

A Project Report

on

A HYBRID APPROACH TOWARDS A

MOVIE RECOMMENDATION SYSTEM

Submitted in partial fulfillment of the

 requirement for the award of the degree of

Bachelor of Technology

in

Computer Science and Engineering

Under The Supervision of

Dr. Shrddha Sagar

Professor

Submitted By

Prakhar Anand
20SCSE1010198

Sajid Azam

20SCSE1010035

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

 GALGOTIAS UNIVERSITY, GREATER NOIDA

INDIA

May, 2023

SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

CANDIDATE’S

DECLARATION

We hereby certify that the work which is being presented in the thesis/ project/ dissertation,

entitled “A HYBRID APPROACH TOWARDS A MOVIE RECOMMENDATION

SYSTEM” in partial fulfillment of the requirements for the award of the B. Tech. submitted

in the School of Computing Science and Engineering of Galgotias University, Greater Noida,

is an original work carried out during the period of January, 2023 to May, 2023, under the

supervision of Dr. Shrddha Sagar, Professor, School of Computing Science and Engineering,

Galgotias University, Greater Noida

 The matter presented in the thesis/project/dissertation has not been submitted by us

for the award of any other degree of this or any other places.

Prakhar Anand (20SCSE1010198)

Sajid Azam (20SCSE1010035)

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Dr. Shrddha Sagar

Professor, SCSE

CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of Prakhar Anand

(20SCSE1010198) and Sajid Azam (20SCSE1010035), has been held on ____________and

their work is recommended for the award of B. Tech.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Program Chair Signature of Dean

Date: May, 2023

Place: Greater Noida

ABSTRACT
Online streaming media platforms are booming these days. OTT (Over-The-Top) platforms

like Netflix, Amazon Prime, Hotstar, etc., provide online services that cater specifically to their

users and provide them with some much-needed entertainment, which helps them to relax in

this extremely busy world and spend some quality time with their friends and family. But when

it’s time for a short break just to freshen up the mind, everyone prefers choosing from the

options that are just a click away, what could be better than a user being recommended their

favourite songs to play, movies to watch during a break. This is where the highly advanced and

convenient recommendation systems come into play. Recommendation systems solve this

problem by analyzing the large volume of dynamically generated data to provide personalized

product suggestions and services to the users. With the day-to-day increasing popularity and

demand of such services, and with increasing competition in this massive service-oriented

sector, a highly functional and effective recommendation system could provide a significant

marketing edge to a company over its competitors, as wide range of products, services and their

substantial amount of information are available on the service provider company’s website and

as a result, the users struggle to find relevant information matching their preferences. Thus, we

have tried to design a framework for a movie recommendation system that will recommend

movies to the user based on their preferences and user content history. First, we have taken a

dataset provided by TDMB movies. Then, we have used and tested various classical machine

learning models like Content-Based Filtering and Collaborative Filtering to recommend the

best movies based on user ratings, user watch history, etc., that are more likely to be watched

by the customer. We have also combined these models to create a Hybrid model which provides

better recommendations. This could help in improving the revenue earned by the media

platforms, which in turn is the main purpose of any recommendation system.

Keywords—OTT, Recommendation System, Content-based Filtering,

Collaborative Filtering, Hybrid Filtering, Machine Learning

List of Tables

Table No. Table Caption Page No.

1 Table I: Study Done in the Field by Various Authors

in the Referenced Literature
7-12

2 Table II: Dataset files with their respective Data

Variables

24

3 Table III: Accuracy Scores of Collaborative-Filtering

Recommendation Algorithm
53

List of Figures

Figure No. Figure Name Page No.

1 Content-Based Filtering 14

2 Cosine Similarity 18

3 Collaborative Filtering 19

4 Steps to be followed in Proposed System 21

5 Machine Learning 26

6 Popularity-Based Recommendations 47

7 Description-based Content Filtering

Recommendations
48

8 Movie metadata-based Content Filtering

Recommendations
48

9 Collaborative Filtering Recommendations 49

10 Hybrid Filtering Recommendations 49

11 Distribution of movies in their respective genre 50

12 Months for Blockbuster Movies 51

13 Heatmap of Movie Releases 51

14 Directors who have directed the highest revenue

generating movies
52

15 Trend in Movie Runtime 53

Table of Content

Title Page No.

Abstract I

Chapter 1 Introduction 1-2

 1.1. Introduction 1

 1.2. Problem Statement 1

 1.3. Proposed Solution 2

Chapter 2 Literature Review 3-12

Chapter 3 Proposed Methodology 13-22

 3.1. Parameters 13

 3.2. Algorithms to be Used 13-20

 3.3. Evaluation Metrics 20-21

 3.4. Steps to be followed in Proposed System 21-22

Chapter 4 Implementation 23-49

 4.1. Parameters Used 23

 4.1. Dataset 23-25

 4.3. Hardware and Software Requirements 25-26

 4.4. Technologies Used 26

 4.5. Tools Used 27-28

 4.6. Source Code 28-46

 4.7. Experimental Recommendations 47-49

Chapter 5 Results 50-53

Chapter 6 Conclusion and Future Scope 54

 References 55-56

 Publication Screenshot 57

1

CHAPTER 1

INTRODUCTION

1.1. Introduction

Over the years, the Internet has been the backbone of modern technology. Due to

the rapid development and major breakthroughs in different fields like healthcare,

science and engineering, leisure and entertainment, etc. which heavily rely on

technology, different applications and uses were discovered to support and

improve human life. One such revolutionizing application in the field of

entertainment is the online streaming media service. This service focuses on

delivering audio and video content, like songs, and movies, to the viewer (client)

over the Internet for a certain fee. Due to people being busier than ever, the last

few years, have seen immense growth in this industry, especially the Over-the-

Top (OTT) platforms that provide movies and web shows, as everyone loves to

have some entertainment, which helps them to relax and get rid of their stress,

and enjoy a peaceful time with their friends and family. These platforms attract

viewers by providing them with fresh content and targeting audiences of all age

groups, not letting any viewer get bored. Since, these days, the general public

doesn’t have enough time to visit movie theatres or a music concert, and when

they are free which is typically on their weekends, they tend to stay at home and

do not want to rush to such events. So these platforms came up with a solution

and brought great content which is easily accessible and affordable. Now, people

could binge-watch their favorite or trending movies and shows at their fingertips

with an affordable subscription fee for these services. Some of the most

successful online OTT platforms are Amazon Prime Video by Amazon, Netflix,

Hotstar by Star India, Hulu by Walt Disney, etc. These platforms have

successfully grasped the ideas and strategies and implemented them with the

required technology, all in order to develop a highly practical and profitable

product.

1.2. Problem Statement

The challenge for our group is to create a real-time recommendation system that

is capable of recommending movies that are currently relevant to the user or in

which the user has shown an interest in their past. The recommendation system

should also aim to enhance user experience by providing personalized

recommendations specific to an individual user, as it has a better chance to be

viewed by the customer in comparison to general recommendations, thus,

increasing conversion. In order to meet this challenge, we first have to figure out

the different patterns and relations in the input dataset and draw various useful

conclusions through analysis and visualization, which is very useful in

developing the required system. Then, we will have to figure out the most suitable

machine learning algorithms to use for creating a highly effective movie

2

recommendation model. We will also need to figure out which input features are

the best to use for this task. Furthermore, we will like our recommendation system

to be diverse i.e., it should recommend different kinds of movies to the user. This

would require a complex model to successfully implement the whole application.

1.3. Proposed Solution

Many reliable and supporting tools and frameworks related to machine learning

have been developed and implemented by nearly all online streaming platforms,

and scientists are still researching and developing more useful tools. One of the

most important tools and frameworks is the recommendation system. A

recommendation system is a real-world software application that is used by most

online streaming service platforms in order to suggest various kinds of shows and

movies available on their platform to their customers and also provide their

consumer base with the necessary information to help them decide which movies

and shows are to their liking and meet their preferences, so that they may purchase

the movie or show generating revenue for the business. The movies can be

recommended on the basis of trends i.e., the most popular and the most watched

movies on a site or on the viewer demographics, or it can also be based on an

analysis of the viewer’s past viewership with the various movies available on the

platform, which acts as a prediction for their future behaviour. So online

streaming media companies use various filtering algorithms that help in filtering

out users or items in recommendation systems. These are generally based on user

reviews and ratings or past user-item interactions. Some of the major filtering

approaches are Collaborative Filtering, Content-based Filtering, and Hybrid

Filtering.

3

CHAPTER 2

LITERATURE REVIEW

A considerable amount of research has been done on recommendation systems.

Some of the research done by various researchers is as follows:

T. Keerthana [1] proposed an approach that uses the content-based (domain-

dependent algorithm), collaborative, and hybrid filtering techniques to achieve

accurate recommendations.

JH (Janghyun) Baek [2] proposed an approach in which he created an apparel-

specific multi-step recommender system for Amazon users that first recommends

items based on user experience and feedback. This is a deep learning-based model

which tries to predict user ratings on products and based on this prediction

suggests the one that has a higher rating. Using this output, the system further

looks for similar products using two very distinct techniques: image-based

processing and Natural Language Processing.

Mohammad R. Rezaei [3] tried to develop a recommendation model for digital

music tracks available on Amazon. They analyzed, tested and integrated their

proposed deep neural network (DNN) architecture with various traditional

models to predict the rating scores that customers give to a music track.

Rohit Dwivedi [4] designed a model using matrix factorization using a user-based

nearest-neighbor collaborative filtering approach. Initially, using the pivot

function a pivot table was made based on the user. The models were evaluated

based on different metrics like RMSE, mean square error, mean absolute error,

and the Average actual ratings and Average predicted ratings were calculated.

Huang [5] proposed a Graph-based recommender system which is a unique

approach to recommender systems as it neither uses collaborative filtering nor the

content-based approach. Instead, it combines these two approaches and produces

a hybrid model without the need to use a top-level classifier or regression model.

Zhang [6] tested several Deep Learning approaches for recommendation systems,

such as Multilayer Perceptron (MLP), Autoencoder (AE), Convolutional Neural

Network (CNN), and Recurrent Neural Network (RNN). Their argument is that

Deep neural networks are highly capable in modeling the nonlinearity in data with

a non-linear activation functions like the sigmoid function. This enables it to

capture multiple patterns in complex user-item interactions. Deep neural

networks also enable automatic feature learning from raw data, reducing the

requirement to perform intensive feature engineering.

