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ABSTRACT 
Online streaming media platforms are booming these days. OTT (Over-The-Top) platforms 

like Netflix, Amazon Prime, Hotstar, etc., provide online services that cater specifically to their 

users and provide them with some much-needed entertainment, which helps them to relax in 

this extremely busy world and spend some quality time with their friends and family. But when 

it’s time for a short break just to freshen up the mind, everyone prefers choosing from the 

options that are just a click away, what could be better than a user being recommended their 

favourite songs to play, movies to watch during a break. This is where the highly advanced and 

convenient recommendation systems come into play. Recommendation systems solve this 

problem by analyzing the large volume of dynamically generated data to provide personalized 

product suggestions and services to the users. With the day-to-day increasing popularity and 

demand of such services, and with increasing competition in this massive service-oriented 

sector, a highly functional and effective recommendation system could provide a significant 

marketing edge to a company over its competitors, as wide range of products, services and their 

substantial amount of information are available on the service provider company’s website and 

as a result, the users struggle to find relevant information matching their preferences. Thus, we 

have tried to design a framework for a movie recommendation system that will recommend 

movies to the user based on their preferences and user content history.  First, we have taken a 

dataset provided by TDMB movies.  Then, we have used and tested various classical machine 

learning models like Content-Based Filtering and Collaborative Filtering to recommend the 

best movies based on user ratings, user watch history, etc., that are more likely to be watched 

by the customer. We have also combined these models to create a Hybrid model which provides 

better recommendations. This could help in improving the revenue earned by the media 

platforms, which in turn is the main purpose of any recommendation system. 

 

Keywords—OTT, Recommendation System, Content-based Filtering, 

Collaborative Filtering, Hybrid Filtering, Machine Learning 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Introduction 

Over the years, the Internet has been the backbone of modern technology. Due to 

the rapid development and major breakthroughs in different fields like healthcare, 

science and engineering, leisure and entertainment, etc. which heavily rely on 

technology, different applications and uses were discovered to support and 

improve human life. One such revolutionizing application in the field of 

entertainment is the online streaming media service. This service focuses on 

delivering audio and video content, like songs, and movies, to the viewer (client) 

over the Internet for a certain fee. Due to people being busier than ever, the last 

few years, have seen immense growth in this industry, especially the Over-the-

Top (OTT) platforms that provide movies and web shows, as everyone loves to 

have some entertainment, which helps them to relax and get rid of their stress, 

and enjoy a peaceful time with their friends and family. These platforms attract 

viewers by providing them with fresh content and targeting audiences of all age 

groups, not letting any viewer get bored. Since, these days, the general public 

doesn’t have enough time to visit movie theatres or a music concert, and when 

they are free which is typically on their weekends, they tend to stay at home and 

do not want to rush to such events. So these platforms came up with a solution 

and brought great content which is easily accessible and affordable. Now, people 

could binge-watch their favorite or trending movies and shows at their fingertips 

with an affordable subscription fee for these services. Some of the most 

successful online OTT platforms are Amazon Prime Video by Amazon, Netflix, 

Hotstar by Star India, Hulu by Walt Disney, etc. These platforms have 

successfully grasped the ideas and strategies and implemented them with the 

required technology, all in order to develop a highly practical and profitable 

product.  

 

1.2. Problem Statement 

 

The challenge for our group is to create a real-time recommendation system that 

is capable of recommending movies that are currently relevant to the user or in 

which the user has shown an interest in their past. The recommendation system 

should also aim to enhance user experience by providing personalized 

recommendations specific to an individual user, as it has a better chance to be 

viewed by the customer in comparison to general recommendations, thus, 

increasing conversion. In order to meet this challenge, we first have to figure out 

the different patterns and relations in the input dataset and draw various useful 

conclusions through analysis and visualization, which is very useful in 

developing the required system. Then, we will have to figure out the most suitable 

machine learning algorithms to use for creating a highly effective movie 
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recommendation model. We will also need to figure out which input features are 

the best to use for this task. Furthermore, we will like our recommendation system 

to be diverse i.e., it should recommend different kinds of movies to the user. This 

would require a complex model to successfully implement the whole application. 

 

1.3. Proposed Solution 

 

Many reliable and supporting tools and frameworks related to machine learning 

have been developed and implemented by nearly all online streaming platforms, 

and scientists are still researching and developing more useful tools. One of the 

most important tools and frameworks is the recommendation system. A 

recommendation system is a real-world software application that is used by most 

online streaming service platforms in order to suggest various kinds of shows and 

movies available on their platform to their customers and also provide their 

consumer base with the necessary information to help them decide which movies 

and shows are to their liking and meet their preferences, so that they may purchase 

the movie or show generating revenue for the business. The movies can be 

recommended on the basis of trends i.e., the most popular and the most watched 

movies on a site or on the viewer demographics, or it can also be based on an 

analysis of the viewer’s past viewership with the various movies available on the 

platform, which acts as a prediction for their future behaviour. So online 

streaming media companies use various filtering algorithms that help in filtering 

out users or items in recommendation systems. These are generally based on user 

reviews and ratings or past user-item interactions. Some of the major filtering 

approaches are Collaborative Filtering, Content-based Filtering, and Hybrid 

Filtering. 
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CHAPTER 2 

LITERATURE REVIEW 
 

A considerable amount of research has been done on recommendation systems. 

Some of the research done by various researchers is as follows:  

 

T. Keerthana [1] proposed an approach that uses the content-based (domain-

dependent algorithm), collaborative, and hybrid filtering techniques to achieve 

accurate recommendations. 

 

JH (Janghyun) Baek [2] proposed an approach in which he created an apparel-

specific multi-step recommender system for Amazon users that first recommends 

items based on user experience and feedback. This is a deep learning-based model 

which tries to predict user ratings on products and based on this prediction 

suggests the one that has a higher rating. Using this output, the system further 

looks for similar products using two very distinct techniques: image-based 

processing and Natural Language Processing. 

 

Mohammad R. Rezaei [3] tried to develop a recommendation model for digital 

music tracks available on Amazon. They analyzed, tested and integrated their 

proposed deep neural network (DNN) architecture with various traditional 

models to predict the rating scores that customers give to a music track. 

 

Rohit Dwivedi [4] designed a model using matrix factorization using a user-based 

nearest-neighbor collaborative filtering approach. Initially, using the pivot 

function a pivot table was made based on the user. The models were evaluated 

based on different metrics like RMSE, mean square error, mean absolute error, 

and the Average actual ratings and Average predicted ratings were calculated. 

 

Huang [5] proposed a Graph-based recommender system which is a unique 

approach to recommender systems as it neither uses collaborative filtering nor the 

content-based approach. Instead, it combines these two approaches and produces 

a hybrid model without the need to use a top-level classifier or regression model. 

 

Zhang [6] tested several Deep Learning approaches for recommendation systems, 

such as Multilayer Perceptron (MLP), Autoencoder (AE), Convolutional Neural 

Network (CNN), and Recurrent Neural Network (RNN). Their argument is that 

Deep neural networks are highly capable in modeling the nonlinearity in data with 

a non-linear activation functions like the sigmoid function. This enables it to 

capture multiple patterns in complex user-item interactions. Deep neural 

networks also enable automatic feature learning from raw data, reducing the 

requirement to perform intensive feature engineering.  
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 Linden [7] proposed a system that uses item-based collaborative filtering which 

gives recommendations by utilizing user-generated signals, like explicit item 

ratings, that were gathered from other users and based on items that the user has 

purchased or has rated, which are then paired with similar items. 

 

Md Zaid Ahmed [8] decided to use the Collaborative Filtering Algorithm to 

improve the accuracy of product recommendations.  They used products from 

Amazon e-commerce website to design a practical model for some specifically 

designed scenarios. Their system uses cosine similarity as metric to find similar 

products on the basis of multiple user ratings and generate a matrix that helps in 

recommending new products to other users. 

 

Ashrita Kashyap [9] introduced Movie REC, a movie recommendation system 

that allows a user to select his/her choices from a given list of attributes and then 

recommends the user a list of movies based on the cumulative weight of the 

different selected attributes and using the K-means algorithm.   

 

Yeole Madhavi [10] used Content-based Recommendation using 

CountVectorizer and Cosine Similarity, Content-based Recommendation using 

TfidfVectorizer and Cosine Similarity and their Hybrid Algorithm for their 

recommendation system.  His implementation resulted in getting better results for 

the hybrid algorithm when compared to the other two algorithms.  Rahul  

 

Pradhan [11] successfully implemented a movie recommendation system using 

the Collaborative-Filtering Algorithm and found out that these systems have 

certain limitations due to which they do not recommend efficiently to its users. 

He found that even though Collaborative Filtering is the most successful and 

powerful algorithm, but has some high runtime and faces some major issues like 

data Sparsity which he concluded could be removed by using a Hybrid movie 

recommendation system. 

 

Y. Koren [12] suggested approaches utilizing matrix factorization to enhance 

recommender systems, particularly for the Netflix Prize dataset. They evaluated 

and compared several matrix factorization techniques, such as singular value 

decomposition (SVD), non-negative matrix factorization (NMF), and regularized 

matrix factorization (RMF), and introduce an upgraded version of RMF, known 

as SVD++, which involves implicit feedback. Their study indicates that matrix 

factorization techniques are more efficient in collaborative filtering and 

outperform conventional neighborhood-based approaches. Furthermore, they 

also introduced a new and unique approach for predicting rating errors, which can 

assist in selecting the most suitable algorithm and determining its parameters. 

 

Sarwar [13] presented a new approach to collaborative filtering technique that 



5 
 

focuses on the similarity between items rather than users. They proposed an 

algorithm that computes the similarity between items based on the ratings given 

to them by users and then uses this similarity to make recommendations. The 

authors also compared their item-based approach to traditional user-based 

collaborative filtering and demonstrated that it was more efficient and accurate, 

especially in cases where there are a large number of users and items. They also 

presented a variation of their algorithm that takes into account the popularity of 

items and revealed that it further enhances the performance of the system. The 

results of their experiments suggest that their approach can lead to better 

recommendations, especially in large-scale systems. 

