
A Project Report

on
OBJECT DETECTION USING OPENCV AND DEEP LEARNING

Submitted in partial fulfillment of the

requirement for the award of the degree of

Bachelor of Technology in Computer Science and

Engineering

Under The Supervision of
Dr. Sanjay Kumar

Professor
Department of Computer Science and Engineering

Submitted By

TUSHAR - 18SCSE1010487
Kundan Kumar - 18SCSE1010236

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA, INDIA
MAY, 2022



SCHOOL OF COMPUTING SCIENCE AND
ENGINEERING

GALGOTIAS UNIVERSITY, GREATER NOIDA

1. CANDIDATE’S DECLARATION

I/We hereby certify that the work which is being presented in the project entitled “Object

Detection using OpenCV and Deep Learning” in partial fulfillment of the requirements for the

award of the BACHELOR OF TECHNOLOGY IN COMPUTER SCIENCE AND

ENGINEERING submitted in the School of Computing Science and Engineering of

Galgotias University, Greater Noida, is an original work carried out during the period of

JAN-2022 to MAY-2022, under the supervision of Dr. Sanjay Kumar, Professor, Department

of Computer Science and Engineering of School of Computing Science and Engineering,

Galgotias University, Greater Noida

The matter presented in the thesis/project/dissertation has not been submitted by me/us for

the award of any other degree of this or any other places.

TUSHAR - 18SCSE101487

KUNDAN KUMAR - 18SCSE1010236

This is to certify that the above statement made by the candidates is correct to the best of my

knowledge.

Dr. Sanjay Kumar

Professor



CERTIFICATE

The Final Thesis/Project/ Dissertation Viva-Voce examination of TUSHAR - 18SCSE1010487

and KUNDAN KUMAR - 18SCSE1010236 has been held on MAY 13, 2022 and their work is

recommended for the award of BACHELOR OF TECHNOLOGY IN COMPUTER

SCIENCE AND ENGINEERING.

Signature of Examiner(s) Signature of Supervisor(s)

Signature of Project Coordinator Signature of Dean

Date:   May 13, 2022

Place: Galgotias University, Greater Noida, U.P.



Abstract

The most often adopted methodologies for contemporary machine learning
techniques to execute a variety of responsibilities on embedded devices are mobile
networks and multimodal neural networks. In this research, we propose a method
for identifying an item that takes into account the learning - based pre-trained
system MobileNetV3 for an SSD (Single Shot Multibox Detector). This set of rules
is utilized for constant identification, as well as for camera broadcasts to find an
explanation camera which recognizes the thing for a clip transfer. Consequently, I
utilize an item identification module which could find what's withinside the video
transfer. To place into impact the module, we integrate the MobileNetV3 and the
SSD system for a quick and green profound getting to know-primarily based totally
approach of item detection. The primary goal of our study is to investigate the
effectiveness of an object identification technique SSD and the significance of
MobileNetV3. The testing findings demonstrate that the Average Closeness of the
set of rules to discover one of a kind training as car, person and cat is 97.45%,
95.67% and 85.59%, respectively. It enhances the accuracy of content detection at
the processing speed necessary for practical identification and the needs of regular
progress indoors and outdoors.

Keywords : MobileNetV3, Computer vision, SSD(Single Shot Multibox
Detector), OpenCV, Deep Learning Neural Network.
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CHAPTER 1

INTRODUCTION



Project Purpose:
The goal of object identification would be to recognise and locate any recognized
items in a scenario. For mechanical control frameworks, recovering the posture of
items in 3D space is ideal.
Providing machines intelligence and turning bots into a growing bunch of single
and liberated humans has been a mechanical ambition for humanity. It is our
ambition to empower robots to perform repetitive, tedious,or hazardous tasks in
order for us to devote. Now is the moment for us to be more inventive. pursuits.
Regrettably, the smart component appears to be trailing behind. In reality, we need
programming that allows robots to autonomously complete tasks and act to achieve
this goal, in addition to better equipment.
In a continuous circumstance, the gazing or acknowledgment procedure is
incredibly difficult. Until now, no effective solution to this problem has been
identified. Despite extensive research, the solutions developed thus far are
ineffective, take a long time to prepare, are not suitable for continued use, and are
not adaptable to a large number of classes. When the system is looking for a
specific item to identify, object recognition is a little easier. Nonetheless,
recognising all of the items necessitates the ability to distinguish one item from
another, even if they are of the same type. Such a problem is extremely difficult for
machines, especially when they are unfamiliar with the various possible outcomes.