4

 Linden [7] proposed a system that uses item-based collaborative filtering which

gives recommendations by utilizing user-generated signals, like explicit item

ratings, that were gathered from other users and based on items that the user has

purchased or has rated, which are then paired with similar items.

Md Zaid Ahmed [8] decided to use the Collaborative Filtering Algorithm to

improve the accuracy of product recommendations. They used products from

Amazon e-commerce website to design a practical model for some specifically

designed scenarios. Their system uses cosine similarity as metric to find similar

products on the basis of multiple user ratings and generate a matrix that helps in

recommending new products to other users.

Ashrita Kashyap [9] introduced Movie REC, a movie recommendation system

that allows a user to select his/her choices from a given list of attributes and then

recommends the user a list of movies based on the cumulative weight of the

different selected attributes and using the K-means algorithm.

Yeole Madhavi [10] used Content-based Recommendation using

CountVectorizer and Cosine Similarity, Content-based Recommendation using

TfidfVectorizer and Cosine Similarity and their Hybrid Algorithm for their

recommendation system. His implementation resulted in getting better results for

the hybrid algorithm when compared to the other two algorithms. Rahul

Pradhan [11] successfully implemented a movie recommendation system using

the Collaborative-Filtering Algorithm and found out that these systems have

certain limitations due to which they do not recommend efficiently to its users.

He found that even though Collaborative Filtering is the most successful and

powerful algorithm, but has some high runtime and faces some major issues like

data Sparsity which he concluded could be removed by using a Hybrid movie

recommendation system.

Y. Koren [12] suggested approaches utilizing matrix factorization to enhance

recommender systems, particularly for the Netflix Prize dataset. They evaluated

and compared several matrix factorization techniques, such as singular value

decomposition (SVD), non-negative matrix factorization (NMF), and regularized

matrix factorization (RMF), and introduce an upgraded version of RMF, known

as SVD++, which involves implicit feedback. Their study indicates that matrix

factorization techniques are more efficient in collaborative filtering and

outperform conventional neighborhood-based approaches. Furthermore, they

also introduced a new and unique approach for predicting rating errors, which can

assist in selecting the most suitable algorithm and determining its parameters.

Sarwar [13] presented a new approach to collaborative filtering technique that

5

focuses on the similarity between items rather than users. They proposed an

algorithm that computes the similarity between items based on the ratings given

to them by users and then uses this similarity to make recommendations. The

authors also compared their item-based approach to traditional user-based

collaborative filtering and demonstrated that it was more efficient and accurate,

especially in cases where there are a large number of users and items. They also

presented a variation of their algorithm that takes into account the popularity of

items and revealed that it further enhances the performance of the system. The

results of their experiments suggest that their approach can lead to better

recommendations, especially in large-scale systems.

Burke [14] suggested a novel approach to improve recommendation quality by

incorporating social networks. This approach was based on the idea that people

are more likely to trust recommendations from their social circle rather than from

unknown sources. The authors presented reasonable evidence from previous

studies that have demonstrated the effectiveness of social networks in improving

the quality of recommendations. Their proposed approach involved creating a

social network for each user and utilizing it to identify potential recommenders.

Their approach was also able to overcome the cold-start problem that arises when

recommendations cannot be made for new users with limited data about their

preferences. Their study revealed that the integration of social networks can

increase recommendation quality by up to 20%.

Salakhutdinov [15] proposed a new probabilistic matrix factorization model that

incorporates Gaussian priors on the latent factors, allowing for uncertainty in the

factorization process and uses Bayesian inference to learn the model parameters.

They also demonstrated the results of experiments on several benchmark datasets

in predicting user ratings in recommender systems. Their system also had the

ability to handle missing data and the ability to incorporate additional information

such as user and item features. They concluded that their probabilistic matrix

factorization method outperforms traditional matrix factorization methods and

non-probabilistic matrix factorization methods such as matrix completion.

Cheng [16] described a co-clustering based collaborative filtering framework that

is designed to handle large datasets by decomposing the user-item matrix into

smaller sub-matrices that can be processed in parallel. They also introduced a

novel regularization term that encourages sparsity in the co-clustering solution,

improving prediction accuracy.

Liu [17] described a multi-view clustering framework for movie recommendation

that can leverage multiple sources of information to improve prediction accuracy.

The authors defined a novel objective function that incorporates multiple views

of the data and a regularization term that encourages sparsity in the solution,

6

which they tested on several benchmark datasets. Their framework has the ability

to handle missing data and also to incorporate additional sources of information.

X. Huang [18] proposed a new collaborative filtering method based on weighted

non-negative matrix factorization (WNMF) for recommendation systems as

according to the authors, this method is better in capturing the inherent user-item

interaction patterns than the traditional matrix factorization methods. In their

system, they introduced a novel weight term in the WNMF framework that takes

into account the relevance of each user-item interaction. This weighting scheme

allows the model to assign more importance to highly relevant interactions and

less importance to irrelevant ones, thus improving the quality of

recommendations.

Dutta [19] developed a movie recommendation system that integrated

collaborative filtering that relies on the similarity of users' preferences to make

recommendations and fuzzy logic which is used to handle uncertainty and

imprecision in the ratings given by users, to provide personalized

recommendations to users. They evaluated its performance and concluded that

this approach was superior to other traditional techniques.

By analyzing the numerous views and approaches towards research and

development of recommendation systems as described above, it is evident that

most researchers took a linear approach by using the collaborative-filtering

algorithm which only focuses on user ratings and past user interactions and

discards any kind of association with other parameters. Also, most of the above-

mentioned research does not deal with the cold-start problem which is clearly

visible as very less amount of work has been done involving content-based

filtering which also considers other item attributes and their interactions, though

there have been recent advancements over the past few years. For recommending

new movies to the user, we can use movie attributes like genre, cast, crew,

revenue, etc. which is possible in content-based filtering. Some of the researchers

have proposed the idea of using a hybrid system but they have only proposed a

theoretical overview of this approach. We can also compare and evaluate these

algorithms using multiple metrics.

So, the main aim of this research is to solve the problem of developing a real-time

practical recommendation system that is capable of recommending movies

customized to the user, by using the best possible approach and considering

different relevant factors while doing so. The recommendation system should also

aim to enhance the user experience by providing personalized recommendations

specific to an individual user, as it has a better chance to be viewed by the

customer in comparison to general recommendations, thus, increasing

conversion. Furthermore, we will like our recommendation system to be diverse

i.e. it should recommend different kinds of movies to the user.

7

TABLE I

STUDY DONE IN THE FIELD BY VARIOUS AUTHORS IN THE REFERENCED LITERATURE

Author Objective Methods/

Techniqu

es

Findings Limitations

JH

(Jangh

yun)

Baek

et. al.

[2]

To design an

apparel

specific

Amazon

Product

recommendati

on system

based on user

feedback and

ratings.

Deep

Learning

, Image-

based

Processi

ng and

NLP.

This multilayer

model first

suggests products

with a higher

rating and using

this output, the

system further

looks for similar

products using

image-based

processing and

Natural Language

Processing, which

is very practical in

a real-world

situation.

Measurement of the

system's

performance due to

the lack of available

data and resources

for online

evaluation, issues

with scalability and

design, overfitting,

and the difficulty in

finding the optimal

model configuration,

not always providing

ideal

recommendations,

especially when

based on image

similarity.

Moha

mmad

R.

Rezaei

[3]

To design a

model to

predict highly

accurate

reviews’

rating score.

Multino

mial

Naïve

Bayes,

Logistic

regressio

n, Deep

Neural

Network

s (DNN).

DNN model (MSE

score of 0.51-

0.53) outperforms

other methods

significantly Even

though the RL

(MSE score of

1.03) and MNB

(MSE score of

1.29) models are

not as accurate as

the DNN is, but

they are relatively

simple, and they

need no specific

The author faced

challenges in text

pre-processing and

encoding due to

limited knowledge in

NLP, which could

affect

recommendation

quality. Limited

dataset size resulted

in using a small-

sized model to

prevent overfitting,

leading to a trade-off

between model

8

effort to setup

them but in the

end, they are not

accurate enough.

So, they can be

considered in

problems with no

need for high

accuracy.

complexity and

prediction

performance.

Zan

Huang

et. al.

[5]

To develop a

recommendati

on system for

an online

Chinese

bookstore

setting.

graph-

based

algorith

m that

integrate

s

content-

based

and

collabora

tive

recomme

ndation

algorith

ms,

Hopfield

Net

Algorith

m.

Based on hold-

out-test results,

hybrid system

performed better

but the

improvement was

not significant.

Based on plot

subject test,

content-based

system

outperformed the

other algorithms.

Exploiting high-

degree association

did not show

significant benefit,

the data does not

fully represent

customer interests.

Future work includes

refining weighing

schemes, adjusting

parameters, and

exploring other

recommendation

methods.

Shuai

Zhang

et. al.

[6]

To review the

taxonomy of

deep learning-

based

recommendati

on models, a

thorough

summary of

the state-of-

the-art in the

field, explore

emerging

Deep

Learning

Gives a

comprehensive

review of the

application of

deep learning in

the field of

recommendation

systems, exploring

trends and also

highlighting the

issues and

direction of the

More future work is

required for

improving the

Scalability and time

complexity of the

system lacks unified

evaluation standards,

making it

challenging to

compare models. It

also faces difficulty

of test samples and

9

trends and

provide fresh

perspectives

on the

development.

development in

the field.

control over

inference

Greg

Linden

et. al.

[7]

To create an

Amazon

Product

recommendati

on system

using item-to-

item

collaborative

filtering and

comparing it

with

traditional

collaborative

filtering

algorithms

Item-to-

Item

Collabor

ative

filtering

item-to-item

collaborative

filtering algorithm

is fast even for

extremely large

data sets. Its

recommendation

quality is

excellent. Unlike

traditional

collaborative

filtering, the

algorithm also

performs well

with limited user

data.

The algorithm relies

on the

precomputation of

the expensive

similar-items table

offline. Any

inaccuracies or

deficiencies in this

table could affect the

quality of

recommendations. It

also faces challenges

when dealing with

sparse or incomplete

user profiles

resulting in non-

accurate or

personalized

recommendations.

Md.

Zaid

Ahme

d et. al.

[8]

To provide an

in-depth

explanation of

a system that

classifies and

recommend

products on

Amazon to the

user.