 

Burke [14] suggested a novel approach to improve recommendation quality by 

incorporating social networks. This approach was based on the idea that people 

are more likely to trust recommendations from their social circle rather than from 

unknown sources. The authors presented reasonable evidence from previous 

studies that have demonstrated the effectiveness of social networks in improving 

the quality of recommendations. Their proposed approach involved creating a 

social network for each user and utilizing it to identify potential recommenders. 

Their approach was also able to overcome the cold-start problem that arises when 

recommendations cannot be made for new users with limited data about their 

preferences. Their study revealed that the integration of social networks can 

increase recommendation quality by up to 20%. 

 

Salakhutdinov [15] proposed a new probabilistic matrix factorization model that 

incorporates Gaussian priors on the latent factors, allowing for uncertainty in the 

factorization process and uses Bayesian inference to learn the model parameters. 

They also demonstrated the results of experiments on several benchmark datasets 

in predicting user ratings in recommender systems. Their system also had the 

ability to handle missing data and the ability to incorporate additional information 

such as user and item features. They concluded that their probabilistic matrix 

factorization method outperforms traditional matrix factorization methods and 

non-probabilistic matrix factorization methods such as matrix completion. 

 

Cheng [16] described a co-clustering based collaborative filtering framework that 

is designed to handle large datasets by decomposing the user-item matrix into 

smaller sub-matrices that can be processed in parallel. They also introduced a 

novel regularization term that encourages sparsity in the co-clustering solution, 

improving prediction accuracy.  

 

Liu [17] described a multi-view clustering framework for movie recommendation 

that can leverage multiple sources of information to improve prediction accuracy. 

The authors defined a novel objective function that incorporates multiple views 

of the data and a regularization term that encourages sparsity in the solution, 
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which they tested on several benchmark datasets. Their framework has the ability 

to handle missing data and also to incorporate additional sources of information. 

X. Huang [18] proposed a new collaborative filtering method based on weighted 

non-negative matrix factorization (WNMF) for recommendation systems as 

according to the authors, this method is better in capturing the inherent user-item 

interaction patterns than the traditional matrix factorization methods. In their 

system, they introduced a novel weight term in the WNMF framework that takes 

into account the relevance of each user-item interaction. This weighting scheme 

allows the model to assign more importance to highly relevant interactions and 

less importance to irrelevant ones, thus improving the quality of 

recommendations. 

 

Dutta [19] developed a movie recommendation system that integrated 

collaborative filtering that relies on the similarity of users' preferences to make 

recommendations and fuzzy logic which is used to handle uncertainty and 

imprecision in the ratings given by users, to provide personalized 

recommendations to users. They evaluated its performance and concluded that 

this approach was superior to other traditional techniques.  

 

By analyzing the numerous views and approaches towards research and 

development of recommendation systems as described above, it is evident that 

most researchers took a linear approach by using the collaborative-filtering 

algorithm which only focuses on user ratings and past user interactions and 

discards any kind of association with other parameters. Also, most of the above-

mentioned research does not deal with the cold-start problem which is clearly 

visible as very less amount of work has been done involving content-based 

filtering which also considers other item attributes and their interactions, though 

there have been recent advancements over the past few years. For recommending 

new movies to the user, we can use movie attributes like genre, cast, crew, 

revenue, etc. which is possible in content-based filtering. Some of the researchers 

have proposed the idea of using a hybrid system but they have only proposed a 

theoretical overview of this approach. We can also compare and evaluate these 

algorithms using multiple metrics.  

 

So, the main aim of this research is to solve the problem of developing a real-time 

practical recommendation system that is capable of recommending movies 

customized to the user, by using the best possible approach and considering 

different relevant factors while doing so. The recommendation system should also 

aim to enhance the user experience by providing personalized recommendations 

specific to an individual user, as it has a better chance to be viewed by the 

customer in comparison to general recommendations, thus, increasing 

conversion. Furthermore, we will like our recommendation system to be diverse 

i.e. it should recommend different kinds of movies to the user. 
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TABLE I 

STUDY DONE IN THE FIELD BY VARIOUS AUTHORS IN THE REFERENCED LITERATURE 
 

Author Objective Methods/ 

Techniqu

es 

Findings Limitations 

JH 

(Jangh

yun) 

Baek 

et. al. 

[2] 

To design an 

apparel 

specific 

Amazon 

Product 

recommendati

on system 

based on user 

feedback and 

ratings. 

Deep 

Learning

, Image-

based 

Processi

ng and 

NLP. 

This multilayer 

model first 

suggests products 

with a higher 

rating and using 

this output, the 

system further 

looks for similar 

products using 

image-based 

processing and 

Natural Language 

Processing, which 

is very practical in 

a real-world 

situation. 

Measurement of the 

system's 

performance due to 

the lack of available 

data and resources 

for online 

evaluation, issues 

with scalability and 

design, overfitting, 

and the difficulty in 

finding the optimal 

model configuration, 

not always providing 

ideal 

recommendations, 

especially when 

based on image 

similarity. 

Moha

mmad 

R. 

Rezaei 

[3] 

To design a 

model to 

predict highly 

accurate 

reviews’ 

rating score. 

Multino

mial 

Naïve 

Bayes, 

Logistic 

regressio

n, Deep 

Neural 

Network

s (DNN). 

DNN model (MSE 

score of 0.51-

0.53) outperforms 

other methods 

significantly Even 

though the RL 

(MSE score of 

1.03) and MNB 

(MSE score of 

1.29) models are 

not as accurate as 

the DNN is, but 

they are relatively 

simple, and they 

need no specific 

The author faced 

challenges in text 

pre-processing and 

encoding due to 

limited knowledge in 

NLP, which could 

affect 

recommendation 

quality. Limited 

dataset size resulted 

in using a small-

sized model to 

prevent overfitting, 

leading to a trade-off 

between model 
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effort to setup 

them but in the 

end, they are not 

accurate enough. 

So, they can be 

considered in 

problems with no 

need for high 

accuracy. 

complexity and 

prediction 

performance. 

Zan 

Huang 

et. al. 

[5] 

To develop a 

recommendati

on system for 

an online 

Chinese 

bookstore 

setting. 

graph-

based 

algorith

m that 

integrate

s 

content-

based 

and 

collabora

tive 

recomme

ndation 

algorith

ms, 

Hopfield 

Net 

Algorith

m. 

Based on hold-

out-test results, 

hybrid system 

performed better 

but the 

improvement was 

not significant. 

Based on plot 

subject test, 

content-based 

system 

outperformed the 

other algorithms. 

Exploiting high-

degree association 

did not show 

significant benefit, 

the data does not 

fully represent 

customer interests. 

Future work includes 

refining weighing 

schemes, adjusting 

parameters, and 

exploring other 

recommendation 

methods. 

Shuai 

Zhang 

et. al. 

[6] 

To review the 

taxonomy of 

deep learning-

based 

recommendati

on models, a 

thorough 

summary of 

the state-of-

the-art in the 

field, explore 

emerging 

Deep 

Learning 

Gives a 

comprehensive 

review of the 

application of 

deep learning in 

the field of 

recommendation 

systems, exploring 

trends and also 

highlighting the 

issues and 

direction of the 

More future work is 

required for 

improving the 

Scalability and time 

complexity of the 

system lacks unified 

evaluation standards, 

making it 

challenging to 

compare models. It 

also faces difficulty 

of test samples and 
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trends and 

provide fresh 

perspectives 

on the 

development. 

development in 

the field. 

control over 

inference 

Greg 

Linden 

et. al. 

[7] 

To create an 

Amazon 

Product 

recommendati

on system 

using item-to-

item 

collaborative 

filtering and 

comparing it 

with 

traditional 

collaborative 

filtering 

algorithms 

Item-to-

Item 

Collabor

ative 

filtering 

item-to-item 

collaborative 

filtering algorithm 

is fast even for 

extremely large 

data sets. Its 

recommendation 

quality is 

excellent. Unlike 

traditional 

collaborative 

filtering, the 

algorithm also 

performs well 

with limited user 

data. 

The algorithm relies 

on the 

precomputation of 

the expensive 

similar-items table 

offline. Any 

inaccuracies or 

deficiencies in this 

table could affect the 

quality of 

recommendations. It 

also faces challenges 

when dealing with 

sparse or incomplete 

user profiles 

resulting in non-

accurate or 

personalized 

recommendations. 

Md. 

Zaid 

Ahme

d et. al. 

[8] 

To provide an 

in-depth 

explanation of 

a system that 

classifies and 

recommend 

products on 

Amazon to the 

user. 

Collabor

ative 

Filtering, 

Sentimen

t 

Analysis, 

Cosine 

Similarit

y, RMSE 

Item-based 

collaborative 

filtering is an 

effective method 

for obtaining high-

quality 

recommendations 

with a RMSE 

accuracy of 0.52, 

which is better 

than average and 

can be used for 

large dataset as 

well. 

Reliance on 

historical data, 

difficulty in handling 

new users and 

products, limited 

diversity in 

recommendations, 

and challenges with 

sparse data. 

Scalability is not 

explicitly addressed 

in the paper. 
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Ashrit

a 

Kashy

ap et. 

al. [9] 

To introduce 

“MOVREC” 

a movie 

recommendati

on system to 

recommend 

movies based 

on the user’s 

choices. 

Cumulati

ve 

Weight 

and K-

Means 

Algorith

m with 

Collabor

ative 

Filtering 

A successful 

response from a 

small set of users 

was obtained and 

the system was 

tested 

successfully. 

Challenge of 

evaluating system 

performance since 

movie 

recommendations 

are subjective and 

based on individual 

opinions, a larger 

dataset is needed for 

more meaningful 

results. Need to 

incorporate different 

machine learning 

and clustering 

algorithms to study 

and compare the 

outcomes further. 

Rahul 

Pradha

n et. al. 

[10] 

To provide an 

overview of 

various 

techniques 

create a 

recommendati

on system that 

recommends 

movies to the 

user. 

Item 

based 

Collabor

ative 

Filtering 

Collaborative 

filtering iis most 

successful and 

powerful 

algorithm. The 

proposed 

approach can 

handle quite a big 

amount of data 

effectively. 

Only uses 

collaborative 

filtering and faces 

challenges such as 

high runtime and 

data sparsity. It also 

needs to address 

weaknesses and 

improve the user 

interface. 

