL PRAKASH 
Assistant Professor 
School of Computing Science & 
Engineering 

OL OF COMPUTING AND SCIENCE AND 

“SIGN LANGUAGE TRANSLATOR” the 

who carried out the 

SIGNATURE OF SUPERVISOR 

ARUL PRAKASH 
Professor 

School of Computing Science & 



 
  TABLE OF CONTENTS  

CHAPTER NO.   TITLE 
PAGE 
NO. 

 ABSTRACT  iii 

 LIST OF TABLE iv 

 LIST OF FIGURES v 

 LIST OF SYMBOLS vi 

1. INTRODUCTION  

 1.1 Overall Description 7 

 1.2 Purpose                     7 

   1.3      Motivation and Scope  8 
 
2. LITERATURE REVIEW  

  2.1  (i) Data-glove approach                     9 

  2.2 (ii) Visual-based approach                      10               
 
3. PROPOSED MODEL  

  3.1  (i) Data Preprocessing                       11 

  
3.2 
 

(ii) Trainning                                                       11                      
 

                          3.3  (iii) Classify Gesture                           
11                

4.        EXISTING SYSTEM  

       4.1    SignAloud 12 
       4.2   ProDeaf                     13 
       
5. 
 
7. 

       IMPLEMENTATION(PROCEDURE) 
 
       RESULT 

14 
 

19 
 
8. 
 

       FUTURE ENHANCEMENT 
   

                      24 
 

9.                                         REFERENCE                                      25                                                  

 
 
 



 
 

LIST OF TABLES: 

TABLE TITLE         TABLE NO. 

Model Training Report    …………………….………………. 1 

Classification Report    …………………….………………. 2 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



LISTS OF FIGURES: 

FIGURE TITLE         FIGURE NO. 

American Sign Language………………...……………………………Fig 1 

Data glove with flex sensors.…………………………………………..Fig 2 

Image acquisition……….……………………………………………...Fig 3 

Block Diagram of Software.……………………………………………Fig 4  

Classification report about the model..…………………………………Fig 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 
 

Every normal human being sees, listens, and reacts to surrounding. There are 

some unlucky individuals who does not have this important blessing. Such 

individuals, mainly deaf and dumb, they depend on communication via sign 

language to interact with others. However, communication with ordinary 

individuals is a major impairment for them since not every typical people 

comprehend their sign language. Furthermore, this will cause a problem for the 

deaf and dumb communities to interact with others, particularly when they 

attempting to involve into educational, social and work environments. In this 

project, the objectives are to develop a sign language translation system in order 

to assist the hearing or speech impaired people to communicate with normal 

people, and also to test the accuracy of the system in interpreting the sign 

language. For the methodology, several researches have been done with a specific 

end goal to choose the best method in gesture recognition. The result for the this 

experiment shows that total average accuracy for translating alphabets is 95%, 

numbers is 93.33% and gestures is 78.33%. For the average accuracy for 

translating all type of gestures is 89%.      

The objectives are to develop a sign language translation system in order to assist 

the hearing or speech impaired people to communicate with normal people and to 

test the accuracy of the system in interpreting the sign language . 

The main objective is to translate sign language to text/speech. The framework 

provides a helping-hand for speech-impaired to communicate with the rest of the 

world using sign language. This leads to the elimination of the middle person 

who generally acts as a medium of translation. This would contain a user-friendly 

environment for the user by providing speech/text output for a sign gesture input. 

 

 

                                  



                                  

INTRODUCTION 

 

(i) Overall description  

 

The mute/deaf individuals have a communication problem dealing with other 

people. It is hard for such individuals to express what they want to say since sign 

language is not understandable by everyone. The objective of this project is to 

develop a Sign Language Translator software that translates the sign language 

into text that can be read by anyone. This system is called Sign Language 

Translator and Gesture Recognition. We use OpenCV and Machine Learning to 

develop a python program that captures the gesture of the hand and interprets 

these gestures into readable text. This text can be sent to a smart phone or shown 

in an embedded LCD display/monitor screen. The experimental results that 

gestures captured is trained by a number of sample gif/picture etc , which 

measure the positions and the orientation of the fingers. The current version of the 

system is able to interpret letters with a recognition accuracy of 96%. 

 

(ii) Purpose  

 

The main objective of this project is to design a system that can assists the 

impaired people to communicate with normal people. This project also aims to 

meet the following objectives: 

        i. To develop gesture recognizing system that can recognize sign gesture of  

Sign Language and translate it into text. 

     ii. To test the accuracy of the system. 