Motivation:
Blind folks have their own way of doing things and lead normal lives. They do,
however, confront difficulties due to inaccessible infrastructure and social issues.
Navigating around locations is the most difficult task for a blind person, especially
one who has lost all eyesight. Obviously, blind persons can navigate their homes
without assistance because they are familiar with their surroundings. Blind persons
have a difficult difficulty locating objects in their environment. As a result, we
decided to create an OBJECT DETECTION SYSTEM IN REAL TIME. After
reading a few publications in this field, This concept appeals to us. Consequently,
we are extremely inspired to create a method in which we can recognise in real
time objects.



CHAPTER  2

LITERATURE SURVEY



2.1 MobileNet-SSD
The MobileNet-SSD structure is used in our suggested model. It provides high
item recognition rate and still being faster than other systems such as YOLO. This
is true when trying to identify things in real time on low-powered devices like ours.
By addressing the model using 8-bit integers rather than 32-bit floats,
MobileNet-SSD allows for a faster detection time. The model's input was a 300 by
300 pixel picture, while the model's output addressed the bounding box's position
as well as recognition confidentiality (between Zero to one) for every recognised
item. To determine if the discovered item was real, a recognition certainty level of
0.5 was used.

2.2 OpenCV (Open-Source computer vision)
OpenCV is a programming library that is primarily focused on real-time computer
vision. OpenCV is an open-source computer vision library that can be used for
CCTV film analysis, video analysis, and picture analysis. It's a fantastic
programme for image processing and computer vision jobs. OpenCV is a C++
library that contains over 2,500 efficient algorithms. [5] When we want to create
computer vision apps but don't want to start from scratch, we can use this library to
start focusing on real-world challenges. The cv2.VideoCapture function in
OpenCV can read video (). By supplying 0 as a function parameter, we may access
the webcam.

Fig: 2.1 MobileNet as a backbone for SSD-based detection.



CHAPTER 3

WORKING OF A PROJECT



3.1 Algorithms Development

Using the OpenCV library and deep learning pre-trained models, we attempt to
recognise objects. It's almost like face recognition in real time. First, we train the
system with known or facial references so that if that face is visible in either photos
or clip feeds, It will be recognised by the system. We cannot forecast the quantity
of objects or the items such as a car, people, or cats in this study, which is about
object detection. If we have photos of a car to train a system with, the system will
be able to anticipate these objects from the image or video. However, because there
are so many objects around us, it is not realistic. Some pre-trained models were
relayed. This project is made by Tushar only. Some third-party person has trained
these pre-trained models. In these models, the majority of the items have already
been pre-trained. Finally, the SSD technique allows System to recognise objects
using pre-trained models. To implement the SSD approach in Python code, we
employ pre-trained MobileNets. Using data for training and a collection of
individual class bounding box colors, this model can identify labels. Resize each
frame to a fixed scale (300x300) pixels and To make an input drop for a single
frame, load the input video frame by frame.
The MobileNet approach is used to continuously improve the SSD algorithm and
speed rating accuracy. To detect many objects, this method requires only one shot.
For detecting purposes, the SSD is a neural network architecture design. The SSD
methodology disconnects the bounding output space into a series of default boxes
spanning distinct scales and fact ratios, whereas other methods such as the R-CNN
series require two shots. The default box set's forbidden output space is revealed by
SSD. The network quickly searches a default box for distinct object classes and
combines the box to fit what's inside. This network also accommodates a variety of
models with varying sizes of natural adhesives and resolutions. If no object is
present, the background is used instead of the location.