Y. 

Koren 

et. al. 

[11] 

To suggest 

approaches 

utilizing 

matrix 

factorization 

to enhance 

recommender 

systems, 

particularly 

for the Netflix 

Prize dataset 

Singular 

Value 

Decomp

osition 

(SVD), 

Non-

Negative 

Matrix 

factorizat

ion 

(NMF), 

and 

Regulari

Their study 

indicates that 

matrix 

factorization 

techniques are 

more efficient in 

collaborative 

filtering and 

outperform 

conventional 

neighborhood-

based approaches. 

Furthermore, they 

Published in 2009, so 

it fails to incorporate 

major developments 

in the field over the 

last decade. Also, it 

focuses only on 

matrix factorization 

techniques and do 

not provide explicit 

explanations or 

insights into why 

certain 
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zed 

Matrix 

Factoriza

tion 

(RMF), 

SVD++, 

also introduced a 

new and unique 

approach for 

predicting rating 

errors, which can 

assist in selecting 

the most suitable 

algorithm and 

determining its 

parameters. They 

also introduced an 

upgraded version 

of RMF and a new 

approach for 

predicting errors. 

recommendations 

are made. 

B. 

Sarwar 

et. al. 

[12] 

To present a 

new approach 

to 

collaborative 

filtering 

technique that 

focuses on the 

similarity 

between items 

rather than 

users. 

Item-

based 

Collabor

ative 

Filtering 

This item-based 

approach is more 

efficient and 

accurate than 

traditional user-

based 

collaborative 

filtering, 

especially in cases 

where there are 

many users and 

items. A new 

variation of this 

algorithm further 

enhances the 

performance of 

the system which 

can the which can 

lead to better 

recommendations, 

especially in 

large-scale 

systems. 

Only focuses on 

collaborative 

filtering and the 

improvement over 

other techniques is 

not significantly 

large. 
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R. 

Burke 

et. al. 

[13] 

To provide a 

theoretical 

study on 

incorporating 

social 

networks to 

provide 

recommendati

ons. 

Not 

mentione

d 

This approach was 

able to overcome 

the cold-start 

problem and the 

study also 

revealed that the 

integration of 

social networks 

can increase 

recommendation 

quality by up to 

20%. 

Limited to social 

network 

incorporation and 

does not address the 

challenges 

associated with 

obtaining and 

utilizing social 

network data for 

recommendations. 

Also does not 

incorporate recent 

advancements in the 

field. 
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CHAPTER 3 

PROPOSED METHODOLOGY 

 
So, the different obstacles that we need to overcome involve identifying 

parameters that after analysis provides deep insights and helps in drawing various 

useful conclusions; figuring out and deciding the appropriate machine learning 

algorithms to use for creating a highly effective movie recommendation system; 

evaluating the performance of used algorithms and through a comparative study, 

choosing the best one among them. This would require a complex system design 

to successfully implement the whole application. 

 

3.1. Parameters 

In order to successfully design the desired recommendation system, the first step 

is to identify the different parameters that could possibly exist and could be used 

to analyze various possible algorithms which are useful to build recommendation 

systems and find the best one. The identified parameters are as follows:  

 

1) Dataset and Data Variables: Datasets are used by movie recommendation 

systems to have access to a large sample and a rich variety of relevant information 

and several features (variables) which may include movie ratings, movie-related 

information like cast and crew details, budget, revenue, viewer-movie 

interactions, etc. which can be analyzed to find patterns and provide 

recommendations to the users.  

 

2) Methodology: This describes the approach and the implementation 

specifications followed to develop the functional movie recommendation system.  

 

3) Similarity Metric: This parameter helps in finding similarities between 

multiple users and multiple items i.e., it helps in identifying viewers with similar 

movie preferences and similar types of movies. Some common mathematical 

similarity metrics are Jaccard’s similarity, Cosine similarity, etc.  

 

4) Evaluation Metric: This parameter is used to evaluate and quantitatively 

measure the performance of a movie recommendation system. Some common 

performance evaluation metrics are precision, recall, root mean square error, etc. 

 

3.2. Algorithms To be Used 

This section gives a detailed explanation of the methods and machine learning 

algorithms used to design our movie recommendation system. The designed 

recommendation system uses various filtering algorithms like Collaborative 

Filtering, Content-Based Filtering and then combines both of these algorithms 

into a Hybrid Filtering algorithm. The concept and working of all previously 
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mentioned algorithms have been defined as follows: 

 

1. Popularity-Based Filtering: This is one of the first recommendation systems to 

ever get developed and successfully deployed. As its name suggests, it has a 

working principle based on popularity or the latest trend. These systems check 

the movies which are most popular among the users and directly recommend 

those without considering other factors like user history i.e. what are movies that 

the user has viewed or interacted with in the past, etc. This has a chance to 

increase user engagement when compared to no recommendation system. But 

such systems have a huge drawback that they do not provide personalized 

recommendations to users. 

 

2. Content-Based Filtering: Content-Based filtering recommendation system tries 

to make suggestions on attributes of items that a customer previously liked or 

interacted with. Such a system first builds item profiles and then derives a user 

profile from them. This user profile contains features that are important for a 

particular individual. Once the system knows about a customer’s preferences, it 

can recommend new items according to it. This technique considers a wide 

variety of factors which include both objective and descriptive factors before 

making any recommendations.  

 

We have shown the content-based filtering approach through a visual diagram in 

Figure 1: 

 

 
 

Fig.1. Content-Based Filtering 
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For content-based filtering, we have used the TF-IDF (Term Frequency Inverse 

Document Frequency) Vectorizer technique, which is used to transform text into 

a meaningful representation of numbers that are used to fit machine learning 

algorithms. 

 

Term Frequency is defined as the numerical frequency with which a term appears 

in a particular document. So it is document-specific. The term frequency of a term 

‘t’ in a specific document ‘d’ is calculated as: 

 

 

 
𝑡𝑓(𝑡, 𝑑) =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑 
 

(1) 

 

                                   

Inverse Document Frequency is a numerical representation that measures how 

important a term is across the corpus of documents i.e. is it a common or rare 

term based on its appearance across the entire set of documents So it is consistent 

across all documents. The general equation of IDF value of a term ‘t’ in the 

document collection (corpus) ‘N’ is: 

 

 

 𝑖𝑑𝑓(𝑡) =  𝑙𝑜𝑔𝑒 (
𝑁

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡
) (2)     

 

 

When a word is common and appears in many documents, its IDF value 

(normalized) will tend towards 0, while a rare word that appears in only a few 

documents will tend towards an IDF value of 1.  

 

So for a term ‘t’ that is rare across the entire ‘N’ number of documents of the 

corpus and only df(t) number of documents contain this term, IDF is calculated 

as: 

 

 𝑖𝑑𝑓(𝑡) =  𝑙𝑜𝑔𝑒 (
1+𝑛

1+𝑑𝑓(𝑡)
) + 1 (3) 

 

An important point to note in the above equation is that 1 is added to the 

denominator because as the term ‘t’ is rare very less documents contain it i.e., 

df(t) approaches 0. This may result in a division by 0 while calculating the IDF 

value, which is not practical. So we add 1 to the denominator to avoid this 

situation.  

 

Similarly, for a term ‘t’ that is common across the entire ‘N’ number of 
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documents of the corpus and the number of documents containing this term is 

df(t), IDF is calculated as: 

 

 𝑖𝑑𝑓(𝑡) =  𝑙𝑜𝑔𝑒 (
𝑁

𝑑𝑓(𝑡)
) (4)     

 

Then we multiply the TF and IDF values to get the required TF-IDF value. So the 

TF-IDF weight of a term ‘t’ in a document ‘d’ is given as: 

 

 𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑) =  𝑡𝑓(𝑖, 𝑑) × 𝑖𝑑𝑓(𝑡)  (5)     

 

When a content-based movie recommendation system uses the TF-IDF 

vectorizer, it first tokenizes (converting into a stream of characters) the 

documents containing information on the movie profiles and for each movie, 

calculates the TF-IDF scores for each term on the basis of their frequency in the 

corpus and determines their importance. The vectorizer then converts them into 

vectors and uses them to find similar movies. Based on a user’s viewing history 

and preferences, the content-based system will recommend new movies with high 

TF-IDF scores for terms that are relevant to the user.  

 

3. Collaborative filtering: Collaborative filtering recommendation systems first 

look at interactions between users and items try to find either similar types of 

users or similar types of products and based on this similarity, calculate prediction 

scores and then recommend new products to target users. Every user and item is 

described by a feature vector in the same space. 

 

Collaborative Filtering is mainly of two types:  

 

a) Item-Item based Collaborative Filtering: This technique starts by searching the 

items that the user has had prior interactions with and finds similar items to it 

with the help of similarity metrics, and using which a prediction function is 

defined which then suggests and recommends items to the user.  

 

The steps involved in Item-Item based Collaborative Filtering are as follows:  

 

Step-1: First, convert the given data in the form of a user-item matrix.  

 

Step-2: We then start building the model by finding similarity between all the 

item pairs. We create vectors for each individual item using the user ratings that 

are known and then we find the similarity between them which can be found in 

multiple ways, but we have used cosine similarity in our framework.  
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Cosine Similarity: Cosine similarity is a mathematical tool used to assess and 

quantify the similarity between two given non-zero vectors, which is measured 

in terms of the cosine of the angle between the two vectors (cos θ). Specifically, 

it measures the similarity in the direction or orientation of the vectors irrespective 

of their magnitude or scale. Both vectors need to lie on the same plane in the same 

inner product space, meaning they must produce a scalar through dot product 

multiplication.  

 

Cosine similarity ranges from -1 to 1, with -1 representing diametrical vectors in 

opposite directions, 0 representing two mutually perpendicular vectors, and 1 

representing vectors in the same direction.  