 

 

 

 



(iii) Motivation and Scope 

 

Each ordinary individual sees, tunes in, and responds to encompassing. 

Notwithstanding, there are some less blessed individuals who are denied of this 

important blessing. Such individuals, mainly deaf and dumb, they depend on sign 

language to communicate with others. Statistic shows in India, there are about 

120 million people who have disabilities.  

                                              

 

             The scope for this project are as followed: 

 i.        Sign language recognition system for deaf and mute people. 

 ii.       The sign language used is Indian Sign Language.  

iii.       This project implement a python program that use OpenCV and Machine 

Learning. 

 

 

 

 

 

 



LITERATURE SURVEY 

 

 

 

This section reviews the research on the important elements in developing the 

sign language recognition device. The first research study focuses on gesture 

recognition method for detecting the movements of the hand. The second 

research study discusses the hardware that will be used in this project. 

 

     Gesture recognition method 

 

Nowadays, automatic sign language translation systems generally use two 

approaches, which are data-glove and visual-based approaches. However, 

new hand gesture recognition method has been introduced, called virtual 

button. This section will clarify the detail about all methods of gesture 

recognizing and the comparison between these methods. 

  

 (i) Data-glove approach 

  

The data-glove approach utilize a unique assembled electronic glove, which 

has in- fabricated sensors that utilized to distinguish the hand stance. Most 

commercial sign language translation systems use the data-glove method, as it 

simple to acquire data on the bending of finger and 3D orientation of the hand 

using gloves. The framework require less computational force, and 

continuous interpretation is much simpler to accomplish.  

 

 

 

 

 



The data glove is outlined with ten flex sensors, two on every finger. The flex 

sensors work as variable resistance sensor that change resistance as indicated 

by the sensor's flexing. These sensors can recognize the bending point of 

every joint of the fingers and send the information to microcontroller. It is 

mounted in the outer layer of the data glove, from the association joints of 

fingers and palm to fingertips. 

 

 

 

 

Figure : Data glove with flex sensors. 

 

 

  

  

  

  

  

  



 (ii) Visual-based approach 

 

With late progression in PC and data innovation, there has been an expanded 

regard for visual-based methodology. Images of the signer is captured by a 

camera and video processing is done to perform acknowledgment of the sign 

language. Contrasted with data glove approach, the fundamental advantage of 

visual-based methodology is the adaptability of the framework. 

 The recognition of facial expression and head movements additionally can be 

incorporated to the framework and perform lip-perusing. This system can be 

separated into two strategy, which are utilization hand crafted shading gloves 

and in light of skin-colour recognition. 

For the specially crafted glove, the signer is furnished with colour-coded 

gloves. The colour will give the extraction of information from the images of 

the signer through colour segmentation. These gloves are essentially normal 

pair of glove with particular shading on every fingertip and palm. Some way 

or another, these gloves are less expensive contrasted with electronic data 

gloves. This system is use insignificant equipment by utilizing just essential 

webcam and basic glove. 



Webcam is used to acquire images from the signer in type of still images and 

video streams in RGB (red-green-blue) shading. 

For the recognition based on skin-colour, the framework require just a camera 

to catch the pictures of the signer for the normal collaboration in the middle of 

human and computer and no additional gadgets are needed. It is turn out to be 

more common and helpful for constant applications. This system utilize an 

uncovered hand to concentrate information required for recognition, and it is 

simple, and the can user directly communicate with the system. In order to 

track the position of hand, the skin colour region will be fragmented utilizing 

colour threshold technique, then the region of interest can be determined.  

 

 

 

 

 

Figure: Image acquisition. 



                                      PROPOSED MODEL 

 

The project will be structured into 3 distinct functional blocks, Data Processing, 

Training, Classify Gesture. The block diagram is simplified in detail to abstract 

some of the minutiae: 

 • Data Processing: The load data.py script contains functions to load the Raw 

Image Data and save the image data as numpy arrays into file storage. The process 

data.py script will load the image data from data.npy and preprocess the image by 

resizing/rescaling the image, and applying filters and ZCA whitening to enhance 

features. During training the processed image data was split into training, 

validation, and testing data and written to storage. Training also involves a load 

dataset.py script that loads the relevant data split into a Dataset class. For use of the 

trained model in classifying gestures, an individual image is loaded and processed 

from the filesystem. 