3.2 There are three steps to detection

1. To load a pre-trained object identification network, use OpenCV's deep
neural network (DNN) module.

2. Compute the forward pass for the input from a set of inputs to the network.
The result is saved as Detections.

3. Then iterate through the Detection to figure out what and where the items in
the photos are.

Aside from that, the location where a certain In the frame is an object, an
individual and the location, and finally the detection accuracy. The pre-trained
model already has a Person image and the label for that particular detection. A



label that refers to a person (see Figure 6) is followed by the label's accuracy. So
these three processes were constrained and used a loop to create a bounding box
around that specific object in the frame.

3.2.1 Model data

Our pre-trained models have two files: one for configuration and the other for
weights. As a result, the model represents how neurons are organized in a neural
network.
1- Configuration
2- Weight

3.3 PROPOSED SYSTEM

We will detect objects in real time using the Mobilenet-SSD model in the proposed
system in a quick and efficient manner. We'll use OpenCV 3.4 to construct a
Python script for object detection using deep neural networks.

The system operates as follows:

Input will be provided via real-time video from a camera or webcam, using the
simplified MobileNet Architecture, which builds light weight deep neural networks
using depth-wise separable convolutions. MobileNet layers receive the input video,
which is separated into frames. Each feature value is calculated by subtracting the
amount of pixel intensity in the bright region from the amount of pixel intensity in
the dark region. To compute these elements, all of the image's available sizes and
regions are used. An image may have few important qualities that can be utilized to
detect the item and many irrelevant features.
The Layers of MobileNet job will be to convert pixels in the fill in the highlights
that characterize the image's material. The bounding boxes and related class (label)
of items are then determined using the MobileNet-SSD model. The only remaining
step is to present or display the output.



Fig: 3.1 Diagram of the Proposed System Architecture



CHAPTER 4

MODULE DESCRIPTION



4.1 OBJECT DETECTION

INTRODUCTION TO OBJECT DETECTION

The technique of extracting and detecting real-world item instances from images or
videos, such as automobiles, motorcycles, televisions, flowers, and people, is
known as object detection. Because it allows for the recognition, localisation, and
detection of many objects within an image, an object detection technique allows
you to grasp the nuances of an image or video.
Image retrieval, security, surveillance, and advanced driver assistance systems are
all examples of areas where it is used (ADAS).

Object detection can be accomplished in a variety of ways:

● Detection of Objects Using Features
● Jones, Viola Object Recognition
● HOG Features in SVM Classifications
● Object detection with deep learning

Object recognition from video is an important task in video surveillance
applications these days. The object detection approach is used to find and cluster
pixels of needed objects in video sequences.
The detection of an item in a video sequence is critical in a variety of applications,
including video surveillance.
Pre-processing, segmentation, foreground and background extraction, and feature
extraction can all be used to find objects in a video stream.
Humans are quite good at detecting and identifying items in images. The visual
processing system is quick and precise, and it can handle complicated activities
such as detecting many items with a minimum of effort.

PROCESSING OF DIGITAL IMAGES

The need for extensive test work to build up the practicality of offered answers for
a given issue characterizes computerized picture production. The massive amount
of testing and trial that is typically necessary before touching base at a suitable
arrangement is a key trademark hidden in the design of image preparation
frameworks. The ability to plan approaches and fast model hopeful arrangements,



according to this trademark, has a significant role in reducing the cost and time
commitment to arrive at suitable framework implementation.

WHAT EXACTLY IS DIP?

An image is described as a 2D potential f(x, y), whereas x and y are spatially
coordinates and the dark level of the picture is determined by the adequacy of any
combination of directions (x, y). A computerized picture is one in which x, y, and
the abundance estimation of are all constrained discrete amounts. DIP refers to the
process of creating enhanced images for digital computers. A complex image is
made up of a small number of components, each of which has its own area and
value. Pixels are the units of measurement.

Because The most evolved of our senses is eyesight, it's no surprise that The most
significant part of human observation is visuals. Unlike people, though, imaging
equipment that is confined to the visual band of the electromagnetic spectrum
spans the entire electromagnetic spectrum, gamma rays to radio waves. It could
also run with pictures created based on sources with which most people are
unfamiliar.