 

Mathematically, the cosine similarity of vectors A and B is determined by finding 

the dot product of the two vectors and dividing it by the product of their lengths 

(magnitude) and is given as follows: 

 

 

 𝑆𝑖𝑚(𝐴, 𝐵) =  
𝐴∙𝐵

|𝐴| |𝐵|
=  

∑ 𝐴𝑖∗ 𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ∗ √∑ 𝐵𝑖
2𝑛

𝑖=1

 (6)     

 

 

As cosine similarity depends on orientation i.e., the angle between two vectors 

and not their lengths, it has very high computational efficiency and is also pretty 

useful in high-dimensional spaces, as in spaces with a high number of 

dimensions, it is very difficult to calculate lengths of vectors due to the high 

complexity of space variables.  

 

Similarly, in the case of data sparsity where most of the dimensions of a vector 

are very small (approach 0) or are exactly equal to 0, cosine similarity determines 

the similarity between two vectors only based on non-zero dimensions thus, 

allowing cosine similarity to also be able to operate successfully for sparse data. 

So, cosine similarity comes with a lot of useful advantages and is thus, one of the 

most important mathematical tools used in machine learning. Figure 2 depicts the 

vectors and their orientation which helps us to easily understand the concept of 

Cosine Similarity. 
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Fig.2. Cosine Similarity 

 

 

Step-3: Calculate the recommendation or rating score as: 

 

 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈, 𝐼𝑖) =  
∑ 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈,𝐼𝑗)∗ 𝑆𝑖𝑚(𝐼𝑖,𝐼𝑗)𝑗

∑ 𝑆𝑖𝑚(𝐼𝑖 ,𝐼𝑗)𝑗
 (7)     

 

b) User-User based Collaborative Filtering: This technique looks for similar users 

i.e., users with similar interests, based on the items the users have already rated 

or interacted with, and recommends other items that might be appealing to other 

target users/audiences.  

 

The steps involved in User-User based Collaborative Filtering are as follows:  

 

Step-1: Convert the given data in the form of a user-item matrix based on the 

interest of a user in a certain item.  

 

Step-2: We then start building the model by finding the set of similar users to the 

target user for which we have again applied cosine similarity for vectors created 

using the user-item matrix. 
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Step-3: Calculate the recommendation score as: 

 

 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈, 𝐼𝑖) =  
∑ 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈, 𝐼𝑗) ∗ 𝑆𝑖𝑚(𝑈𝑖, 𝑈𝑗)𝑗

∑ 𝑆𝑖𝑚(𝑈𝑖 , 𝑈𝑗)𝑗
 (8)     

 

In order for both of these collaborative filtering methods to work, we have used 

the Singular Value Decomposition (SVD) technique, which is basically a matrix 

factorization technique that decomposes any given matrix into 3 generic and 

familiar matrices. The SVD of a m X n matrix A is given by the formula: 

 

 𝐴𝑚×𝑛 =  𝑈𝑚×𝑚 𝑆𝑚×𝑛 𝑉𝑛×𝑛
𝑇  (9)     

 

where U and V are orthogonal matrices with orthonormal eigenvectors chosen 

from AAT and ATA respectively. S is a diagonal matrix with r elements equal to 

the root of the positive eigenvalues of both matrices U and V, which have the 

same positive eigenvalues. The diagonal elements are composed of singular 

values.  

 

Figure 3 shows a visual diagram of the collaborative filtering approach. 

 

 
Fig.3. Collaborative Filtering 
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4) Hybrid Filtering: This approach combines the previously mentioned 

algorithms and then offers more accurate and diverse recommendations to the 

user. This algorithm is generally preferred and used by the major leaders of online 

streaming services since it has the advantages of all the other techniques and 

overcomes the limitation barrier of each individual approach. Its effectiveness 

depends on the quality of all the combined algorithms, the implementation details 

as well as the accuracy and consistency of input data. 

 

3.3. Evaluation Metrics 

The evaluation metric is used to evaluate and quantify the performance of a 

machine learning model. The choice of evaluation metric depends on the specific 

problem being solved and the goals of the model. The following metrics will be 

used to evaluate the different algorithms applied in the proposed system:  

 

1) Root Mean Square Error (RMSE): RMSE measures the average distance 

between the predicted values and the actual values. It is calculated by taking the 

square root of the average of the squared differences between the predicted values 

and the actual values. Its equation is given as: 

 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 −  𝑦�̂�)

2 𝑛
𝑖=1  (10)     

 

where n is the number of observations, yi is the actual value of the target variable 

for the ith observation, and 𝑦�̂� is the predicted value of the target variable for the 

ith observation.  

 

2) Mean Absolute Error (MAE): MAE measures the average absolute distance 

between the predicted values and the actual values. It is calculated by taking the 

average of the absolute differences between the predicted values and the actual 

values. It is mathematically calculated using the equation: 

 

 𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 −  �̂�𝑖|𝑛

𝑖=1  (11)     

 

where n is the number of observations, yi is the actual value of the target variable 

for the ith observation, and 𝑦�̂� is the predicted value of the target variable for the 

ith observation.  

 

Here are some key differences between the two: 

 

a) RMSE is more sensitive to outliers than MAE, since it squares the differences 

between predicted and actual values. This means that large errors have a greater 

impact on the RMSE score than on the MAE score.  
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b) Because of its squaring operation, RMSE gives more weight to large errors 

compared to MAE. So, RMSE is generally used when large errors are particularly 

undesirable.  

 

c) Both RMSE and MAE are scale-dependent, which means that their values are 

affected by the units of the target variable. In other words, changing the scale of 

the target variable (e.g., from dollars to euros) will change the value of the 

evaluation metric. 

 

3.4. Steps to be followed in the Proposed System Design 

Figure 4 shows the steps to be followed for our proposed framework to solve the 

problem. 

 

 
Fig.4. Flow of Proposed System 
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1) Acquisition of training data set: The accuracy of a machine learning algorithm 

mainly depends on the extent of the correctness of the input data set and the 

number of parameters considered. Our input data set is originally from the online 

movie critique giant “Movie Lens (TMDB)”. The objective of our data set is to 

provide data that is helpful in analyzing and recommending movies to the user 

that the user may be interested in and has a higher chance of viewing, generating 

revenue for any online streaming platform. 

 

2) Data pre-processing: Data pre-processing is the most important process. 

Sometimes, movie-related data contains a lot of incomplete and incorrect values. 

Such data can diminish and undermine the accuracy and consistency thus, 

compromising the system. This makes it necessary to implement strategies to 

improve the quality of data to be properly utilized for the Machine Learning 

Techniques that will be applied later effectively and also to be used for other 

tasks, data pre-processing is performed, which is essential to obtain accurate 

results and successfully recommend the precise content to the user. We generally 

perform this entire process in two steps:  

 

a) Data Cleaning by Removing Missing Values- We should remove all the 

instances that have zero (0) as their value or contain any missing values as they 

are irrelevant and bring inconsistency to the input data. Therefore, these instances 

are eliminated. It also helps us to reduce the dimensionality of data which helps 

us to decrease the required computational time improving efficiency.  

 

b) Splitting of data- After cleaning irrelevant parts of the input data, we generally 

normalize the data, i.e., we transform the columns of the input data set to the same 

scale to prepare the data for training and testing the machine learning model. The 

training process helps to correlate the processed output against the actual output. 

This helps us to modify the training model, which is the most suitable to achieve 

our goal.  

 

3) Exploratory Data Analysis and Visualization: In this step, we create the 

necessary graphs and plots to display different data distributions and observe 

relationships between data which will allow us to understand the data in more 

depth and draw inferences It is a very critical part since it determines how the 

model will be built.  

 

4) Apply Machine Learning to Create a Model: When data is finally ready, we 

will apply the different Machine Learning algorithms discussed earlier, then 

analyse the performance of each technique using certain metrics as it will play a 

major role in the final model which will recommend movies to the customers. 
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CHAPTER 4 

IMPLEMENTATION 
 

4.1. Parameters Used 

The proposed system is designed and based on the following parameters:  

 

1) User preferences: The system considers the user’s past viewing history, ratings, 

and likes/dislikes to determine their preferences.  

 

2) Movie attributes: The system takes into account various attributes of the 

movies such as genre, release year, language, director, actors, and plot to 

recommend movies to the user.  

 

3) Similarity: The system may recommend movies that are similar to the user’s 

previously viewed movies or movies they have liked.  

 

4) Methodology: Popularity-based, Collaborative filtering, Content-based 

filtering and Hybrid filtering. 

 

5) Diversity: The system may recommend movies that are different from the 

user’s usual preferences to introduce them to new genres or styles of movies.  

 

4.2. Dataset  

The performance of a machine learning algorithm is primarily influenced by the 

accuracy and correctness of the input data set and the number of parameters 

considered. Our input data set is an open-source dataset from the online movie 

critique giant “Movie Lens (TMDB)”. The objective of our data set is to provide 

data that is helpful in analysing and recommending movies to the user that the 

user may be interested in and has a higher chance of viewing, generating revenue 

for any online streaming platform. This dataset contains the following CSV files:  

 

1) movies metadata.csv: The Movies Metadata file is the primary file which gives 

a comprehensive overview of the movies included in the MovieLens dataset. 

With its extensive collection of information on 45,000 movies, the Movies 

Metadata file is a cornerstone of the MovieLens dataset.  

 

2) keywords.csv: This file includes the key plot elements represented by 

keywords for each movie.  

 

3) credits.csv: This file is dedicated to provide a comprehensive overview of the 

talented individuals who were involved in behind-the-scene works in the 

MovieLens movies, its cast and crew which are critical components of any movie.  
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4) links.csv: This file provides an easy, straightforward and user-friendly way to 

cross-reference the movies in the dataset with their external identifiers i.e., with 

their corresponding IDs on TMDB and IMDB.  

 

5) links small.csv: While the full MovieLens dataset includes a vast collection of 

movies, this file provides information on a smaller subset with 9,000 movies with 

their IMDB and TMDB IDs just in case if a small number of movies ae required 

for cross-referencing with other databases.  

 

6) ratings small.csv: The ratings file includes a subset of 100,000 rating data on 

how 700 users rated 9,000 movies in the links small.csv file, offering insight into 

the preferences and behaviour of our user community. 

 
TABLE II 

Dataset files with their respective Data Variables 

 

Dataset Data Variables 

movies 

metadata.csv 

10 variables including budget, 

language, genre, etc. 

keywords.csv 2 variables including id and 

keyword. 

credits.csv 3 variables including cast, crew and 

id. 

links.csv 3 variables including movieId, 

imdbId and tmdbId. 

links_small.csv variables including movieId, 

imdbId and tmdbId. 

ratings_small.csv 4 variables including userId, 

movieId, rating and timestamp. 