Collabor

ative

Filtering,

Sentimen

t

Analysis,

Cosine

Similarit

y, RMSE

Item-based

collaborative

filtering is an

effective method

for obtaining high-

quality

recommendations

with a RMSE

accuracy of 0.52,

which is better

than average and

can be used for

large dataset as

well.

Reliance on

historical data,

difficulty in handling

new users and

products, limited

diversity in

recommendations,

and challenges with

sparse data.

Scalability is not

explicitly addressed

in the paper.

10

Ashrit

a

Kashy

ap et.

al. [9]

To introduce

“MOVREC”

a movie

recommendati

on system to

recommend

movies based

on the user’s

choices.

Cumulati

ve

Weight

and K-

Means

Algorith

m with

Collabor

ative

Filtering

A successful

response from a

small set of users

was obtained and

the system was

tested

successfully.

Challenge of

evaluating system

performance since

movie

recommendations

are subjective and

based on individual

opinions, a larger

dataset is needed for

more meaningful

results. Need to

incorporate different

machine learning

and clustering

algorithms to study

and compare the

outcomes further.

Rahul

Pradha

n et. al.

[10]

To provide an

overview of

various

techniques

create a

recommendati

on system that

recommends

movies to the

user.

Item

based

Collabor

ative

Filtering

Collaborative

filtering iis most

successful and

powerful

algorithm. The

proposed

approach can

handle quite a big

amount of data

effectively.

Only uses

collaborative

filtering and faces

challenges such as

high runtime and

data sparsity. It also

needs to address

weaknesses and

improve the user

interface.

Y.

Koren

et. al.

[11]

To suggest

approaches

utilizing

matrix

factorization

to enhance

recommender

systems,

particularly

for the Netflix

Prize dataset

Singular

Value

Decomp

osition

(SVD),

Non-

Negative

Matrix

factorizat

ion

(NMF),

and

Regulari

Their study

indicates that

matrix

factorization

techniques are

more efficient in

collaborative

filtering and

outperform

conventional

neighborhood-

based approaches.

Furthermore, they

Published in 2009, so

it fails to incorporate

major developments

in the field over the

last decade. Also, it

focuses only on

matrix factorization

techniques and do

not provide explicit

explanations or

insights into why

certain

11

zed

Matrix

Factoriza

tion

(RMF),

SVD++,

also introduced a

new and unique

approach for

predicting rating

errors, which can

assist in selecting

the most suitable

algorithm and

determining its

parameters. They

also introduced an

upgraded version

of RMF and a new

approach for

predicting errors.

recommendations

are made.

B.

Sarwar

et. al.

[12]

To present a

new approach

to

collaborative

filtering

technique that

focuses on the

similarity

between items

rather than

users.

Item-

based

Collabor

ative

Filtering

This item-based

approach is more

efficient and

accurate than

traditional user-

based

collaborative

filtering,

especially in cases

where there are

many users and

items. A new

variation of this

algorithm further

enhances the

performance of

the system which

can the which can

lead to better

recommendations,

especially in

large-scale

systems.

Only focuses on

collaborative

filtering and the

improvement over

other techniques is

not significantly

large.

12

R.

Burke

et. al.

[13]

To provide a

theoretical

study on

incorporating

social

networks to

provide

recommendati

ons.

Not

mentione

d

This approach was

able to overcome

the cold-start

problem and the

study also

revealed that the

integration of

social networks

can increase

recommendation

quality by up to

20%.

Limited to social

network

incorporation and

does not address the

challenges

associated with

obtaining and

utilizing social

network data for

recommendations.

Also does not

incorporate recent

advancements in the

field.

13

CHAPTER 3

PROPOSED METHODOLOGY

So, the different obstacles that we need to overcome involve identifying

parameters that after analysis provides deep insights and helps in drawing various

useful conclusions; figuring out and deciding the appropriate machine learning

algorithms to use for creating a highly effective movie recommendation system;

evaluating the performance of used algorithms and through a comparative study,

choosing the best one among them. This would require a complex system design

to successfully implement the whole application.

3.1. Parameters

In order to successfully design the desired recommendation system, the first step

is to identify the different parameters that could possibly exist and could be used

to analyze various possible algorithms which are useful to build recommendation

systems and find the best one. The identified parameters are as follows:

1) Dataset and Data Variables: Datasets are used by movie recommendation

systems to have access to a large sample and a rich variety of relevant information

and several features (variables) which may include movie ratings, movie-related

information like cast and crew details, budget, revenue, viewer-movie

interactions, etc. which can be analyzed to find patterns and provide

recommendations to the users.

2) Methodology: This describes the approach and the implementation

specifications followed to develop the functional movie recommendation system.

3) Similarity Metric: This parameter helps in finding similarities between

multiple users and multiple items i.e., it helps in identifying viewers with similar

movie preferences and similar types of movies. Some common mathematical

similarity metrics are Jaccard’s similarity, Cosine similarity, etc.

4) Evaluation Metric: This parameter is used to evaluate and quantitatively

measure the performance of a movie recommendation system. Some common

performance evaluation metrics are precision, recall, root mean square error, etc.

3.2. Algorithms To be Used

This section gives a detailed explanation of the methods and machine learning

algorithms used to design our movie recommendation system. The designed

recommendation system uses various filtering algorithms like Collaborative

Filtering, Content-Based Filtering and then combines both of these algorithms

into a Hybrid Filtering algorithm. The concept and working of all previously

14

mentioned algorithms have been defined as follows:

1. Popularity-Based Filtering: This is one of the first recommendation systems to

ever get developed and successfully deployed. As its name suggests, it has a

working principle based on popularity or the latest trend. These systems check

the movies which are most popular among the users and directly recommend

those without considering other factors like user history i.e. what are movies that

the user has viewed or interacted with in the past, etc. This has a chance to

increase user engagement when compared to no recommendation system. But

such systems have a huge drawback that they do not provide personalized

recommendations to users.

2. Content-Based Filtering: Content-Based filtering recommendation system tries

to make suggestions on attributes of items that a customer previously liked or

interacted with. Such a system first builds item profiles and then derives a user

profile from them. This user profile contains features that are important for a

particular individual. Once the system knows about a customer’s preferences, it

can recommend new items according to it. This technique considers a wide

variety of factors which include both objective and descriptive factors before

making any recommendations.

We have shown the content-based filtering approach through a visual diagram in

Figure 1:

Fig.1. Content-Based Filtering

15

For content-based filtering, we have used the TF-IDF (Term Frequency Inverse

Document Frequency) Vectorizer technique, which is used to transform text into

a meaningful representation of numbers that are used to fit machine learning

algorithms.

Term Frequency is defined as the numerical frequency with which a term appears

in a particular document. So it is document-specific. The term frequency of a term

‘t’ in a specific document ‘d’ is calculated as:

𝑡𝑓(𝑡, 𝑑) =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑑

(1)

Inverse Document Frequency is a numerical representation that measures how

important a term is across the corpus of documents i.e. is it a common or rare

term based on its appearance across the entire set of documents So it is consistent

across all documents. The general equation of IDF value of a term ‘t’ in the

document collection (corpus) ‘N’ is:

 𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔𝑒 (
𝑁

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡𝑒𝑟𝑚 𝑡
) (2)

When a word is common and appears in many documents, its IDF value

(normalized) will tend towards 0, while a rare word that appears in only a few

documents will tend towards an IDF value of 1.

So for a term ‘t’ that is rare across the entire ‘N’ number of documents of the

corpus and only df(t) number of documents contain this term, IDF is calculated

as:

 𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔𝑒 (
1+𝑛

1+𝑑𝑓(𝑡)
) + 1 (3)

An important point to note in the above equation is that 1 is added to the

denominator because as the term ‘t’ is rare very less documents contain it i.e.,

df(t) approaches 0. This may result in a division by 0 while calculating the IDF

value, which is not practical. So we add 1 to the denominator to avoid this

situation.

Similarly, for a term ‘t’ that is common across the entire ‘N’ number of

16

documents of the corpus and the number of documents containing this term is

df(t), IDF is calculated as:

 𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔𝑒 (
𝑁

𝑑𝑓(𝑡)
) (4)

Then we multiply the TF and IDF values to get the required TF-IDF value. So the

TF-IDF weight of a term ‘t’ in a document ‘d’ is given as:

 𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑖, 𝑑) × 𝑖𝑑𝑓(𝑡) (5)

When a content-based movie recommendation system uses the TF-IDF

vectorizer, it first tokenizes (converting into a stream of characters) the

documents containing information on the movie profiles and for each movie,

calculates the TF-IDF scores for each term on the basis of their frequency in the

corpus and determines their importance. The vectorizer then converts them into

vectors and uses them to find similar movies. Based on a user’s viewing history

and preferences, the content-based system will recommend new movies with high

TF-IDF scores for terms that are relevant to the user.

3. Collaborative filtering: Collaborative filtering recommendation systems first

look at interactions between users and items try to find either similar types of

users or similar types of products and based on this similarity, calculate prediction

scores and then recommend new products to target users. Every user and item is

described by a feature vector in the same space.

Collaborative Filtering is mainly of two types:

a) Item-Item based Collaborative Filtering: This technique starts by searching the

items that the user has had prior interactions with and finds similar items to it

with the help of similarity metrics, and using which a prediction function is

defined which then suggests and recommends items to the user.

The steps involved in Item-Item based Collaborative Filtering are as follows:

Step-1: First, convert the given data in the form of a user-item matrix.

Step-2: We then start building the model by finding similarity between all the

item pairs. We create vectors for each individual item using the user ratings that

are known and then we find the similarity between them which can be found in

multiple ways, but we have used cosine similarity in our framework.

17

Cosine Similarity: Cosine similarity is a mathematical tool used to assess and

quantify the similarity between two given non-zero vectors, which is measured

in terms of the cosine of the angle between the two vectors (cos θ). Specifically,

it measures the similarity in the direction or orientation of the vectors irrespective

of their magnitude or scale. Both vectors need to lie on the same plane in the same

inner product space, meaning they must produce a scalar through dot product

multiplication.

Cosine similarity ranges from -1 to 1, with -1 representing diametrical vectors in

opposite directions, 0 representing two mutually perpendicular vectors, and 1

representing vectors in the same direction.