There is no widespread agreement among designers about where picture handling
ends and other linked areas, such as picture analysis and PC vision, begin.
Occasionally, a distinction is established by describing picture handling as a
teacher in which both the information and the output of an operation are images.
This is a restricting and, to some extent, artificial limit. Picture inquiry falls
somewhere between picture preparation and PC vision.
In the continuum from picture handling to finish vision on the opposite side, there
are no visible bounds. In any event, considering three types of automated
procedures in this continuum: low, mid, and abnormal state forms, is one helpful
perspective. Primitive operations are included in low-level processes, for instance,
image preparation to reduce commotion, differentiation update and image
refinement. The fact that both its information sources and outputs are pictures
defines a low-level process.

Assignments, for example, division, depiction of that Question, and
characterization of individual pieces are part of the mid-level process on pictures.
The key information inputs to a mid-level process are visuals, words, and numbers,
However, its outputs are unique from those images. Ultimately, more precise
quantity handling involves "understanding an outlet of sensed things, such as in
picture research, and engaging the intellectual skills normally related to human



sight at the extreme end of the continuum." As previously stated, modified image
handling is used efficientlyin a broad spectrum of fields with high social and
financial value.

WHAT EXACTLY IS AN IMAGE?

An image is described as a 2D potential f(x, y), whereas x and y are spatially
coordinates and the dark level of the picture is determined by the adequacy of any
combination of directions (x, y).

Fig. 4.1.1 Digital Photograph

Image manipulation:

Processing on photos can be divided into three categories. There are three levels:
low, mid, and high.

1. Processing at the Lowest level :
● Noise removal by preprocessing.
● Enhancement of contrast.
● Sharpening the image

2. Processing at the Medium level::
● Categorization.
● Detecting the edges
● Extraction of objects

3. Processing at the High level:
● Image evaluation
● Interpreting the scene



Why are images processed?

The digital image must be prepared for display on one or more output devices
because it is invisible (laser printer, monitor at). The appearance of the structures
inside the digital image might be improved to make it more suitable for the
application.

Image processing is divided into three categories. They are
● Image to Image conversion
● Transformations from image to data
● Transformation of data into images.

Fig. 4.1.2 Image Processing Types

Pixel :
The smallest constituent of an image is the pixel. Each pixel represents a single
value. The value of a pixel in an 8-bit grayscale image is between 0 and 255. Each
pixel holds a value proportionate to the intensity of light at that specific spot. The
units of measurement are pixels per inch or dots per inch..

Resolution :
Resolution is described in a variety of ways. These include pixel density, positional
accuracy, high temporal, and spectral information.. The total number of counts of
pixels in a digital image is referred to as resolution in pixel resolution. The
resolution of a picture with M rows and N columns, for example, is formmulated as
M X N. The greater the image quality, the higher the pixel resolution.



In general, there are two types of image resolution:
● Image with low resolution
● Image with high resolution

Because high resolution is an expensive technique, It's not always possible to get
high-resolution photos at a reasonable price. As a result, imaging is desirable. With
the help of certain methods and algorithms, we may make high resolution
photographs from low resolution images in Super Resolution imaging.

IMAGE IN GRAYSCALE
A grayscale image is a capacity I (xylem) of the picture plane's two spatial
directions. At the location (x, y) on the image plane, the picture force is I. (x,y).
Unless the image is restricted by a rectangle, I (xylem) take non-negative images.

IMAGE IN COLOR
Three capacities can communicate with it: The letters R, G, and B stand for red,
green, and blue, respectively. An image can perseverance in terms of x, y
facilitations, as well as in terms of adequacy. The instructions and adequacy must
be digitized in order to convert such an image to advanced shape. Inspecting is the
process of digitizing the facilitator's esteems. Quantization is the process of
digitizing adequate esteems.

TECHNOLOGY IN CONNECTION:

R-CNN
R-CNN is a significant indication object identification system that combines
bottom-up region suggestions with top-down region recommendations. with
convolution neural network-generated rich alternatives.
R-CNN makes an advantage of region proposals methods to create possible
boundary boxes in a photograph, which are then used to train a classifier.