 

 

Table I shows the dataset files and their respective variables (data columns) used 

to experiment on the designed system. 

 

Content-Based filtering does not require a train-test split because it is using a 

similarity metric to generate recommendations based on the similarity of the 

metadata of the input movie to the metadata of all movies in the dataset. 

Collaborative filtering uses K-Fold from the surprise library to split the dataset 

into k folds for cross-validation which means that the data is split into k parts (or 

“folds”) of roughly equal size, and in each iteration of the cross-validation, one 

of the folds is used as the test set and the other four are used as the training set. 

This process is repeated k times, with each fold used once as the test set. So, there 

is no explicit train-test split required for collaborative filtering. Hybrid filtering 
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does not require a train-test split because the model was trained on the entire 

dataset. 

 

While our proposed system has been designed with the specific attributes of the 

MovieLens dataset in mind, it can be adapted for use with other datasets as well. 

With some modifications to the input data and model parameters, our system can 

be applied to a wide range of datasets with varying attributes and characteristics. 

  

4.3. Hardware and Software Requirements  

When installing or running any application, including machine learning 

algorithms, it is essential to consider both hardware and software requirements. 

Hardware requirements specify the minimum or recommended specifications for 

the physical components of a computer system, such as the CPU, RAM, storage, 

GPU, and other components, that are necessary to run a particular software or 

application. Software requirements refer to the minimum or recommended 

specifications for the software or application that is being installed or run on a 

computer system. Software requirements typically include the operating system, 

software dependencies (such as libraries or frameworks), and any other 

components or configuration settings required by the software to function 

properly. In the case of machine learning, the size and complexity of the dataset, 

as well as the specific algorithms and techniques being used, will often determine 

the necessary hardware and software requirements for optimal performance. This 

section specifies the hardware and software requirements for the proposed system 

which are as follows:  

 

1) Recommended Operating Systems: 

 Windows: Windows 8 or higher 

 Mac: macOS Sierra or higher 

 Linux: Ubuntu 

 

2) Hardware Requirements 

a) Processor: A multi-core processor of minimum 1 GHz; Recommended 2 

GHz or more; like Intel Core i5 or higher is recommended for faster data 

processing.  

b) Memory: A minimum of 4 GB RAM; Recommended 8 GB or more.  

c) Storage: A minimum of 32 GB; Recommended 64 GB or more of HDD 

(Hard Disk Drive) or SSD (Solid State Drive).   

d) Graphics Processing Unit (GPU): A minimum of consumer-grade GPUs 

such as NVIDIA GTX 16 series or AMD Radeon RX GPUs or higher-end 

GPUs.   

e) Internet Connectivity: Ethernet Connection (LAN) or Wireless adapter 

(Wi-Fi)   
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3) Software Requirements 

 Programming Language: Python v.3.0 or higher. 

 Programming Libraries: Pandas, Numpy, Matplotlib, Seaborn, Scikit 

Learn, Surprise. 

 IDE (Integrated Development Environment): Google Colab, Jupyter 

Notebook. 

 

4) Supported Browsers: 

 Google Chrome 

 Mozilla Firefox 

 Microsoft Edge 

 

 

4.4. Technologies Used 

1. Machine Learning: In Machine learning, a computer program learns some tasks 

T using knowledge E (experience i.e. past data) and its performance P improves 

at doing those tasks. Thus, machine learning is the concept in which a machine 

learns on its own without it being needed to be programmed explicitly. In machine 

learning, we generally build (program) a model using an algorithm, which can be 

used for the input data to produce the desired results.  Figure 5 shows this basic 

concept of machine learning i.e. in machine learning, all n inputs (Input 1, Input 

2, Input 3, ...  Input n) which are to be given to the machine learning model are 

known and the output that the model should produce is also known, we just have 

to find the best and most efficient unknown model that can be used to get the 

required output, based on these known parameters. 

 

 
 

Fig.5. Machine Learning 
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2. Filtering Algorithms: These are algorithms that help in filtering out users or 

items in recommendation systems. These are generally based on user reviews and 

ratings or past user-item interactions. Some of the major filtering approaches are 

Collaborative Filtering, Content-based Filtering, and Hybrid Filtering. 

 

4.5. Tools Used 

 

1. Python: Python is a dynamic, object-oriented, high-level programming 

language known for its interpreted nature. Its dynamic semantics and a wide range 

of built-in data structures along with it employing dynamic typing and binding, 

makes it highly appealing and a preferred choice for Rapid Application 

Development and also as a scripting or glue language for connecting different 

components. With its emphasis on readability, Python's simple, straightforward 

and easy-to-learn syntax contributes in the reduction of the burden and cost of 

program maintenance. The language promotes modular programming and code 

reuse through support for modules and packages. Python's versatility extends to 

its availability on major platforms, providing the Python interpreter and a 

comprehensive standard library at no cost in both source and binary forms, 

enabling widespread distribution. 

 

 

The Python libraries which have been used in our project are: 

A. Pandas: pandas is a software library present in the Python programming 

language for data manipulation and analysis. In particular, it offers data 

structures and operations for manipulating numerical tables and time series. 

 

B. NumPy: NumPy stands for Numerical Python and was created in 2005 by 

Travis Oliphant. NumPy is a Python library used for working with arrays. It 

also has functions for working in domain of linear algebra, Fourier transform, 

and matrices. 

 

C. Matplotlib: Matplotlib is a python library used to create 2D graphs and plots 

by using python scripts. It has a module named pyplot which makes things 

easy for plotting by providing feature to control line styles, font properties, 

formatting axes etc. It supports a very wide variety of graphs and plots namely 

- histogram, bar charts, power spectra, error charts etc. It is used along with 

NumPy. 

 

D. Seaborn: Seaborn is an open-source Python library built on top of matplotlib. 

It is used for data visualization and exploratory data analysis. Seaborn works 

easily with data frames and the Pandas library. The graphs created can also 

be customized easily. 
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E. Scikit-learn (Sklearn): Scikit-learn (Sklearn) is the most useful and robust 

library for machine learning in Python. It provides a selection of efficient 

tools for machine learning and statistical modeling including classification, 

regression, clustering and dimensionality reduction via a consistence 

interface in Python. This library, which is largely written in Python, is built 

upon NumPy, SciPy and Matplotlib. 

 

2. Google Colab: Colaboratory, often referred to as "Colab," is a Google 

Research product that acts as an online Integrated Development Environment 

(IDE), which enables users to write and execute Python code directly in their web 

browsers. It is exceptionally valuable for a wide range of applications, including 

machine learning, data analysis, and educational purposes. In technical terms, 

Colab functions as a hosted Jupyter notebook service, streamlining the setup 

process for users and providing them with cost-free access to computing 

resources, including GPUs., without any charges. 

 

 

4.6.  Source Code 

Importing the Libraries 
!pip install scikit-surprise 

 

import numpy as np  
import pandas as pd  
import os 
for dirname, _, filenames in os.walk('/kaggle/input'): 
    for filename in filenames: 
        print(os.path.join(dirname, filename)) 
         
         
%matplotlib inline 
import matplotlib.pyplot as plt 
import seaborn as sns 
from scipy import stats 
from ast import literal_eval 
from sklearn.feature_extraction.text import TfidfVectorizer, CountVe
ctorizer 
from sklearn.metrics.pairwise import linear_kernel, cosine_similarit
y 
from nltk.stem.snowball import SnowballStemmer 
from nltk.stem.wordnet import WordNetLemmatizer 
from nltk.corpus import wordnet 
from surprise import Reader, Dataset, SVD 
from surprise.model_selection import cross_validate 
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pd.options.display.max_columns=None 
 

import warnings; warnings.simplefilter('ignore') 
 

from google.colab import drive 
drive.mount('/content/drive') 

 

Reading the Larger Dataset 

meta = pd. read_csv('/content/drive/MyDrive/Colab Notebooks/movies_m
etadata.csv') 
meta.head() 

    
Let's identify the total number of null values in the data: 

meta.isnull().sum() 

 

Cleaning the Dataset 

meta['genres'] = meta['genres'].fillna('[]').apply(literal_eval).app
ly(lambda x: [i['name'] for i in x] if isinstance(x, list) else []) 

 

meta['production_companies']= meta['production_companies'].fillna('[
]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if is
instance(x, list) else []) 
 

meta['production_countries'] = meta['production_countries'].fillna('
[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if i
sinstance(x, list) else []) 
 

meta['spoken_languages'] = meta['spoken_languages'].fillna('[]').app
ly(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstanc
e(x, list) else []) 
 

meta['year'] = pd.to_datetime(meta['release_date'], errors='coerce')
.apply(lambda x: str(x).split('-')[0] if x != np.nan else np.nan) 

 

Let's take a final look at the data before moving to our next 
steps 

meta.head() 

    

meta['original_language'].drop_duplicates().shape[0] 
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lang_dframe = pd.DataFrame(meta['original_language'].value_counts()) 
lang_dframe['language'] = lang_df.index 
lang_dframe.columns = ['number', 'language'] 
lang_dframe.head() 

 

plt.figure(figsize=(12,5)) 
sns.barplot(x='language', y='number', data=lang_dframe.iloc[1:11]) 
plt.show() 

def numeric_clean (x): 
    try: 
        return float(x) 
    except: 
        return np.nan 

meta['popularity'] = meta['popularity'].apply(clean_numeric).astype(
'float') 
meta['vote_count'] = meta['vote_count'].apply(clean_numeric).astype(
'float') 
meta['vote_average'] = meta['vote_average'].apply(clean_numeric).ast
ype('float') 

meta['popularity'].describe() 

 

order_of_months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 
'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] 
order_of_days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] 

 

def get_monthOfYear(x): 
    try: 
        return order_of_months[int(str(x).split('-')[1]) - 1] 
    except: 
        return np.nan 
def get_dayOfWeek(x): 
    try: 
        year, month, day = (int(i) for i in x.split('-'))     
        ans = datetime.date(year, month, day).weekday() 
        return order_of_days[answer] 
    except: 
        return np.nan 

meta['day'] = meta['release_date'].apply(get_day) 
meta['month'] = meta['release_date'].apply(get_month) 
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plt.figure(figsize=(12,6)) 
plt.title("Number of Movies released in a particular month.") 
sns.countplot(x='month', data=meta, order=month_order) 