Mathematically, the cosine similarity of vectors A and B is determined by finding

the dot product of the two vectors and dividing it by the product of their lengths

(magnitude) and is given as follows:

 𝑆𝑖𝑚(𝐴, 𝐵) =
𝐴∙𝐵

|𝐴| |𝐵|
=

∑ 𝐴𝑖∗ 𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ∗ √∑ 𝐵𝑖
2𝑛

𝑖=1

 (6)

As cosine similarity depends on orientation i.e., the angle between two vectors

and not their lengths, it has very high computational efficiency and is also pretty

useful in high-dimensional spaces, as in spaces with a high number of

dimensions, it is very difficult to calculate lengths of vectors due to the high

complexity of space variables.

Similarly, in the case of data sparsity where most of the dimensions of a vector

are very small (approach 0) or are exactly equal to 0, cosine similarity determines

the similarity between two vectors only based on non-zero dimensions thus,

allowing cosine similarity to also be able to operate successfully for sparse data.

So, cosine similarity comes with a lot of useful advantages and is thus, one of the

most important mathematical tools used in machine learning. Figure 2 depicts the

vectors and their orientation which helps us to easily understand the concept of

Cosine Similarity.

18

Fig.2. Cosine Similarity

Step-3: Calculate the recommendation or rating score as:

 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈, 𝐼𝑖) =
∑ 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈,𝐼𝑗)∗ 𝑆𝑖𝑚(𝐼𝑖,𝐼𝑗)𝑗

∑ 𝑆𝑖𝑚(𝐼𝑖 ,𝐼𝑗)𝑗
 (7)

b) User-User based Collaborative Filtering: This technique looks for similar users

i.e., users with similar interests, based on the items the users have already rated

or interacted with, and recommends other items that might be appealing to other

target users/audiences.

The steps involved in User-User based Collaborative Filtering are as follows:

Step-1: Convert the given data in the form of a user-item matrix based on the

interest of a user in a certain item.

Step-2: We then start building the model by finding the set of similar users to the

target user for which we have again applied cosine similarity for vectors created

using the user-item matrix.

19

Step-3: Calculate the recommendation score as:

 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈, 𝐼𝑖) =
∑ 𝑟𝑎𝑡𝑖𝑛𝑔(𝑈, 𝐼𝑗) ∗ 𝑆𝑖𝑚(𝑈𝑖, 𝑈𝑗)𝑗

∑ 𝑆𝑖𝑚(𝑈𝑖 , 𝑈𝑗)𝑗
 (8)

In order for both of these collaborative filtering methods to work, we have used

the Singular Value Decomposition (SVD) technique, which is basically a matrix

factorization technique that decomposes any given matrix into 3 generic and

familiar matrices. The SVD of a m X n matrix A is given by the formula:

 𝐴𝑚×𝑛 = 𝑈𝑚×𝑚 𝑆𝑚×𝑛 𝑉𝑛×𝑛
𝑇 (9)

where U and V are orthogonal matrices with orthonormal eigenvectors chosen

from AAT and ATA respectively. S is a diagonal matrix with r elements equal to

the root of the positive eigenvalues of both matrices U and V, which have the

same positive eigenvalues. The diagonal elements are composed of singular

values.

Figure 3 shows a visual diagram of the collaborative filtering approach.

Fig.3. Collaborative Filtering

20

4) Hybrid Filtering: This approach combines the previously mentioned

algorithms and then offers more accurate and diverse recommendations to the

user. This algorithm is generally preferred and used by the major leaders of online

streaming services since it has the advantages of all the other techniques and

overcomes the limitation barrier of each individual approach. Its effectiveness

depends on the quality of all the combined algorithms, the implementation details

as well as the accuracy and consistency of input data.

3.3. Evaluation Metrics

The evaluation metric is used to evaluate and quantify the performance of a

machine learning model. The choice of evaluation metric depends on the specific

problem being solved and the goals of the model. The following metrics will be

used to evaluate the different algorithms applied in the proposed system:

1) Root Mean Square Error (RMSE): RMSE measures the average distance

between the predicted values and the actual values. It is calculated by taking the

square root of the average of the squared differences between the predicted values

and the actual values. Its equation is given as:

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2 𝑛
𝑖=1 (10)

where n is the number of observations, yi is the actual value of the target variable

for the ith observation, and 𝑦�̂� is the predicted value of the target variable for the

ith observation.

2) Mean Absolute Error (MAE): MAE measures the average absolute distance

between the predicted values and the actual values. It is calculated by taking the

average of the absolute differences between the predicted values and the actual

values. It is mathematically calculated using the equation:

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1 (11)

where n is the number of observations, yi is the actual value of the target variable

for the ith observation, and 𝑦�̂� is the predicted value of the target variable for the

ith observation.

Here are some key differences between the two:

a) RMSE is more sensitive to outliers than MAE, since it squares the differences

between predicted and actual values. This means that large errors have a greater

impact on the RMSE score than on the MAE score.

21

b) Because of its squaring operation, RMSE gives more weight to large errors

compared to MAE. So, RMSE is generally used when large errors are particularly

undesirable.

c) Both RMSE and MAE are scale-dependent, which means that their values are

affected by the units of the target variable. In other words, changing the scale of

the target variable (e.g., from dollars to euros) will change the value of the

evaluation metric.

3.4. Steps to be followed in the Proposed System Design

Figure 4 shows the steps to be followed for our proposed framework to solve the

problem.

Fig.4. Flow of Proposed System

22

1) Acquisition of training data set: The accuracy of a machine learning algorithm

mainly depends on the extent of the correctness of the input data set and the

number of parameters considered. Our input data set is originally from the online

movie critique giant “Movie Lens (TMDB)”. The objective of our data set is to

provide data that is helpful in analyzing and recommending movies to the user

that the user may be interested in and has a higher chance of viewing, generating

revenue for any online streaming platform.

2) Data pre-processing: Data pre-processing is the most important process.

Sometimes, movie-related data contains a lot of incomplete and incorrect values.

Such data can diminish and undermine the accuracy and consistency thus,

compromising the system. This makes it necessary to implement strategies to

improve the quality of data to be properly utilized for the Machine Learning

Techniques that will be applied later effectively and also to be used for other

tasks, data pre-processing is performed, which is essential to obtain accurate

results and successfully recommend the precise content to the user. We generally

perform this entire process in two steps:

a) Data Cleaning by Removing Missing Values- We should remove all the

instances that have zero (0) as their value or contain any missing values as they

are irrelevant and bring inconsistency to the input data. Therefore, these instances

are eliminated. It also helps us to reduce the dimensionality of data which helps

us to decrease the required computational time improving efficiency.

b) Splitting of data- After cleaning irrelevant parts of the input data, we generally

normalize the data, i.e., we transform the columns of the input data set to the same

scale to prepare the data for training and testing the machine learning model. The

training process helps to correlate the processed output against the actual output.

This helps us to modify the training model, which is the most suitable to achieve

our goal.

3) Exploratory Data Analysis and Visualization: In this step, we create the

necessary graphs and plots to display different data distributions and observe

relationships between data which will allow us to understand the data in more

depth and draw inferences It is a very critical part since it determines how the

model will be built.

4) Apply Machine Learning to Create a Model: When data is finally ready, we

will apply the different Machine Learning algorithms discussed earlier, then

analyse the performance of each technique using certain metrics as it will play a

major role in the final model which will recommend movies to the customers.

23

CHAPTER 4

IMPLEMENTATION

4.1. Parameters Used

The proposed system is designed and based on the following parameters:

1) User preferences: The system considers the user’s past viewing history, ratings,

and likes/dislikes to determine their preferences.

2) Movie attributes: The system takes into account various attributes of the

movies such as genre, release year, language, director, actors, and plot to

recommend movies to the user.

3) Similarity: The system may recommend movies that are similar to the user’s

previously viewed movies or movies they have liked.

4) Methodology: Popularity-based, Collaborative filtering, Content-based

filtering and Hybrid filtering.

5) Diversity: The system may recommend movies that are different from the

user’s usual preferences to introduce them to new genres or styles of movies.

4.2. Dataset

The performance of a machine learning algorithm is primarily influenced by the

accuracy and correctness of the input data set and the number of parameters

considered. Our input data set is an open-source dataset from the online movie

critique giant “Movie Lens (TMDB)”. The objective of our data set is to provide

data that is helpful in analysing and recommending movies to the user that the

user may be interested in and has a higher chance of viewing, generating revenue

for any online streaming platform. This dataset contains the following CSV files:

1) movies metadata.csv: The Movies Metadata file is the primary file which gives

a comprehensive overview of the movies included in the MovieLens dataset.

With its extensive collection of information on 45,000 movies, the Movies

Metadata file is a cornerstone of the MovieLens dataset.

2) keywords.csv: This file includes the key plot elements represented by

keywords for each movie.

3) credits.csv: This file is dedicated to provide a comprehensive overview of the

talented individuals who were involved in behind-the-scene works in the

MovieLens movies, its cast and crew which are critical components of any movie.

24

4) links.csv: This file provides an easy, straightforward and user-friendly way to

cross-reference the movies in the dataset with their external identifiers i.e., with

their corresponding IDs on TMDB and IMDB.

5) links small.csv: While the full MovieLens dataset includes a vast collection of

movies, this file provides information on a smaller subset with 9,000 movies with

their IMDB and TMDB IDs just in case if a small number of movies ae required

for cross-referencing with other databases.

6) ratings small.csv: The ratings file includes a subset of 100,000 rating data on

how 700 users rated 9,000 movies in the links small.csv file, offering insight into

the preferences and behaviour of our user community.

TABLE II

Dataset files with their respective Data Variables

Dataset Data Variables

movies

metadata.csv

10 variables including budget,

language, genre, etc.

keywords.csv 2 variables including id and

keyword.

credits.csv 3 variables including cast, crew and

id.

links.csv 3 variables including movieId,

imdbId and tmdbId.

links_small.csv variables including movieId,

imdbId and tmdbId.

ratings_small.csv 4 variables including userId,

movieId, rating and timestamp.

Table I shows the dataset files and their respective variables (data columns) used

to experiment on the designed system.

Content-Based filtering does not require a train-test split because it is using a

similarity metric to generate recommendations based on the similarity of the

metadata of the input movie to the metadata of all movies in the dataset.

Collaborative filtering uses K-Fold from the surprise library to split the dataset

into k folds for cross-validation which means that the data is split into k parts (or

“folds”) of roughly equal size, and in each iteration of the cross-validation, one

of the folds is used as the test set and the other four are used as the training set.