• Training: The training loop for the model is contained in train model.py. The 

model is trained with hyperparameters obtained from a config file that lists the 

learning rate, batch size, image filtering, and number of epochs. The configuration 

used to train the model is saved along with the model architecture for future 

evaluation and tweaking for improved results. Within the training loop, the training 

and validation datasets are loaded as Dataloaders and the model is trained using 

Adam Optimizer with Cross Entropy Loss. The model is evaluated every epoch on 

the validation set and the model with best validation accuracy is saved to storage 

for further evaluation and use. Upon finishing training, the training and validation 

error and loss is saved to the disk, along with a plot of error and loss over training. 

 

 

 



 

 • Classify Gesture: After a model has been trained, it can be used to classify a 

new ASL gesture that is available as a file on the filesystem. The user inputs the 

filepath of the gesture image and the test data.py script will pass the filepath to 

process data.py to load and preprocess the file the same way as the model has been 

trained. 

 

                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



EXISTING  SYSTEM 

 
The ability to track a person’s movements and determine what gestures they may 

be performing can be achieved through various tools. There were several attempts 

to resolve this problem and there were a large amount of research done in 

image/video based gesture recognition consequently there was some variation 

within the tools and environments used between implementations.  

SignAloud 

SignAloud is a technology that incorporates a pair of gloves made by a group of 

students at University of Washington that transliterate American Sign Language 

(ASL) into English. In February 2015 Thomas Pryor, a hearing student from the 

University of Washington, created the first prototype for this device at Hack 

Arizona, a hackathon at the University of Arizona. Pryor continued to develop the 

invention and in October 2015, Pryor brought Navid Azodi onto the SignAloud 

project for marketing and help with public relations. Azodi has a rich background 

and involvement in business administration, while Pryor has a wealth of 

experience in engineering. In May 2016, the duo told NPR that they are working 

more closely with people who use ASL so that they can better understand their 

audience and tailor their product to the needs of these people rather than the 

assumed needs. However, no further versions have been released since then. The 

invention was one of seven to win the Lemelson-MIT Student Prize, which seeks 

to award and applaud young inventors. Their invention fell under the "Use it!" 

category of the award which includes technological advances to existing products. 

They were awarded $10,000.  

The gloves have sensors that track the users hand movements and then send the 

data to a computer system via Bluetooth. The computer system analyzes the data 

and matches it to English words, which are then spoken aloud by a digital voice. 



The gloves do not have capability for written English input to glove movement 

output or the ability to hear language and then sign it to a deaf person, which 

means they do not provide reciprocal communication. The device also does not 

incorporate facial expressions and other nonmanual markers of sign languages, 

which may alter the actual interpretation from ASL.  

 

 

 

ProDeaf 

ProDeaf (WebLibras) is a computer software that can translate both text and voice 

into Portuguese Libras (Portuguese Sign Language) "with the goal of improving 

communication between the deaf and hearing."[14] There is currently a beta edition 

in production for American Sign Language as well. The original team began the 

project in 2010 with a combination of experts including linguists, designers, 

programmers, and translators, both hearing and deaf. The team originated 

at Federal University of Pernambuco (UFPE) from a group of students involved in 

a computer science project. The group had a deaf team member who had difficulty 

communicating with the rest of the group. In order to complete the project and help 

the teammate communicate, the group created Proativa Soluções and have been 

moving forward ever since. The current beta version in American Sign Language is 

very limited. For example, there is a dictionary section and the only word under the 

letter 'j' is 'jump'. The last update of the app was in June 2016, but ProDeaf has 

been featured in over 400 stories across the country's most popular media outlets.  

The application cannot read sign language and turn it into word or text, so it only 

serves as a one-way communication. Additionally, the user cannot sign to the app 

and receive an English translation in any form, as English is still in the beta 

edition. 



                                         IMPLEMENTATION 

 

                                                       

 

 

 

 

 

 

 

 

 

Figure 3 : Block Digram of Software 



 

A.  Image capturing through webcam  

Client is made to produce motions before the camera, utilizing exclusively a 
webcam as portrayed in the paper by Rautauray and Agarwal and handed-off to the 
program for additional preparing. The camera should be fixed, and brightening 
gradually changing. Ongoing imperatives are being forced for a cautious plan of 
the preparing framework. 

 

 

 

 

B. Segmentation  

Separation of external and unnecessary factors from the image captured forms the 
crux of this section. Any sort of background disturbance or components of the 
image not required for processing are to be separated from the image of the 
gesture. 

The unnecessary information is first removed. In particular, a background 
suppression procedure has been performed in the HSV colour space, in which the 
scene can be modelled discarding illumination variations .Thus focusing the 
attention on areas corresponding to human skin colour. 