 

mean_month = pd.DataFrame(meta[meta['revenue'] > 1e8].groupby('month
')['revenue'].mean()) 
mean_month['month'] = mean_month.index 
plt.figure(figsize=(12,6)) 
plt.title("Average Gross by the Month for Blockbuster Movies") 
sns.barplot(x='month', y='revenue', data=mean_month, order= order_of
_month) 

 

year_count = meta.groupby('year')['title'].count() 
plt.figure(figsize=(18,5)) 
year_count.plot() 

 

months = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6
, 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12} 

dframe_21 = meta.copy() 
dframe_21['year'] = dframe_21[df_21['year'] != 'NaT']['year'].astype
(int) 
dframe_21 = dframe_21[dframe_21['year'] >=2000] 
hmap_21thYear = pd.pivot_table(data=dframe_21, index='month', column
s='year', aggfunc='count', values='title') 
hmap_21thYear = hmap_21thYear.fillna(0) 
sns.set(font_scale=1) 
f, ax = plt.subplots(figsize=(16, 8)) 
sns.heatmap(hmap_21thYear, annot=True, linewidths=.5, ax=ax, fmt='n'
, yticklabels=order_of_months) 

 

meta['runtime'] = meta['runtime'].astype('float') 
 
 

plt.figure(figsize=(12,6)) 
sns.distplot(meta[(meta['runtime'] < 300) & (meta['runtime'] > 0)]['
runtime']) 

The Simple Popularity Based Recommender 
Weighted Rank (WR) = (v ÷ (v+m)) × R + (m ÷(v+m)) × C 

where, 
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       R = average for the movie (mean) = (Rating) 
       v = number of votes for the movie = (votes) 
       m = minimum votes required to be listed in the Top 250  
       C = the mean vote across the whole report  
                          

count_votes = meta[meta['vote_count'].notnull()]['vote_count'].astyp
e('int') 
average_votes = meta[meta['vote_average'].notnull()]['vote_average']
.astype('int') 

C = averages_votes.mean() 
print('The Mean value of the voting averages= ',C) 
m = count_votes.quantile(0.96) 
print('The minimum vote count for a movie to consider= ',m) 

 

Creating the qualified database- upon whom we shall perfrom 
the next estimations 

qualified = meta[(meta['vote_count'] >= m) & (meta['vote_count'].not
null()) & (meta['vote_average'].notnull())][['title', 'year', 'vote_
count', 'vote_average', 'popularity', 'genres']] 
qualified['vote_count'] = qualified['vote_count'].astype('int') 
qualified['vote_average'] = qualified['vote_average'].astype('int') 
print('The structure of the qualified database is= ',qualified.shape
) 

 

def rating_weighted(x): 
    v = x['vote_count'] 
    R = x['vote_average'] 
    return (v/(v+m) * R) + (m/(m+v) * C) 

qualified['wr'] = qualified.apply(rating_weighted, axis=1) 
qualified = qualified.sort_values('wr', ascending=False).head(250) 

 

Top Movies 

qualified.head(15) 

 
       vote_average  popularity  \ 
15480             8   29.108149    
12481             8  123.167259    
22879             8   32.213481    
2843              8   63.869599    
4863              8   32.070725    
292               8  140.950236    
314               8   51.645403    
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7000              8   29.324358    
351               8   48.307194    
5814              8   29.423537    
256               8   42.149697    
1225              8   25.778509    
834               8   41.109264    
1154              8   19.470959    
46                8   18.457430    
 

Pivoting down the entire dataset based on genres 

s = meta.apply(lambda x: pd.Series(x['genres']),axis=1).stack().rese
t_index(level=1, drop=True) 
s.name = 'genre' 
g_md = meta.drop('genres', axis=1).join(s) 
g_md.head(8) 

 

   vote_average  vote_count  year  day month      genre   
0           7.7      5415.0  1995  NaN   Oct  Animation   
0           7.7      5415.0  1995  NaN   Oct     Comedy   
0           7.7      5415.0  1995  NaN   Oct     Family   
1           6.9      2413.0  1995  NaN   Dec  Adventure   
1           6.9      2413.0  1995  NaN   Dec    Fantasy   
1           6.9      2413.0  1995  NaN   Dec     Family   
2           6.5        92.0  1995  NaN   Dec    Romance   
2           6.5        92.0  1995  NaN   Dec     Comedy   

 

def chart_builder(genre, percentile=0.90): 
    dfr = g_md [g_md ['genre'] == genre] 
    count_votes = dfr[dfr['vote_count'].notnull()]['vote_count'].ast
ype('int') 
    average_votes = df[df['vote_average'].notnull()]['vote_average']
.astype('int') 
     

C = average_votes.mean() 
    m = count_votes.quantile(percentile) 
     
    qual = dfr[(dfr['vote_count'] >= m) & (dfr['vote_count'].not
null()) & (dfr['vote_average'].notnull())][['title', 'year', 'vo
te_count', 'vote_average', 'popularity']] 
    qual['vote_count'] = qual['vote_count'].astype('int') 
    qual['vote_average'] = qual['vote_average'].astype('int') 
     
    qual['wr'] = qual.apply(lambda x: (x['vote_count']/(x['vote_
count']+m) * x['vote_average']) + (m/(m+x['vote_count']) * C), a
xis=1) 
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     qualif = qual.sort_values('wr', ascending=False).head(250) 
     
 return qualif 

Top Horror Movies 

chart_builder('Horror').head(15) 

                                                title  year  vote_co
unt  \ 
1213                                      The Shining  1980        3
890    
1176                                           Psycho  1960        2
405    
1171                                            Alien  1979        4
564    
41492                                           Split  2016        4
461    
14236                                      Zombieland  2009        3
655    
1158                                           Aliens  1986        3
282    
21276                                   The Conjuring  2013        3
169    
42169                                         Get Out  2017        2
978    
1338                                             Jaws  1975        2
628    
8147                                Shaun of the Dead  2004        2
479    
8230                                              Saw  2004        2
255    
1888                                     The Exorcist  1973        2
046    
39097                                 The Conjuring 2  2016        2
018    
6353                                    28 Days Later  2002        1
816    
12277  Sweeney Todd: The Demon Barber of Fleet Street  2007        1
745    
 
   

Top Romantic Movies 

Chart_builder('Romance').head(15) 

                             title  year  vote_count  vote_average  
\ 
10309  Dilwale Dulhania Le Jayenge  1995         661             9    
351                   Forrest Gump  1994        8147             8    
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876                        Vertigo  1958        1162             8    
40251                   Your Name.  2016        1030             8    
883               Some Like It Hot  1959         835             8    
1132               Cinema Paradiso  1988         834             8    
19901                     Paperman  2012         734             8    
37863                  Sing Street  2016         669             8    
882                  The Apartment  1960         498             8    
38718               The Handmaiden  2016         453             8    
3189                   City Lights  1931         444             8    
24886             The Way He Looks  2014         262             8    
1639                       Titanic  1997        7770             7    
19731      Silver Linings Playbook  2012        4840             7    
40882                   La La Land  2016        4745             7    

 

Content Based Recommender 
 

lk_small = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/links
_small.csv') 
lk_small = lk_small[lk_small['tmdbId'].notnull()]['tmdbId'].astype('
int') 

lk_small.head() 

 

meta = meta.drop([19730, 29503, 35587]) 

meta['id'] = meta['id'].astype('int') 

smdes = meta[meta['id'].isin(lk_small)] 
smdes.shape 

 

Movie Description Based Recommender 

smdes['tagline'] = smdes['tagline'].fillna('') 
smdes['description'] = smdes['overview'] + smdes['tagline'] 
smdes['description'] = smdes['description'].fillna('') 

 

We shall be using Tfidfvectorizer for this step. 

tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, st
op_words='english') 
tfidf_matrix = tf.fit_transform(smd['description']) 
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tfidf_matrix.shape 

cosine_simil = linear_kernel(tfidf_matrix, tfidf_matrix) 
cosine_simil[0] 

smdes = smdes.reset_index() 
titles1 = smdes['title'] 
indices1 = pd.Series(smdes.index, index=smdes['title']) 

def get_rec(title): 
    idx = indices1[title] 
    similar_scores = list(enumerate(cosine_simil[idx])) 
    similar_scores = sorted(similar_scores, key=lambda x: x[1], reve
rse=True) 
    similar_scores = similar_scores[1:21] 
    movie_hasIndices = [i[0] for i in similar_scores] 
    return titles.iloc[movie_hasIndices] 

 

movie='3 Idiots' 
print("Description of the Movie: ", movie) 
print('-------------------------------------------------------------
--------') 
print(smdes[smdes['title']==movie]['overview']) 

Description of the Movie:  3 Idiots 
--------------------------------------------------------------------
- 

get_rec('3 Idiots').head(20) 

2336                             Ferris Bueller's Day Off 
8161                                  Student of the Year 
262                                              Outbreak 
2658                                  The Next Best Thing 
4378    Come Back to the 5 & Dime, Jimmy Dean, Jimmy Dean 
1861                                   Enemy of the State 
3098                                          Bring It On 
7866                                            Contagion 
4543                                    What a Girl Wants 
5373                                              College 
149                                               Hackers 
3875                                            The Party 
5462                                      Our Hospitality 
5466                                            Overboard 
3496                                             Suspiria 
2882                                                Loser 
308                                 The Baby-Sitters Club 
1937                                          Patch Adams 
3277                                    Extreme Prejudice 
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5870                       The Lion King 2: Simba's Pride 
Name: title, dtype: object 

 

movie='The Dark Knight' 
print("Description of the Movie: ", movie) 
print('-------------------------------------------------------------
--------') 
print(smdes[smdes['title']==movie]['overview']) 

Description of the Movie:  The Dark Knight 
--------------------------------------------------------------------
- 
6900    Batman raises the stakes in his war on crime. ... 
Name: overview, dtype: object 

get_rec('The Dark Knight').head(20) 