This process is repeated k times, with each fold used once as the test set. So, there

is no explicit train-test split required for collaborative filtering. Hybrid filtering

25

does not require a train-test split because the model was trained on the entire

dataset.

While our proposed system has been designed with the specific attributes of the

MovieLens dataset in mind, it can be adapted for use with other datasets as well.

With some modifications to the input data and model parameters, our system can

be applied to a wide range of datasets with varying attributes and characteristics.

4.3. Hardware and Software Requirements

When installing or running any application, including machine learning

algorithms, it is essential to consider both hardware and software requirements.

Hardware requirements specify the minimum or recommended specifications for

the physical components of a computer system, such as the CPU, RAM, storage,

GPU, and other components, that are necessary to run a particular software or

application. Software requirements refer to the minimum or recommended

specifications for the software or application that is being installed or run on a

computer system. Software requirements typically include the operating system,

software dependencies (such as libraries or frameworks), and any other

components or configuration settings required by the software to function

properly. In the case of machine learning, the size and complexity of the dataset,

as well as the specific algorithms and techniques being used, will often determine

the necessary hardware and software requirements for optimal performance. This

section specifies the hardware and software requirements for the proposed system

which are as follows:

1) Recommended Operating Systems:

 Windows: Windows 8 or higher

 Mac: macOS Sierra or higher

 Linux: Ubuntu

2) Hardware Requirements

a) Processor: A multi-core processor of minimum 1 GHz; Recommended 2

GHz or more; like Intel Core i5 or higher is recommended for faster data

processing.

b) Memory: A minimum of 4 GB RAM; Recommended 8 GB or more.

c) Storage: A minimum of 32 GB; Recommended 64 GB or more of HDD

(Hard Disk Drive) or SSD (Solid State Drive).

d) Graphics Processing Unit (GPU): A minimum of consumer-grade GPUs

such as NVIDIA GTX 16 series or AMD Radeon RX GPUs or higher-end

GPUs.

e) Internet Connectivity: Ethernet Connection (LAN) or Wireless adapter

(Wi-Fi)

26

3) Software Requirements

 Programming Language: Python v.3.0 or higher.

 Programming Libraries: Pandas, Numpy, Matplotlib, Seaborn, Scikit

Learn, Surprise.

 IDE (Integrated Development Environment): Google Colab, Jupyter

Notebook.

4) Supported Browsers:

 Google Chrome

 Mozilla Firefox

 Microsoft Edge

4.4. Technologies Used

1. Machine Learning: In Machine learning, a computer program learns some tasks

T using knowledge E (experience i.e. past data) and its performance P improves

at doing those tasks. Thus, machine learning is the concept in which a machine

learns on its own without it being needed to be programmed explicitly. In machine

learning, we generally build (program) a model using an algorithm, which can be

used for the input data to produce the desired results. Figure 5 shows this basic

concept of machine learning i.e. in machine learning, all n inputs (Input 1, Input

2, Input 3, ... Input n) which are to be given to the machine learning model are

known and the output that the model should produce is also known, we just have

to find the best and most efficient unknown model that can be used to get the

required output, based on these known parameters.

Fig.5. Machine Learning

27

2. Filtering Algorithms: These are algorithms that help in filtering out users or

items in recommendation systems. These are generally based on user reviews and

ratings or past user-item interactions. Some of the major filtering approaches are

Collaborative Filtering, Content-based Filtering, and Hybrid Filtering.

4.5. Tools Used

1. Python: Python is a dynamic, object-oriented, high-level programming

language known for its interpreted nature. Its dynamic semantics and a wide range

of built-in data structures along with it employing dynamic typing and binding,

makes it highly appealing and a preferred choice for Rapid Application

Development and also as a scripting or glue language for connecting different

components. With its emphasis on readability, Python's simple, straightforward

and easy-to-learn syntax contributes in the reduction of the burden and cost of

program maintenance. The language promotes modular programming and code

reuse through support for modules and packages. Python's versatility extends to

its availability on major platforms, providing the Python interpreter and a

comprehensive standard library at no cost in both source and binary forms,

enabling widespread distribution.

The Python libraries which have been used in our project are:

A. Pandas: pandas is a software library present in the Python programming

language for data manipulation and analysis. In particular, it offers data

structures and operations for manipulating numerical tables and time series.

B. NumPy: NumPy stands for Numerical Python and was created in 2005 by

Travis Oliphant. NumPy is a Python library used for working with arrays. It

also has functions for working in domain of linear algebra, Fourier transform,

and matrices.

C. Matplotlib: Matplotlib is a python library used to create 2D graphs and plots

by using python scripts. It has a module named pyplot which makes things

easy for plotting by providing feature to control line styles, font properties,

formatting axes etc. It supports a very wide variety of graphs and plots namely

- histogram, bar charts, power spectra, error charts etc. It is used along with

NumPy.

D. Seaborn: Seaborn is an open-source Python library built on top of matplotlib.

It is used for data visualization and exploratory data analysis. Seaborn works

easily with data frames and the Pandas library. The graphs created can also

be customized easily.

28

E. Scikit-learn (Sklearn): Scikit-learn (Sklearn) is the most useful and robust

library for machine learning in Python. It provides a selection of efficient

tools for machine learning and statistical modeling including classification,

regression, clustering and dimensionality reduction via a consistence

interface in Python. This library, which is largely written in Python, is built

upon NumPy, SciPy and Matplotlib.

2. Google Colab: Colaboratory, often referred to as "Colab," is a Google

Research product that acts as an online Integrated Development Environment

(IDE), which enables users to write and execute Python code directly in their web

browsers. It is exceptionally valuable for a wide range of applications, including

machine learning, data analysis, and educational purposes. In technical terms,

Colab functions as a hosted Jupyter notebook service, streamlining the setup

process for users and providing them with cost-free access to computing

resources, including GPUs., without any charges.

4.6. Source Code

Importing the Libraries
!pip install scikit-surprise

import numpy as np
import pandas as pd
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
 for filename in filenames:
 print(os.path.join(dirname, filename))

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats
from ast import literal_eval
from sklearn.feature_extraction.text import TfidfVectorizer, CountVe
ctorizer
from sklearn.metrics.pairwise import linear_kernel, cosine_similarit
y
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.corpus import wordnet
from surprise import Reader, Dataset, SVD
from surprise.model_selection import cross_validate

29

pd.options.display.max_columns=None

import warnings; warnings.simplefilter('ignore')

from google.colab import drive
drive.mount('/content/drive')

Reading the Larger Dataset

meta = pd. read_csv('/content/drive/MyDrive/Colab Notebooks/movies_m
etadata.csv')
meta.head()

Let's identify the total number of null values in the data:

meta.isnull().sum()

Cleaning the Dataset

meta['genres'] = meta['genres'].fillna('[]').apply(literal_eval).app
ly(lambda x: [i['name'] for i in x] if isinstance(x, list) else [])

meta['production_companies']= meta['production_companies'].fillna('[
]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if is
instance(x, list) else [])

meta['production_countries'] = meta['production_countries'].fillna('
[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if i
sinstance(x, list) else [])

meta['spoken_languages'] = meta['spoken_languages'].fillna('[]').app
ly(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstanc
e(x, list) else [])

meta['year'] = pd.to_datetime(meta['release_date'], errors='coerce')
.apply(lambda x: str(x).split('-')[0] if x != np.nan else np.nan)

Let's take a final look at the data before moving to our next
steps

meta.head()

meta['original_language'].drop_duplicates().shape[0]

30

lang_dframe = pd.DataFrame(meta['original_language'].value_counts())
lang_dframe['language'] = lang_df.index
lang_dframe.columns = ['number', 'language']
lang_dframe.head()

plt.figure(figsize=(12,5))
sns.barplot(x='language', y='number', data=lang_dframe.iloc[1:11])
plt.show()

def numeric_clean (x):
 try:
 return float(x)
 except:
 return np.nan

meta['popularity'] = meta['popularity'].apply(clean_numeric).astype(
'float')
meta['vote_count'] = meta['vote_count'].apply(clean_numeric).astype(
'float')
meta['vote_average'] = meta['vote_average'].apply(clean_numeric).ast
ype('float')

meta['popularity'].describe()

order_of_months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul',
'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
order_of_days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']

def get_monthOfYear(x):
 try:
 return order_of_months[int(str(x).split('-')[1]) - 1]
 except:
 return np.nan
def get_dayOfWeek(x):
 try:
 year, month, day = (int(i) for i in x.split('-'))
 ans = datetime.date(year, month, day).weekday()
 return order_of_days[answer]
 except:
 return np.nan

meta['day'] = meta['release_date'].apply(get_day)
meta['month'] = meta['release_date'].apply(get_month)

31

plt.figure(figsize=(12,6))
plt.title("Number of Movies released in a particular month.")
sns.countplot(x='month', data=meta, order=month_order)

mean_month = pd.DataFrame(meta[meta['revenue'] > 1e8].groupby('month
')['revenue'].mean())
mean_month['month'] = mean_month.index
plt.figure(figsize=(12,6))
plt.title("Average Gross by the Month for Blockbuster Movies")
sns.barplot(x='month', y='revenue', data=mean_month, order= order_of
_month)

year_count = meta.groupby('year')['title'].count()
plt.figure(figsize=(18,5))
year_count.plot()

months = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6
, 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12}

dframe_21 = meta.copy()
dframe_21['year'] = dframe_21[df_21['year'] != 'NaT']['year'].astype
(int)
dframe_21 = dframe_21[dframe_21['year'] >=2000]
hmap_21thYear = pd.pivot_table(data=dframe_21, index='month', column
s='year', aggfunc='count', values='title')
hmap_21thYear = hmap_21thYear.fillna(0)
sns.set(font_scale=1)
f, ax = plt.subplots(figsize=(16, 8))
sns.heatmap(hmap_21thYear, annot=True, linewidths=.5, ax=ax, fmt='n'
, yticklabels=order_of_months)

meta['runtime'] = meta['runtime'].astype('float')

plt.figure(figsize=(12,6))
sns.distplot(meta[(meta['runtime'] < 300) & (meta['runtime'] > 0)]['
runtime'])