 

C. Translation Process  

To beat the problem identified with equipment sensors in the Data glove 
innovation as proposed by Liang and Ouhyoung, I utilize the picture produced by 
the webcam. When the picture is taken from the foundation and other unimportant 
issue; the forms in the motion are estimated by the shape framed by the hand [5]. 
The database built contains all the endorsed and acknowledged motions by the 
ASL show. The form concluded from the picture is coordinated to the significant 
sign in the database. 

1.  Creating a gesture: 

1. First set your hand histogram. To do so type the order given underneath and 
adhere to the guidelines beneath. Run file set_hand_hist.py 

 

 



 

• A windows "Set hand histogram" will show up.  

• "Set hand histogram" will have 50 squares (5x10).  

 

• Put your submit those squares. Ensure your hand covers all the squares.  

 

• Press 'c'. 1 other window will show up "Thresh".  

 

• On squeezing 'c' just white patches relating to the pieces of the picture which 
has your skin shading ought to show up on the "Thresh" window.  

 

• Make sure all the squares are covered by your hand.  

 

• In case you are not fruitful at that point move your hand a little bit and       
press 'c' once more. Repeat this until you get a decent histogram.  

 

• After you get a decent histogram press 's' to save the histogram. 

 

 

 



 

2. I as of now have included 44 (0-43) gestures. To make your own signals or 
supplant my motions do the accompanying. It is finished by the order given 
beneath. On beginning executing this program, you should enter the gesture 
number and motion name/content. At that point an OpenCV window called 
"Capturing gestures" which will show up. In the webcam feed you will see a green 
window (inside which you should do your gesture) and a counter that checks the 
number of pictures stored. Run file create_gestures.py to create new gesture for the 
framework. 

 

3. Press 'c' when you are prepared with your gesture. Catching gestures will  start 
following a couple of moments. Move your hand a tad to a great extent. You can 
pause catching by squeezing 'c' and resume it by squeezing 'c'. Catching resumes 
following a couple of second. After the counter arrives at 1200 the window will 
close naturally.  

 

4. Subsequent to capturing all the gestures you can flip the pictures. For flipping 
the images run the flip_images.py. 

 

5. When you are finished including new gestures run the load_images.py document 
once. You don't have to run this document again until and except if you include 
another gesture. 

2.Displaying all gestures 

To see all the gestures that are stored in 'gestures/' folder run this file 
display_all_gestures.py. 

 

 



3.Training the model 

Training can be done with either Tensorflow or Keras. I trained my model 
using Keras . To train model run file cnn_keras.py. 

You do not need to retrain your model every time. In case you added or removed a 
gesture then you need to retrain it. 

4. Testing the model 

              For recognition to start run the recognize_gesture.py file. 

   You will have a small green box inside which you need to do you gestures 

    And see the output of  your hand gesture in the console output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



                                     RESULTS 
 
Model Training Report 
 
(8800, 44) 
Model: "sequential_2" 
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
conv2d_4 (Conv2D)            (None, 49, 49, 16)        80         
_________________________________________________________________ 
max_pooling2d_4 (MaxPooling2 (None, 25, 25, 16)        0          
_________________________________________________________________ 
conv2d_5 (Conv2D)            (None, 23, 23, 32)        4640       
_________________________________________________________________ 
max_pooling2d_5 (MaxPooling2 (None, 8, 8, 32)          0          
_________________________________________________________________ 
conv2d_6 (Conv2D)            (None, 4, 4, 64)          51264      
_________________________________________________________________ 
max_pooling2d_6 (MaxPooling2 (None, 1, 1, 64)          0          
_________________________________________________________________ 
flatten_2 (Flatten)          (None, 64)                0          
_________________________________________________________________ 
dense_3 (Dense)              (None, 128)               8320       
_________________________________________________________________ 
dropout_2 (Dropout)          (None, 128)               0          
_________________________________________________________________ 
dense_4 (Dense)              (None, 44)                5676       
================================================================= 
Total params: 69,980 
Trainable params: 69,980 
Non-trainable params: 0 
_________________________________________________________________ 
Train on 88000 samples, validate on 8800 samples 
Epoch 1/20 
88000/88000 [==============================] - 129s 1ms/step - loss: 3.0812 - accuracy: 
0.2897 - val_loss: 0.4699 - val_accuracy: 0.9053 
Epoch 2/20 
88000/88000 [==============================] - 141s 2ms/step - loss: 0.3587 - accuracy: 
0.8929 - val_loss: 0.0470 - val_accuracy: 0.9875 
Epoch 3/20 
88000/88000 [==============================] - 154s 2ms/step - loss: 0.1123 - accuracy: 
0.9655 - val_loss: 0.0185 - val_accuracy: 0.9953 
Epoch 4/20 
88000/88000 [==============================] - 131s 1ms/step - loss: 0.0636 - accuracy: 
0.9810 - val_loss: 0.0103 - val_accuracy: 0.9974 
Epoch 5/20 
88000/88000 [==============================] - 128s 1ms/step - loss: 0.0454 - accuracy: 
0.9863 - val_loss: 0.0078 - val_accuracy: 0.9977 