Metadata Based Recommender 
 

cred = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/credits.c
sv') 
keywrd = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/keyword
s.csv') 

keywrd.head() 

cred.head() 

keywrd['id'] = keywrd['id'].astype('int') 
cred['id'] = cred ['id'].astype('int') 
meta['id'] = meta['id'].astype('int') 
meta.shape 

 

meta = meta.merge(cred, on='id') 
meta = meta.merge(keywrd, on='id') 

 

smd2 = meta[meta['id'].isin(lk_small)] 
smd2.shape 

smd2['cast'] = smd2['cast'].apply(literal_eval) 
smd2['crew'] = smd2['crew'].apply(literal_eval) 
smd2['keywords'] = smd2['keywords'].apply(literal_eval) 
smd2['cast_size'] = smd2['cast'].apply(lambda x: len(x)) 
smd2['crew_size'] = smd2['crew'].apply(lambda x: len(x)) 
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def get_dir(x): 
    for i in x: 
        if i['job'] == 'Director': 
            return i['name'] 
    return np.nan 

smd2['director'] = smd2['crew'].apply(get_dir) 

smd2['cast'] = smd2['cast'].apply(lambda x: [i['name'] for i in x] i
f isinstance(x, list) else []) 
smd2['cast'] = smd2['cast'].apply(lambda x: x[:4] if len(x) >=4 else 
x) 

smd2['keywords'] = smd2['keywords'].apply(lambda x: [i['name'] for i 
in x] if isinstance(x, list) else []) 

smd2['cast'] = smd2['cast'].apply(lambda x: [str.lower(i.replace(" "
, "")) for i in x]) 

smd2['director'] = smd2['director'].astype('str').apply(lambda x: st
r.lower(x.replace(" ", ""))) 
smd2['director'] = smd2['director'].apply(lambda x: [x,x,x]) 

 

Keywords 

sm = smd2.apply(lambda x: pd.Series(x['keywords']),axis=1).stack().r
eset_index(level=1, drop=True) 
sm.name = 'keyword' 

sm = sm.value_counts() 
sm[:10] 

sm = sm[s > 1] 

stemmer = SnowballStemmer('english') 
stemmer.stem('sportingly') 

{"type":"string"} 

 

def keyword_filter(x): 
    words = [] 
    for i in x: 
        if i in s: 
            words.append(i) 
    return words 
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smd2['keywords'] = smd2['keywords'].apply(keyword_filter) 
smd2['keywords'] = smd2['keywords'].apply(lambda x: [stemmer.stem(i) 
for i in x]) 
smd2['keywords'] = smd2['keywords'].apply(lambda x: [str.lower(i.rep
lace(" ", "")) for i in x]) 

smd2['soup'] = smd2['keywords'] + smd2['cast'] + smd2['director'] + 
smd2['genres'] 
smd2['soup'] = smd2['soup'].apply(lambda x: ' '.join(x)) 

 

cnt = CountVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, s
top_words='english') 
cnt_matrix = cnt.fit_transform(smd2['soup']) 

cosine_similar = cosine_similar (cnt_matrix, cnt_matrix) 

smd2 = smd2.reset_index() 
title2 = smd2['title'] 
indice2 = pd.Series(smd2.index, index=smd2['title']) 

get_rec('The Dark Knight').head(15) 

 

get_rec('Mrs. Doubtfire').head(15) 

164                                           Nine Months 
2553                                     Bicentennial Man 
519                                            Home Alone 
2388                       Home Alone 2: Lost in New York 
1958                                              Stepmom 
7538    Percy Jackson & the Olympians: The Lightning T... 
8996                                               Pixels 
7377                              I Love You, Beth Cooper 
1708                            Adventures in Babysitting 
3840             Harry Potter and the Philosopher's Stone 
4366              Harry Potter and the Chamber of Secrets 
6357                                                 Rent 
2833                                           Parenthood 
4378                                            Houseboat 
6057                                           Fat Albert 
Name: title, dtype: object 

 

def enhanced_recommendations(title): 
    idx = indices[title] 
    sim_scores = list(enumerate(cosine_simil[idx])) 
    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True
) 
    sim_scores = sim_scores[1:26] 
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    movie_indices = [i[0] for i in sim_scores] 
     
    movies = smd2.iloc[movie_indices][['title', 'vote_count', 'vote_
average', 'year']] 
    count_votes = movies[movies['vote_count'].notnull()]['vote_count
'].astype('int') 
    average_votes = movies[movies['vote_average'].notnull()]['vote_a
verage'].astype('int') 
 

    C = average_votes.mean() 
    m = count_votes.quantile(0.50) 
   

  qualif = movies[(movies['vote_count'] >= m) & (movies['vote_count'
].notnull()) & (movies['vote_average'].notnull())] 
    qualif['vote_count'] = qualif['vote_count'].astype('int') 
    qualif['vote_average'] = qualif['vote_average'].astype('int') 
    qualif['wr'] = qualif.apply(rating_weighted, axis=1) 
    qualif = qualif.sort_values('wr', ascending=False).head(10) 
    return qualif 

 

enhanced_recommendations('The Dark Knight') 

                      title  vote_count  vote_average  year        w
r 
7648              Inception       14075             8  2010  7.89156
8 
8613           Interstellar       11187             8  2014  7.86494
8 
6623           The Prestige        4510             8  2006  7.68767
1 
3381                Memento        4168             8  2000  7.66515
8 
8031  The Dark Knight Rises        9263             7  2012  6.89714
4 
6218          Batman Begins        7511             7  2005  6.87486
3 
1134         Batman Returns        1706             6  1992  5.80924
6 
4145               Insomnia        1181             6  2002  5.75226
8 
132          Batman Forever        1529             5  1995  5.06706
6 
9162      London Has Fallen        1656             5  2016  5.06325
1 
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enhanced_recommendations('Mrs. Doubtfire') 

                                                  title  vote_count  
\ 
3840           Harry Potter and the Philosopher's Stone        7188    
4366            Harry Potter and the Chamber of Secrets        5966    
519                                          Home Alone        2487    
2388                     Home Alone 2: Lost in New York        2459    
7538  Percy Jackson & the Olympians: The Lightning T...        2079    
2553                                   Bicentennial Man         998    
1958                                            Stepmom         286    
837              Homeward Bound: The Incredible Journey         218    
2833                                         Parenthood         177    
1708                          Adventures in Babysitting         169    
 

Collaborative Filtering Application 
 

reader = Reader() 
ratings = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/rating
s_small.csv') 
ratings.head() 

 

rating_counts = pd.DataFrame(ratings['rating'].value_counts()).reset
_index() 
rating_counts.columns = ['Labels', 'Ratings'] 
rating_counts 

sns.set_style('whitegrid') 
sns.set(font_scale=1.5) 
%matplotlib inline 
 
 

sns.distplot(ratings['rating'].fillna(ratings['rating'].median())) 

<Axes: xlabel='rating', ylabel='Density'> 

 

fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(15,7)) 
sns.countplot(rating_counts['Ratings'], ax=ax1) 
ax1.set_xlabel('Rating Distribution', fontsize=10) 
ax1.set_ylabel('Count', fontsize=10) 
 
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0.1, 0) 
ax2.pie(rating_counts["Ratings"], explode=explode, labels=rating_cou
nts.Labels, autopct='%1.1f%%', shadow=True, startangle=0) 
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ax2.axis('equal') 
plt.title("Rating Ratio") 
plt.show() 

 

data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']]
, reader) 
 

svd = SVD() 
cross_validate(svd, data, measures=['RMSE', 'MAE'],cv=5) 

trainset = data.build_full_trainset() 
svd.fit(trainset) 

 

user_rating=pd.merge(ratings,meta,left_on='movieId',right_on='id',ho
w='inner') 
user_ratings_final=user_rating[['userId', 'movieId', 'rating','origi
nal_title']] 
user_ratings=user_ratings_final.sort_values(by='userId') 
user_ratings.head() 

     userId  movieId  rating                  original_title 
0         1     1371     2.5                       Rocky III 
93        1     2105     4.0                    American Pie 
140       1     2193     2.0                        My Tutor 
47        1     1405     1.0                           Greed 
182       1     2294     2.0  Jay and Silent Bob Strike Back 

 

user_ratings[user_ratings['userId'] == 7] 

       userId  movieId  rating                            original_t
itle 
18645       7      671     4.0  Harry Potter and the Philosopher's S
tone 
4200        7      500     3.0                            Reservoir 
Dogs 
18739       7      745     5.0                           The Sixth S
ense 
18801       7      780     3.0                La passion de Jeanne d
'Arc 
11487       7     1376     3.0                             Sweet Six
teen 
48          7     1405     5.0                                     G
reed 
8557        7      260     5.0                              The 39 S
teps 
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4770        7      539     3.0                                    Ps
ycho 
3242        7      377     3.0                 A Nightmare on Elm St
reet 
19019       7      786     2.0                             Almost Fa
mous 
2039        7      272     3.0                             Batman Be
gins 
5345        7      588     4.0                               Silent 
Hill 
19360       7     1408     1.0                          Cutthroat Is
land 
8395        7      141     4.0                              Donnie D
arko 
6410        7      318     5.0                  The Million Dollar H
otel 
2           7     1371     3.0                                 Rocky 
III 
8345        7      112     4.0                   Italiensk for begyn
dere 
19290       7     1394     3.0                                Nostal
ghia 
4906        7      551     4.0                    The Poseidon Adven
ture 
11415       7     1374     4.0                                  Rock
y IV 
19088       7      924     4.0                          Dawn of the 
Dead 
19236       7     1375     3.0                                   Roc
ky V 
19211       7     1373     2.0                   The Discovery of He
aven 
11368       7     1372     3.0                             Blood Dia
mond 
3042        7      364     3.0                            Batman Ret
urns 
11169       7     1278     3.0                              The Drea
mers 
18620       7      534     4.0                      Terminator Salva
tion 
6722        7      595     3.0                     To Kill a Mocking
bird 
18678       7      708     3.0                      The Living Dayli
ghts 
3866        7      480     4.0                           Monsoon Wed
ding 
14416       7      104     3.0                                Lola r
ennt 
9707        7      594     4.0                              The Term
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inal 
18211       7       21     3.0                        The Endless Su
mmer 
18306       7      198     2.0                        To Be or Not t
o Be 
5558        7      590     4.0                                 The H
ours 
8976        7      380     4.0                                  Rain 
Man 
18349       7      207     3.0                        Dead Poets Soc
iety 
5760        7      592     3.0                          The Conversa
tion 
8862        7      329     3.0                             Jurassic 
Park 
18377       7      316     2.0                              Halbe Tr
eppe 
10358       7     1073     3.0                            Arlington 
Road 
10638       7     1125     3.0                                Dreamg
irls 
9561        7      541     4.0               The Man with the Golden 
Arm 
457         7      110     5.0                    Trois couleurs : R
ouge 
18572       7      345     3.0                            Eyes Wide 
Shut 
18522       7      333     3.0                       Bollywood/Holly
wood 