The Simple Popularity Based Recommender
Weighted Rank (WR) = (v ÷ (v+m)) × R + (m ÷(v+m)) × C

where,

32

 R = average for the movie (mean) = (Rating)
 v = number of votes for the movie = (votes)
 m = minimum votes required to be listed in the Top 250
 C = the mean vote across the whole report

count_votes = meta[meta['vote_count'].notnull()]['vote_count'].astyp
e('int')
average_votes = meta[meta['vote_average'].notnull()]['vote_average']
.astype('int')

C = averages_votes.mean()
print('The Mean value of the voting averages= ',C)
m = count_votes.quantile(0.96)
print('The minimum vote count for a movie to consider= ',m)

Creating the qualified database- upon whom we shall perfrom
the next estimations

qualified = meta[(meta['vote_count'] >= m) & (meta['vote_count'].not
null()) & (meta['vote_average'].notnull())][['title', 'year', 'vote_
count', 'vote_average', 'popularity', 'genres']]
qualified['vote_count'] = qualified['vote_count'].astype('int')
qualified['vote_average'] = qualified['vote_average'].astype('int')
print('The structure of the qualified database is= ',qualified.shape
)

def rating_weighted(x):
 v = x['vote_count']
 R = x['vote_average']
 return (v/(v+m) * R) + (m/(m+v) * C)

qualified['wr'] = qualified.apply(rating_weighted, axis=1)
qualified = qualified.sort_values('wr', ascending=False).head(250)

Top Movies

qualified.head(15)

 vote_average popularity \
15480 8 29.108149
12481 8 123.167259
22879 8 32.213481
2843 8 63.869599
4863 8 32.070725
292 8 140.950236
314 8 51.645403

33

7000 8 29.324358
351 8 48.307194
5814 8 29.423537
256 8 42.149697
1225 8 25.778509
834 8 41.109264
1154 8 19.470959
46 8 18.457430

Pivoting down the entire dataset based on genres

s = meta.apply(lambda x: pd.Series(x['genres']),axis=1).stack().rese
t_index(level=1, drop=True)
s.name = 'genre'
g_md = meta.drop('genres', axis=1).join(s)
g_md.head(8)

 vote_average vote_count year day month genre
0 7.7 5415.0 1995 NaN Oct Animation
0 7.7 5415.0 1995 NaN Oct Comedy
0 7.7 5415.0 1995 NaN Oct Family
1 6.9 2413.0 1995 NaN Dec Adventure
1 6.9 2413.0 1995 NaN Dec Fantasy
1 6.9 2413.0 1995 NaN Dec Family
2 6.5 92.0 1995 NaN Dec Romance
2 6.5 92.0 1995 NaN Dec Comedy

def chart_builder(genre, percentile=0.90):
 dfr = g_md [g_md ['genre'] == genre]
 count_votes = dfr[dfr['vote_count'].notnull()]['vote_count'].ast
ype('int')
 average_votes = df[df['vote_average'].notnull()]['vote_average']
.astype('int')

C = average_votes.mean()
 m = count_votes.quantile(percentile)

 qual = dfr[(dfr['vote_count'] >= m) & (dfr['vote_count'].not
null()) & (dfr['vote_average'].notnull())][['title', 'year', 'vo
te_count', 'vote_average', 'popularity']]
 qual['vote_count'] = qual['vote_count'].astype('int')
 qual['vote_average'] = qual['vote_average'].astype('int')

 qual['wr'] = qual.apply(lambda x: (x['vote_count']/(x['vote_
count']+m) * x['vote_average']) + (m/(m+x['vote_count']) * C), a
xis=1)

34

 qualif = qual.sort_values('wr', ascending=False).head(250)

 return qualif

Top Horror Movies

chart_builder('Horror').head(15)

 title year vote_co
unt \
1213 The Shining 1980 3
890
1176 Psycho 1960 2
405
1171 Alien 1979 4
564
41492 Split 2016 4
461
14236 Zombieland 2009 3
655
1158 Aliens 1986 3
282
21276 The Conjuring 2013 3
169
42169 Get Out 2017 2
978
1338 Jaws 1975 2
628
8147 Shaun of the Dead 2004 2
479
8230 Saw 2004 2
255
1888 The Exorcist 1973 2
046
39097 The Conjuring 2 2016 2
018
6353 28 Days Later 2002 1
816
12277 Sweeney Todd: The Demon Barber of Fleet Street 2007 1
745

Top Romantic Movies

Chart_builder('Romance').head(15)

 title year vote_count vote_average
\
10309 Dilwale Dulhania Le Jayenge 1995 661 9
351 Forrest Gump 1994 8147 8

35

876 Vertigo 1958 1162 8
40251 Your Name. 2016 1030 8
883 Some Like It Hot 1959 835 8
1132 Cinema Paradiso 1988 834 8
19901 Paperman 2012 734 8
37863 Sing Street 2016 669 8
882 The Apartment 1960 498 8
38718 The Handmaiden 2016 453 8
3189 City Lights 1931 444 8
24886 The Way He Looks 2014 262 8
1639 Titanic 1997 7770 7
19731 Silver Linings Playbook 2012 4840 7
40882 La La Land 2016 4745 7

Content Based Recommender

lk_small = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/links
_small.csv')
lk_small = lk_small[lk_small['tmdbId'].notnull()]['tmdbId'].astype('
int')

lk_small.head()

meta = meta.drop([19730, 29503, 35587])

meta['id'] = meta['id'].astype('int')

smdes = meta[meta['id'].isin(lk_small)]
smdes.shape

Movie Description Based Recommender

smdes['tagline'] = smdes['tagline'].fillna('')
smdes['description'] = smdes['overview'] + smdes['tagline']
smdes['description'] = smdes['description'].fillna('')

We shall be using Tfidfvectorizer for this step.

tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, st
op_words='english')
tfidf_matrix = tf.fit_transform(smd['description'])

36

tfidf_matrix.shape

cosine_simil = linear_kernel(tfidf_matrix, tfidf_matrix)
cosine_simil[0]

smdes = smdes.reset_index()
titles1 = smdes['title']
indices1 = pd.Series(smdes.index, index=smdes['title'])

def get_rec(title):
 idx = indices1[title]
 similar_scores = list(enumerate(cosine_simil[idx]))
 similar_scores = sorted(similar_scores, key=lambda x: x[1], reve
rse=True)
 similar_scores = similar_scores[1:21]
 movie_hasIndices = [i[0] for i in similar_scores]
 return titles.iloc[movie_hasIndices]

movie='3 Idiots'
print("Description of the Movie: ", movie)
print('---
--------')
print(smdes[smdes['title']==movie]['overview'])

Description of the Movie: 3 Idiots
--
-

get_rec('3 Idiots').head(20)

2336 Ferris Bueller's Day Off
8161 Student of the Year
262 Outbreak
2658 The Next Best Thing
4378 Come Back to the 5 & Dime, Jimmy Dean, Jimmy Dean
1861 Enemy of the State
3098 Bring It On
7866 Contagion
4543 What a Girl Wants
5373 College
149 Hackers
3875 The Party
5462 Our Hospitality
5466 Overboard
3496 Suspiria
2882 Loser
308 The Baby-Sitters Club
1937 Patch Adams
3277 Extreme Prejudice

37

5870 The Lion King 2: Simba's Pride
Name: title, dtype: object

movie='The Dark Knight'
print("Description of the Movie: ", movie)
print('---
--------')
print(smdes[smdes['title']==movie]['overview'])

Description of the Movie: The Dark Knight
--
-
6900 Batman raises the stakes in his war on crime. ...
Name: overview, dtype: object

get_rec('The Dark Knight').head(20)

Metadata Based Recommender

cred = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/credits.c
sv')
keywrd = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/keyword
s.csv')

keywrd.head()

cred.head()

keywrd['id'] = keywrd['id'].astype('int')
cred['id'] = cred ['id'].astype('int')
meta['id'] = meta['id'].astype('int')
meta.shape

meta = meta.merge(cred, on='id')
meta = meta.merge(keywrd, on='id')

smd2 = meta[meta['id'].isin(lk_small)]
smd2.shape

smd2['cast'] = smd2['cast'].apply(literal_eval)
smd2['crew'] = smd2['crew'].apply(literal_eval)
smd2['keywords'] = smd2['keywords'].apply(literal_eval)
smd2['cast_size'] = smd2['cast'].apply(lambda x: len(x))
smd2['crew_size'] = smd2['crew'].apply(lambda x: len(x))

38

def get_dir(x):
 for i in x:
 if i['job'] == 'Director':
 return i['name']
 return np.nan

smd2['director'] = smd2['crew'].apply(get_dir)

smd2['cast'] = smd2['cast'].apply(lambda x: [i['name'] for i in x] i
f isinstance(x, list) else [])
smd2['cast'] = smd2['cast'].apply(lambda x: x[:4] if len(x) >=4 else
x)

smd2['keywords'] = smd2['keywords'].apply(lambda x: [i['name'] for i
in x] if isinstance(x, list) else [])

smd2['cast'] = smd2['cast'].apply(lambda x: [str.lower(i.replace(" "
, "")) for i in x])

smd2['director'] = smd2['director'].astype('str').apply(lambda x: st
r.lower(x.replace(" ", "")))
smd2['director'] = smd2['director'].apply(lambda x: [x,x,x])

Keywords

sm = smd2.apply(lambda x: pd.Series(x['keywords']),axis=1).stack().r
eset_index(level=1, drop=True)
sm.name = 'keyword'

sm = sm.value_counts()
sm[:10]

sm = sm[s > 1]

stemmer = SnowballStemmer('english')
stemmer.stem('sportingly')

{"type":"string"}

def keyword_filter(x):
 words = []
 for i in x:
 if i in s:
 words.append(i)
 return words

39

smd2['keywords'] = smd2['keywords'].apply(keyword_filter)
smd2['keywords'] = smd2['keywords'].apply(lambda x: [stemmer.stem(i)
for i in x])
smd2['keywords'] = smd2['keywords'].apply(lambda x: [str.lower(i.rep
lace(" ", "")) for i in x])

smd2['soup'] = smd2['keywords'] + smd2['cast'] + smd2['director'] +
smd2['genres']
smd2['soup'] = smd2['soup'].apply(lambda x: ' '.join(x))

cnt = CountVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, s
top_words='english')
cnt_matrix = cnt.fit_transform(smd2['soup'])

cosine_similar = cosine_similar (cnt_matrix, cnt_matrix)

smd2 = smd2.reset_index()
title2 = smd2['title']
indice2 = pd.Series(smd2.index, index=smd2['title'])

get_rec('The Dark Knight').head(15)

get_rec('Mrs. Doubtfire').head(15)