Epoch 6/20 
88000/88000 [==============================] - 122s 1ms/step - loss: 0.0337 - accuracy: 
0.9896 - val_loss: 0.0046 - val_accuracy: 0.9991 
Epoch 7/20 
88000/88000 [==============================] - 140s 2ms/step - loss: 0.0262 - accuracy: 
0.9922 - val_loss: 0.0043 - val_accuracy: 0.9994 
Epoch 8/20 
88000/88000 [==============================] - 129s 1ms/step - loss: 0.0219 - accuracy: 
0.9933 - val_loss: 0.0033 - val_accuracy: 0.9992 
 
Epoch 9/20 
88000/88000 [==============================] - 138s 2ms/step - loss: 0.0181 - accuracy: 
0.9947 - val_loss: 0.0026 - val_accuracy: 0.9995 
Epoch 10/20 
88000/88000 [==============================] - 140s 2ms/step - loss: 0.0155 - accuracy: 
0.9953 - val_loss: 0.0025 - val_accuracy: 0.9994 
Epoch 11/20 
88000/88000 [==============================] - 138s 2ms/step - loss: 0.0144 - accuracy: 
0.9954 - val_loss: 0.0020 - val_accuracy: 0.9995 
Epoch 12/20 
88000/88000 [==============================] - 132s 1ms/step - loss: 0.0127 - accuracy: 
0.9962 - val_loss: 0.0020 - val_accuracy: 0.9994 
Epoch 13/20 
88000/88000 [==============================] - 132s 2ms/step - loss: 0.0120 - accuracy: 
0.9967 - val_loss: 0.0019 - val_accuracy: 0.9995 
Epoch 14/20 
88000/88000 [==============================] - 141s 2ms/step - loss: 0.0103 - accuracy: 
0.9969 - val_loss: 0.0017 - val_accuracy: 0.9995 
Epoch 15/20 
88000/88000 [==============================] - 128s 1ms/step - loss: 0.0092 - accuracy: 
0.9972 - val_loss: 0.0013 - val_accuracy: 0.9997 
Epoch 16/20 
88000/88000 [==============================] - 124s 1ms/step - loss: 0.0092 - accuracy: 
0.9973 - val_loss: 0.0015 - val_accuracy: 0.9997 
Epoch 17/20 
88000/88000 [==============================] - 133s 2ms/step - loss: 0.0076 - accuracy: 
0.9977 - val_loss: 0.0011 - val_accuracy: 0.9998 
Epoch 18/20 
88000/88000 [==============================] - 130s 1ms/step - loss: 0.0073 - accuracy: 
0.9979 - val_loss: 0.0013 - val_accuracy: 0.9998 
Epoch 19/20 
88000/88000 [==============================] - 128s 1ms/step - loss: 0.0070 - accuracy: 
0.9979 - val_loss: 9.8177e-04 - val_accuracy: 0.9999 
Epoch 20/20 
88000/88000 [==============================] - 127s 1ms/step - loss: 0.0060 - accuracy: 
0.9983 - val_loss: 0.0011 - val_accuracy: 0.9997 



Classification reports about the model

we get the confusion matrix, f scores, precision 
model. 
Time taken to predict 8800 test images is 6s
Average prediction time: 0.000742s
 
 
 
 
 
 
 
 

about the model 

get the confusion matrix, f scores, precision and recall for the predictions by the 

Time taken to predict 8800 test images is 6s 
Average prediction time: 0.000742s 

 
and recall for the predictions by the 



Classification Report 
--------------------------- 
              precision    recall  f1-score   support 
 