 

movie1=meta['original_title']=='The Conjuring' 
meta[movie1][['original_title','id']] 

 

svd.predict(7, 138843, 3) 

Prediction(uid=7, iid=138843, r_ui=3, est=3.2986816354722617, detail
s={'was_impossible': False}) 
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A Hybrid Recommender 
 

def convert_int(x): 
    try: 
        return int(x) 
    except: 
        return np.nan 

 

id_mp = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/links_sm
all.csv')[['movieId', 'tmdbId']] 
id_mp['tmdbId'] = id_mp['tmdbId'].apply(convert_int) 
id_mp.columns = ['movieId', 'id'] 
id_mp = id_mp.merge(smd2[['title', 'id']], on='id').set_index('title
') 

indices_mp = id_mp.set_index('id') 

 

def recommend_my_movie(userId, title): 
    idx = indices1[title] 
    tmdbId = id_mp.loc[title]['id'] 
    movie_id = id_mp.loc[title]['movieId'] 
    similar_scores = list(enumerate(cosine_simil[int(idx)])) 
    similar_scores = sorted(similar_scores, key=lambda x: x[1], reve
rse=True) 
    similar_scores = similar_scores[1:26] 
    movie_hasIndices = [i[0] for i in sim_scores] 
    movies = smd2.iloc[movie_hasIndices][['title', 'vote_count', 'vo
te_average', 'year', 'id']] 
    movies['est'] = movies['id'].apply(lambda x: svd.predict(userId, 
indices_mp.loc[x]['movieId']).est) 
    movies = movies.sort_values('est', ascending=False) 
    return movies.head(10) 

 

recommend_my_movie(7, "Inception") 

                             title  vote_count  vote_average  year      
id  \ 
3381                       Memento      4168.0           8.1  2000      
77    
6981               The Dark Knight     12269.0           8.3  2008     
155    
6623                  The Prestige      4510.0           8.0  2006    
1124    
6218                 Batman Begins      7511.0           7.5  2005     
272    
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8613                  Interstellar     11187.0           8.1  2014  
157336    
8031         The Dark Knight Rises      9263.0           7.6  2012   
49026    
4173               Minority Report      2663.0           7.1  2002     
180    
6640                       Déjà Vu      1519.0           6.6  2006    
7551    
4145                      Insomnia      1181.0           6.8  2002     
320    
5580  The Three Lives of Thomasina        12.0           6.8  1963   
15081    
 

           est   
3381  4.083157   
6981  4.036027   
6623  3.932428   
6218  3.810600   
8613  3.640355   
8031  3.514015   
4173  3.477439   
6640  3.421840   
4145  3.397775   
5580  3.372996   

 

recommend_my_movie(25, "Inception") 

                      title  vote_count  vote_average  year      id       
est 
6623           The Prestige      4510.0           8.0  2006    1124  
3.994742 
6981        The Dark Knight     12269.0           8.3  2008     155  
3.691721 
3381                Memento      4168.0           8.1  2000      77  
3.659017 
8613           Interstellar     11187.0           8.1  2014  157336  
3.608549 
6218          Batman Begins      7511.0           7.5  2005     272  
3.499123 
4173        Minority Report      2663.0           7.1  2002     180  
3.445458 
8031  The Dark Knight Rises      9263.0           7.6  2012   49026  
3.302625 
7828       I Am Number Four      1606.0           5.9  2011   46529  
3.264680 
2085              Following       363.0           7.2  1998   11660  
3.228714 
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7948             Stake Land       290.0           6.2  2010   52015  
3.219634 

 

4.7. Experimental Recommendations 

This section depicts our experimental results which are the desired 

recommendations from a movie recommendation system. We have shared the 

output screenshots of the personalized recommendations provided by the 

different recommendation algorithms used, shown in Figures 6, 7, 8, 9 and 10 

which will help us to easily understand and compare all algorithms used to design 

a movie recommendation system: 

 

Fig. 6. Popularity-based Recommendations 

 

Popularity-based movie recommendations lack practicality because they 

overlook the unique and user specific preferences of individual users, are very 

limited in recommendations as it follows the general trend and faces difficulty in 

handling new and unknown movies. 
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Fig. 7. Description-based Content Filtering Recommendations 

 

 

Fig. 8. Movie metadata-based Content Filtering Recommendations 
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Fig. 9. Collaborative Filtering Recommendations 

 

Now, Figure 10 combines the recommendations of the previously displayed 

recommendation systems and gives us their hybrid recommendations. 

 

Fig. 10. Hybrid Filtering Recommendations 
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CHAPTER 5 

RESULTS 

 

First, we have visualized the distribution of the movies in their respective genres 

according to the input dataset in Figure 11. 

 

 

 
Fig.11. Distribution of movies in their respective genre 

 

Figure 11 clearly shows that the Drama genre holds the lead, accounting for the 

highest number of movies. In close succession, are the Comedy, Thriller, 

Romance, Action, and other genres, showcasing the diverse range of films within 

our dataset. 

Then we have visualized the distribution of movies generating the highest gross 

revenues and which month do such movies are more likely to release using the 

input dataset in Figure 12. 
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Fig.12. Months for Blockbuster movies 

 

From Figure 12, it is clearly evident that according to our input dataset, the 

summer months of April, May, and June witness a surge in the average gross 

revenue of high-grossing movies, indicating a behavioural pattern in the 

audience. This sudden boost can be attributed to the well planned and strategic 

release of blockbuster films during this time, taking full advantage of the 

vacations and holiday season and capitalizing individuals inclined to have more 

disposable time and income to seek quality entertainment. 

Then we have represented the distribution of the release of movies in a heatmap 

in figure 13 and tried to find out which months and years have been hot and cold 

for the movie releases. 

 

 
Fig. 13. Distribution of Movies based on their Genre 



52 
 

Figure 13 clearly shows that the month of May has been one of the most favoured 

times since early 2000 in which filmmakers prefer to release majority of the 

movies. And overtime the rest of the months have also become a good time to 

release movies which could be a result of the growth and development in the film 

industry in terms of technology and viewership. But it is also evident that there 

has been a sharp decline in movie releases in the year of 2020 which could be a 

result of COVID restrictions. 

 

The visualization in Figure 14 clearly highlights the directors who have directed 

the most number of successful, highest-grossing, and revenue-generating movies. 

 

 
 

Fig. 14. Directors who have directed the highest Revenue-Generating 

Movies 

 

Then we have visualized the change in the runtime of movies in Figure 15. 
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Fig.15. Trend in Movie Runtime 

 

From Figure 15, we can note that the runtime of movies has been trending 

upwards throughout the years.  

 

Our analysis involved applying a range of Machine Learning Algorithms to the 

input data set and training multiple models resulting in a range of models, each 

with their own RMSE (Root Mean Squared Error) and MAE (Mean Absolute 

Error) scores. The resulting RMSE (Root Mean Squared Error) and MAE (Mean 

Absolute Error) score can only be calculated for collaborative filtering, and it has 

been tabulated in Table II: 

 
TABLE II 

ACCURACY RESULTS OF COLLABORATIVE-FILTERING 

RECOMMENDATION SYSTEM ALGORITHM. 

 

Machine Learning Model RMSE Score MAE Score 

Collaborative Filtering 0.8944 0.6903 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

 
Through our work, we have tried to solve one of the most concerning real-world 

business problems which is helpful to the online media streaming community to 

gain more customers, scale their businesses, and thrive in this highly competitive 

market. In our work, we applied various recommendation system machine 

learning filtering algorithms, which were trained and tested for the input dataset 

and later evaluated and compared their recommendations. The most widely used 

algorithm among all our used algorithms is the hybrid algorithm, which is used 

by major online streaming media companies. We were successfully able to 

understand the differences in the recommendation capability of the various used 

recommendation algorithms.  

 

Our future plans involve testing out a wider range of machine learning algorithms 

to find out if there exists a better option that is more accurate than the current 

model. We also have plans to integrate our framework with a web application and 

provide a user interface in order to provide a better user experience and which 

will make it more easily and readily accessible to more and more people. We can 

also diversify our recommendation model for other real-world problems in the 

healthcare sector, fashion sector, e-commerce sector, etc. Ultimately, our goal is 

to build recommendation systems that not only help online media streaming 

platforms succeed but also prioritize user satisfaction, trust, and ethical 

considerations. As we move forward, we envision a future where our work will 

continue to evolve and adapt to the dynamic landscape of recommendation 

systems by exploring advanced techniques such as sequential recommendations, 

multimodal recommendations, online learning, and real-time updates, which will 

help us to provide users with more accurate, personalized, and engaging 

recommendations. By combining cutting-edge research, industry collaboration, 

and a user-centric approach, we aim to contribute to the growth and success of 

the online media streaming community and enhance the overall streaming 

experience for users worldwide. We could also improve our current 

recommendation system by applying deep learning and neural networks to add 

features like image detection and sentiment analysis, which will definitely 

provide better recommendations with higher accuracy. We also aim to enhance 

the level of personalization in our recommendation system by incorporating 

features like user feedback and behavior analysis. By considering individual user 

preferences, viewing patterns, and feedback, we can tailor recommendations to 

better suit each user's unique tastes and interests. We also plan to incorporate 

contextual information such as time of day, location, device, and user 

demographics. Through these advancements, we anticipate delivering even better 

results to users, ensuring their needs and preferences are met more effectively. 
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