164 Nine Months
2553 Bicentennial Man
519 Home Alone
2388 Home Alone 2: Lost in New York
1958 Stepmom
7538 Percy Jackson & the Olympians: The Lightning T...
8996 Pixels
7377 I Love You, Beth Cooper
1708 Adventures in Babysitting
3840 Harry Potter and the Philosopher's Stone
4366 Harry Potter and the Chamber of Secrets
6357 Rent
2833 Parenthood
4378 Houseboat
6057 Fat Albert
Name: title, dtype: object

def enhanced_recommendations(title):
 idx = indices[title]
 sim_scores = list(enumerate(cosine_simil[idx]))
 sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True
)
 sim_scores = sim_scores[1:26]

40

 movie_indices = [i[0] for i in sim_scores]

 movies = smd2.iloc[movie_indices][['title', 'vote_count', 'vote_
average', 'year']]
 count_votes = movies[movies['vote_count'].notnull()]['vote_count
'].astype('int')
 average_votes = movies[movies['vote_average'].notnull()]['vote_a
verage'].astype('int')

 C = average_votes.mean()
 m = count_votes.quantile(0.50)

 qualif = movies[(movies['vote_count'] >= m) & (movies['vote_count'
].notnull()) & (movies['vote_average'].notnull())]
 qualif['vote_count'] = qualif['vote_count'].astype('int')
 qualif['vote_average'] = qualif['vote_average'].astype('int')
 qualif['wr'] = qualif.apply(rating_weighted, axis=1)
 qualif = qualif.sort_values('wr', ascending=False).head(10)
 return qualif

enhanced_recommendations('The Dark Knight')

 title vote_count vote_average year w
r
7648 Inception 14075 8 2010 7.89156
8
8613 Interstellar 11187 8 2014 7.86494
8
6623 The Prestige 4510 8 2006 7.68767
1
3381 Memento 4168 8 2000 7.66515
8
8031 The Dark Knight Rises 9263 7 2012 6.89714
4
6218 Batman Begins 7511 7 2005 6.87486
3
1134 Batman Returns 1706 6 1992 5.80924
6
4145 Insomnia 1181 6 2002 5.75226
8
132 Batman Forever 1529 5 1995 5.06706
6
9162 London Has Fallen 1656 5 2016 5.06325
1

41

enhanced_recommendations('Mrs. Doubtfire')

 title vote_count
\
3840 Harry Potter and the Philosopher's Stone 7188
4366 Harry Potter and the Chamber of Secrets 5966
519 Home Alone 2487
2388 Home Alone 2: Lost in New York 2459
7538 Percy Jackson & the Olympians: The Lightning T... 2079
2553 Bicentennial Man 998
1958 Stepmom 286
837 Homeward Bound: The Incredible Journey 218
2833 Parenthood 177
1708 Adventures in Babysitting 169

Collaborative Filtering Application

reader = Reader()
ratings = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/rating
s_small.csv')
ratings.head()

rating_counts = pd.DataFrame(ratings['rating'].value_counts()).reset
_index()
rating_counts.columns = ['Labels', 'Ratings']
rating_counts

sns.set_style('whitegrid')
sns.set(font_scale=1.5)
%matplotlib inline

sns.distplot(ratings['rating'].fillna(ratings['rating'].median()))

<Axes: xlabel='rating', ylabel='Density'>

fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=(15,7))
sns.countplot(rating_counts['Ratings'], ax=ax1)
ax1.set_xlabel('Rating Distribution', fontsize=10)
ax1.set_ylabel('Count', fontsize=10)

explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0.1, 0)
ax2.pie(rating_counts["Ratings"], explode=explode, labels=rating_cou
nts.Labels, autopct='%1.1f%%', shadow=True, startangle=0)

42

ax2.axis('equal')
plt.title("Rating Ratio")
plt.show()

data = Dataset.load_from_df(ratings[['userId', 'movieId', 'rating']]
, reader)

svd = SVD()
cross_validate(svd, data, measures=['RMSE', 'MAE'],cv=5)

trainset = data.build_full_trainset()
svd.fit(trainset)

user_rating=pd.merge(ratings,meta,left_on='movieId',right_on='id',ho
w='inner')
user_ratings_final=user_rating[['userId', 'movieId', 'rating','origi
nal_title']]
user_ratings=user_ratings_final.sort_values(by='userId')
user_ratings.head()

 userId movieId rating original_title
0 1 1371 2.5 Rocky III
93 1 2105 4.0 American Pie
140 1 2193 2.0 My Tutor
47 1 1405 1.0 Greed
182 1 2294 2.0 Jay and Silent Bob Strike Back

user_ratings[user_ratings['userId'] == 7]

 userId movieId rating original_t
itle
18645 7 671 4.0 Harry Potter and the Philosopher's S
tone
4200 7 500 3.0 Reservoir
Dogs
18739 7 745 5.0 The Sixth S
ense
18801 7 780 3.0 La passion de Jeanne d
'Arc
11487 7 1376 3.0 Sweet Six
teen
48 7 1405 5.0 G
reed
8557 7 260 5.0 The 39 S
teps

43

4770 7 539 3.0 Ps
ycho
3242 7 377 3.0 A Nightmare on Elm St
reet
19019 7 786 2.0 Almost Fa
mous
2039 7 272 3.0 Batman Be
gins
5345 7 588 4.0 Silent
Hill
19360 7 1408 1.0 Cutthroat Is
land
8395 7 141 4.0 Donnie D
arko
6410 7 318 5.0 The Million Dollar H
otel
2 7 1371 3.0 Rocky
III
8345 7 112 4.0 Italiensk for begyn
dere
19290 7 1394 3.0 Nostal
ghia
4906 7 551 4.0 The Poseidon Adven
ture
11415 7 1374 4.0 Rock
y IV
19088 7 924 4.0 Dawn of the
Dead
19236 7 1375 3.0 Roc
ky V
19211 7 1373 2.0 The Discovery of He
aven
11368 7 1372 3.0 Blood Dia
mond
3042 7 364 3.0 Batman Ret
urns
11169 7 1278 3.0 The Drea
mers
18620 7 534 4.0 Terminator Salva
tion
6722 7 595 3.0 To Kill a Mocking
bird
18678 7 708 3.0 The Living Dayli
ghts
3866 7 480 4.0 Monsoon Wed
ding
14416 7 104 3.0 Lola r
ennt
9707 7 594 4.0 The Term

44

inal
18211 7 21 3.0 The Endless Su
mmer
18306 7 198 2.0 To Be or Not t
o Be
5558 7 590 4.0 The H
ours
8976 7 380 4.0 Rain
Man
18349 7 207 3.0 Dead Poets Soc
iety
5760 7 592 3.0 The Conversa
tion
8862 7 329 3.0 Jurassic
Park
18377 7 316 2.0 Halbe Tr
eppe
10358 7 1073 3.0 Arlington
Road
10638 7 1125 3.0 Dreamg
irls
9561 7 541 4.0 The Man with the Golden
Arm
457 7 110 5.0 Trois couleurs : R
ouge
18572 7 345 3.0 Eyes Wide
Shut
18522 7 333 3.0 Bollywood/Holly
wood

movie1=meta['original_title']=='The Conjuring'
meta[movie1][['original_title','id']]

svd.predict(7, 138843, 3)

Prediction(uid=7, iid=138843, r_ui=3, est=3.2986816354722617, detail
s={'was_impossible': False})

45

A Hybrid Recommender

def convert_int(x):
 try:
 return int(x)
 except:
 return np.nan

id_mp = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/links_sm
all.csv')[['movieId', 'tmdbId']]
id_mp['tmdbId'] = id_mp['tmdbId'].apply(convert_int)
id_mp.columns = ['movieId', 'id']
id_mp = id_mp.merge(smd2[['title', 'id']], on='id').set_index('title
')

indices_mp = id_mp.set_index('id')

def recommend_my_movie(userId, title):
 idx = indices1[title]
 tmdbId = id_mp.loc[title]['id']
 movie_id = id_mp.loc[title]['movieId']
 similar_scores = list(enumerate(cosine_simil[int(idx)]))
 similar_scores = sorted(similar_scores, key=lambda x: x[1], reve
rse=True)
 similar_scores = similar_scores[1:26]
 movie_hasIndices = [i[0] for i in sim_scores]
 movies = smd2.iloc[movie_hasIndices][['title', 'vote_count', 'vo
te_average', 'year', 'id']]
 movies['est'] = movies['id'].apply(lambda x: svd.predict(userId,
indices_mp.loc[x]['movieId']).est)
 movies = movies.sort_values('est', ascending=False)
 return movies.head(10)

recommend_my_movie(7, "Inception")

 title vote_count vote_average year
id \
3381 Memento 4168.0 8.1 2000
77
6981 The Dark Knight 12269.0 8.3 2008
155
6623 The Prestige 4510.0 8.0 2006
1124
6218 Batman Begins 7511.0 7.5 2005
272

46

8613 Interstellar 11187.0 8.1 2014
157336
8031 The Dark Knight Rises 9263.0 7.6 2012
49026
4173 Minority Report 2663.0 7.1 2002
180
6640 Déjà Vu 1519.0 6.6 2006
7551
4145 Insomnia 1181.0 6.8 2002
320
5580 The Three Lives of Thomasina 12.0 6.8 1963
15081

 est
3381 4.083157
6981 4.036027
6623 3.932428
6218 3.810600
8613 3.640355
8031 3.514015
4173 3.477439
6640 3.421840
4145 3.397775
5580 3.372996

recommend_my_movie(25, "Inception")

 title vote_count vote_average year id
est
6623 The Prestige 4510.0 8.0 2006 1124
3.994742
6981 The Dark Knight 12269.0 8.3 2008 155
3.691721
3381 Memento 4168.0 8.1 2000 77
3.659017
8613 Interstellar 11187.0 8.1 2014 157336
3.608549
6218 Batman Begins 7511.0 7.5 2005 272
3.499123
4173 Minority Report 2663.0 7.1 2002 180
3.445458
8031 The Dark Knight Rises 9263.0 7.6 2012 49026
3.302625
7828 I Am Number Four 1606.0 5.9 2011 46529
3.264680
2085 Following 363.0 7.2 1998 11660
3.228714

47

7948 Stake Land 290.0 6.2 2010 52015
3.219634

4.7. Experimental Recommendations

This section depicts our experimental results which are the desired

recommendations from a movie recommendation system. We have shared the

output screenshots of the personalized recommendations provided by the

different recommendation algorithms used, shown in Figures 6, 7, 8, 9 and 10

which will help us to easily understand and compare all algorithms used to design

a movie recommendation system:

Fig. 6. Popularity-based Recommendations

Popularity-based movie recommendations lack practicality because they

overlook the unique and user specific preferences of individual users, are very

limited in recommendations as it follows the general trend and faces difficulty in

handling new and unknown movies.