           0       1.00      1.00      1.00       208 
           1       1.00      1.00      1.00       216 
           2       1.00      1.00      1.00       197 
           3       1.00      1.00      1.00       193 
           4       0.99      1.00      1.00       195 
           5       1.00      1.00      1.00       206 
           6       1.00      1.00      1.00       207 
           7       1.00      1.00      1.00       207 
           8       1.00      1.00      1.00       207 
           9       1.00      1.00      1.00       199 
          10       1.00      1.00      1.00       192 
          11       1.00      1.00      1.00       191 
          12       1.00      0.99      0.99       200 
          13       1.00      1.00      1.00       208 
          14       1.00      1.00      1.00       204 
          15       1.00      1.00      1.00       194 
          16       1.00      1.00      1.00       209 
          17       1.00      1.00      1.00       193 
          18       1.00      1.00      1.00       183 
          19       1.00      1.00      1.00       202 
          20       1.00      1.00      1.00       190 
          21       1.00      1.00      1.00       192 
          22       1.00      1.00      1.00       207 
          23       1.00      1.00      1.00       196 
          24       1.00      1.00      1.00       185 
          25       1.00      1.00      1.00       208 
          26       1.00      1.00      1.00       195 
          27       1.00      1.00      1.00       197 
          28       1.00      1.00      1.00       212 
          29       1.00      1.00      1.00       198 
          30       1.00      1.00      1.00       201 
          31       1.00      1.00      1.00       203 
          32       1.00      1.00      1.00       197 
          33       1.00      1.00      1.00       194 
          34       1.00      1.00      1.00       228 
          35       1.00      1.00      1.00       201 
          36       1.00      1.00      1.00       191 
          37       1.00      1.00      1.00       195 
          38       1.00      1.00      1.00       193 
          39       1.00      1.00      1.00       199 
          40       1.00      1.00      1.00       193 
          41       1.00      1.00      1.00       206 
          42       1.00      1.00      1.00       213 
          43       1.00      1.00      1.00       195 
 
    accuracy                           1.00      8800 
   macro avg       1.00      1.00      1.00      8800                    weighted avg       1.00      1.00      1.00      8800 



                                         OUTPUT 
 
 

                                            
 
                                      All 44 gestures stored and trained in the system   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

             Output : for the symbol in the green box output is displayed in the console as “U” 

 

 

 

 

 

 

 

 

 

 

 



 

FUTUER   ENHANCEMENT 

 

1. The system can be extended to incorporate the knowledge of facial expressions 

and body   language too so that there is a complete understanding of the context 

and tone of the input speech. 

 

2. A mobile and web based version of the application will increase the reach to 

more people. 

 

3. Integrating hand gesture recognition system using computer vision for 

establishing 2-way communication system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 REFERENCES 

 

[1] Scientific World Journal Volume 2014 (2014), Article ID 267872 

 http://dx.doi.org/10.1155/2014/267872. 

 

[2] “The Cognitive, Psychological and Cultural Impact of Communication Barrier on Deaf Adults”. In:               

Journal of Communication Disorders, Deaf Studies Hearing Aids 4 (2 2016). 

 doi: 10.4172/23754427.1000164. 

 

 [3] Akash. ASL Alphabet. url: https://www.kaggle.com/grassknoted/asl-alphabet. (accessed: 

24.10.2018). 

  

[4] Vivek Bheda and Dianna Radpour. “Using Deep Convolutional Networks for Gesture Recognition in 

American Sign Language”. In: CoRR abs/1710.06836 (2017). arXiv: 1710.06836.  

url: http://arxiv.org/abs/1710. 06836. 

 

 [5] en.wikipedia.org,     https://en.wikipedia.org/wiki/Fingerspelling  

[6] en.wikipedia.org,     https://en.wikipedia.org/wiki/Machine_translation_of_sign_languages. 

[7] Siddharth S. Rautaray, Anupam Agrawal,” Real time hand gesture recognition system for dynamic    

applications,” International Journal of UbiComp (IJU), Indian Institute of Information Technology 

Allahabad, India, Vol.3, No.1, January 2012. 

[8] Rung-Huei Liang, Ming Ouhyoung,” A Real-time Continuous Alphabetic Sign Language to Speech 

Conversion VR System,” Communications & Multimedia Lab., Computer Science and Information 

Engineering Dept., National Taiwan University, Taipei, Taiwan. 

[9] Sahib Singh1,Dr. Vijay Kumar Banga,”Gesture control algorithm for personal computers,” ISSN: 

2319 – 1163,Volume: 2 Issue: 5, Department of Electronics and Communication Engineering,Punjab, 

India. 

[10] Link for files used in building this framework  

https://drive.google.com/drive/folders/1lpyAIU08PwFoohm9TGyvICUupEPWXV9I?usp=sharing 