48

Fig. 7. Description-based Content Filtering Recommendations

Fig. 8. Movie metadata-based Content Filtering Recommendations

49

Fig. 9. Collaborative Filtering Recommendations

Now, Figure 10 combines the recommendations of the previously displayed

recommendation systems and gives us their hybrid recommendations.

Fig. 10. Hybrid Filtering Recommendations

50

CHAPTER 5

RESULTS

First, we have visualized the distribution of the movies in their respective genres

according to the input dataset in Figure 11.

Fig.11. Distribution of movies in their respective genre

Figure 11 clearly shows that the Drama genre holds the lead, accounting for the

highest number of movies. In close succession, are the Comedy, Thriller,

Romance, Action, and other genres, showcasing the diverse range of films within

our dataset.

Then we have visualized the distribution of movies generating the highest gross

revenues and which month do such movies are more likely to release using the

input dataset in Figure 12.

51

Fig.12. Months for Blockbuster movies

From Figure 12, it is clearly evident that according to our input dataset, the

summer months of April, May, and June witness a surge in the average gross

revenue of high-grossing movies, indicating a behavioural pattern in the

audience. This sudden boost can be attributed to the well planned and strategic

release of blockbuster films during this time, taking full advantage of the

vacations and holiday season and capitalizing individuals inclined to have more

disposable time and income to seek quality entertainment.

Then we have represented the distribution of the release of movies in a heatmap

in figure 13 and tried to find out which months and years have been hot and cold

for the movie releases.

Fig. 13. Distribution of Movies based on their Genre

52

Figure 13 clearly shows that the month of May has been one of the most favoured

times since early 2000 in which filmmakers prefer to release majority of the

movies. And overtime the rest of the months have also become a good time to

release movies which could be a result of the growth and development in the film

industry in terms of technology and viewership. But it is also evident that there

has been a sharp decline in movie releases in the year of 2020 which could be a

result of COVID restrictions.

The visualization in Figure 14 clearly highlights the directors who have directed

the most number of successful, highest-grossing, and revenue-generating movies.

Fig. 14. Directors who have directed the highest Revenue-Generating

Movies

Then we have visualized the change in the runtime of movies in Figure 15.

53

Fig.15. Trend in Movie Runtime

From Figure 15, we can note that the runtime of movies has been trending

upwards throughout the years.

Our analysis involved applying a range of Machine Learning Algorithms to the

input data set and training multiple models resulting in a range of models, each

with their own RMSE (Root Mean Squared Error) and MAE (Mean Absolute

Error) scores. The resulting RMSE (Root Mean Squared Error) and MAE (Mean

Absolute Error) score can only be calculated for collaborative filtering, and it has

been tabulated in Table II:

TABLE II

ACCURACY RESULTS OF COLLABORATIVE-FILTERING

RECOMMENDATION SYSTEM ALGORITHM.

Machine Learning Model RMSE Score MAE Score

Collaborative Filtering 0.8944 0.6903

54

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

Through our work, we have tried to solve one of the most concerning real-world

business problems which is helpful to the online media streaming community to

gain more customers, scale their businesses, and thrive in this highly competitive

market. In our work, we applied various recommendation system machine

learning filtering algorithms, which were trained and tested for the input dataset

and later evaluated and compared their recommendations. The most widely used

algorithm among all our used algorithms is the hybrid algorithm, which is used

by major online streaming media companies. We were successfully able to

understand the differences in the recommendation capability of the various used

recommendation algorithms.

Our future plans involve testing out a wider range of machine learning algorithms

to find out if there exists a better option that is more accurate than the current

model. We also have plans to integrate our framework with a web application and

provide a user interface in order to provide a better user experience and which

will make it more easily and readily accessible to more and more people. We can

also diversify our recommendation model for other real-world problems in the

healthcare sector, fashion sector, e-commerce sector, etc. Ultimately, our goal is

to build recommendation systems that not only help online media streaming

platforms succeed but also prioritize user satisfaction, trust, and ethical

considerations. As we move forward, we envision a future where our work will

continue to evolve and adapt to the dynamic landscape of recommendation

systems by exploring advanced techniques such as sequential recommendations,

multimodal recommendations, online learning, and real-time updates, which will

help us to provide users with more accurate, personalized, and engaging

recommendations. By combining cutting-edge research, industry collaboration,

and a user-centric approach, we aim to contribute to the growth and success of

the online media streaming community and enhance the overall streaming

experience for users worldwide. We could also improve our current

recommendation system by applying deep learning and neural networks to add

features like image detection and sentiment analysis, which will definitely

provide better recommendations with higher accuracy. We also aim to enhance

the level of personalization in our recommendation system by incorporating

features like user feedback and behavior analysis. By considering individual user

preferences, viewing patterns, and feedback, we can tailor recommendations to

better suit each user's unique tastes and interests. We also plan to incorporate

contextual information such as time of day, location, device, and user

demographics. Through these advancements, we anticipate delivering even better

results to users, ensuring their needs and preferences are met more effectively.

55

REFERENCES

[1] T. Keerthana, T. Bhavani, N. Suma Priya, V. Sai Prathyusha, K. Santhi Sri, “FLIPKART

PRODUCT RECOMMENDATION SYSTEM”. Journal of Engineering Sciences(JES), Vol

11, Issue 4, April/ 2020, ISSN NO: 0377-9254.

[2] JH (Janghyun) Baek, John Tsai, Justin Shamoun, Muriel Marable, Ying Cui, “Amazon

Recommender System”. In Data Science Engineering Master of Advanced Study (DSE MAS)

Capstone Projects, UC San Diego Library Digital Collections.

[3] Mohammad R. Rezaei, “Amazon Product Recommender System”. University of Toronto,

Toronto, ON M5S 3G9, Canada.

[4] Rohit Dwivedi, Abhineet Anand, Dr. Prashant Johri, Arpit Banerjee, NK Gaur, “Product

Based Recommendation System On Amazon Data”. Research Gate, 2021.

[5] Zan Huang, Wingyan Chung, Thian-Huat Ong, Hscinchun Chen, “A Graph-based

Recommender System for Digital Library”. JCDL ’02: Proceedings of the 2nd ACM/IEEE-CS

joint conference on Digital libraries, July 2002.

[6] Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay, “Deep Learning – Based Recommender

System”. A Survey and New Perspectives. ACM Comput. Surv.1, 1, Article 1, July 2018.

[7] Greg Linden, Brent Smith, and Jeremy York, “Amazon.com Recommendations Item-to-

Item Collaborative Filtering”. Industry Report, Amazon.com.

[8] Md Zaid Ahmed, Abhay Singh, Abir Paul, Sayantani Ghosh, Avijit Kumar Chaudhuri,

“Amazon Product Recommendation System”. International Journal of Advanced Research in

Computer and Communication Engineering, Vol.11, Issue 3, March 2022.

[9] Ashrita Kashyap, Sunita. B, Sneh Srivastava, Aishwarya. PH, Anup Jung Shah, “A Movie

Recommender System: MOVREC using Machine Learning Techniques”, International Journal

of Engineering Science and Computing (IJESC), Vol.10, Issue-6, 2020.

[10] Yeole Madhavi B., Rokade Monika D., Khatal Sunil, “Movie Recommendation System

using Content-based Filtering”, International Journal of Advanced Research and Innovation

Ideas in Education (IJARIIE), Vol.7, Issue-4, 2021, IJARIIE-ISSN(O)-2395-4396.

[11] Rahul Pradhan, Ashish Chandra Swami, Akash Saxena, Vikram Rajpoot, “A Study on

Movie Recommendations using Collaborative Filtering”, International Conference on

Advances in Materials Science, Communication and Microelectronics (ICAMCM), IOP Conf.

Ser.: Mater. Sci. Eng. 2021.

[12] Y. Koren, R. Bell, and C. Volinsky, "Matrix Factorization Techniques for Recommender

Systems," in Proceedings of the ACM Conference on Recommender Systems (RecSys), vol.

2009, pp. 5-12, 2009.

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based Collaborative Filtering

Recommendation Algorithms," in Proceedings of the 10th International Conference on World

Wide Web (WWW), vol. 2001, pp. 285-295, 2001.

56

[14] R. Burke, K. Hammond, and B. Young, "Improving Recommendation Quality by

Incorporating Social Networks," in Proceedings of the 12th International Conference on

Intelligent User Interfaces (IUI), vol. 2007, pp. 263-266, 2007.

[15] R. Salakhutdinov and A. Mnih, "Probabilistic Matrix Factorization," in Proceedings of the

21st Annual Conference on Neural Information Processing Systems (NIPS), vol. 2008, pp.

1257-1264, 2008.

[16] J. Cheng, L. Ma, Y. Zhang, and Y. Zhou, "A Scalable Collaborative Filtering Framework

based on Co-Clustering," in Proceedings of the 18th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD), vol. 2012, pp. 241-249, 2012.

[17] Y. Liu, J. Yang, and J. Zhu, "Multi-View Clustering for Movie Recommendation," in

Proceedings of the 21st ACM International Conference on Information and Knowledge

Management (CIKM), vol. 2012, pp. 2218-2222, 2012.

[18] X. Huang, J. Li, and C. Tang, "Collaborative Filtering using Weighted Non-negative

Matrix Factorization," in Proceedings of the IEEE International Conference on Data Mining

(ICDM), vol. 2009, pp. 427-436, 2009.

[19] S. Dutta and S. Sarkar, "Movie Recommender System Using Collaborative Filtering and

Fuzzy Logic," in Proceedings of the IEEE International Conference on Computational

Intelligence and Computing Research (ICCIC), December 2014.

57

PUBLICATION SCREENSHOT

	Importing the Libraries
	The Simple Popularity Based Recommender
	Content Based Recommender
	Metadata Based Recommender
	Collaborative Filtering Application
	A Hybrid Recommender