SINGLE SIZE MULTIBOX DETECTOR
SSD uses different aspect ratios and scales to discretize the output space of
bounding boxes into a collection of default boxes per feature map point. At the
time of prediction, the network generates scores for the presence of each item type
in each default box, as well as adjustments to the box to better reflect the object
form.



The network integrates predictions from many feature maps with varying
resolutions to handle objects of various sizes naturally.

ALEXNET
AlexNet is a classification convolutional neural network that contains 5
convolutional layers, 3 fully connected layers, and 1 softmax layer with 1000
outputs as its architecture.

YOLO
"You only live once," as the acronym suggests. Using a single neural network, it
separates the picture into regions and predicts bounding boxes and possibilities for
each region.
These bounding boxes are weighted based on projected probability. A single neural
network predicts bounding boxes and class possibilities from complete pictures in
a single assessment. Because the entire detection pipeline is a single network, it
can be tuned from start to finish based on detection performance.

VGG
VGG network is another image categorization convolution neural network
architecture.

MOBILENETS
Mobilenets are used to create lightweight deep neural networks. It uses depth-wise
separable convolutions and is based on a streamlined design. MobileNet employs
33 depth-wise separable convolutions, which require up to 8 times less processing
than ordinary convolution while achieving just a minor drop in precision. Object
identification, fine grained categorization, facial characteristics, and large
scale-localization are some of the applications and use cases.

TENSOR FLOW
Tensor flow is a high-performance numerical computation open source software
package. Its adaptable design enables easy computing deployment across a variety
of platforms (CPUs, GPUs, TPUs), from personal computers to server clusters to
mobile and edge devices. Google Brain team academics and engineers at Google's
AI company invented and produced Tensor flow. The adaptable numerical
computation core is utilized across a range of scientific domains, and it features
robust machine learning and deep learning support.

TensorFlow is used to build, train, and deploy Object Detection Models because it
is simple and provides a library on the use of pre-trained detection models the The



Open Images dataset, the COCO dataset, and the Kitti dataset. The combination of
Single Shot Detectors (SSDs) with Mobile Nets architecture is one of the many
Detection Models that is rapid, efficient, and does not require a lot of computer
power to achieve object detection.

OBJECT DETECTION IN PRACTICE
Object detection's main applications include :

FACIAL IDENTIFICATION
Deep Face is a facial recognition system that uses deep learning to recognise
human faces in digital images. A group of Facebook researchers designed and built
the app. Google Photographs also has its own facial recognition technology, which
automatically divides all photos based on who is in the frame.
Facial Recognition involves several components, or one might say it concentrates
on several characteristics such as the eyes, nose, mouth, and brows for recognising
faces.

COUNTING PEOPLE
People counting is a type of object detection that can be used for a wide range of
uses, including finding a person or a criminal, monitoring store performance, and
computing crowd estimates during festivals. Because individuals move out of the
picture fast, this is a challenging process.

CHECK FOR INDUSTRIAL QUALITY
Object detection is also useful in industrial processes for identifying and
recognising products. Finding a specific article through visual examination is a
common task in many industrial processes, including sorting, inventory
management, machining, quality control, and packaging. Inventory management is
difficult since goods are difficult to track in real time. Inventory accuracy can be
improved by using automatic object counting and localisation.

CARS THAT DRIVE THEMSELVES
Self-driving cars are the most promising technology for the future, but their
operation is complicated sinceRadar, laser light, GPS, odometer, and computer
vision are some of the tools they utilize to sense their environment. In order for
navigation methods, as well as obstacles and it, to operate, advanced control
systems analyze sensory inputs. It is a significant step toward driverless cars
because it occurs at a rapid rate.



SECURITY
Item Recognition is important in the field of security; it's employed in significant
fields like Apple's Face ID and the retina scan seen in all sci-fi movies.
Governments frequently utilize this application to access security feeds and
compare them to their existing databases in order to identify criminals or detect
things such as car numbers implicated in criminal activity. The possibilities are
endless.

DETECTION OF OBJECTS EXTRACTION OF FEATURES AND
WORKFLOW
Every Object Detection Algorithm works on the same concept; the only difference
is how they function. They focus on extracting characteristics from photographs.
that are provided as input, and then using these charatcterstics to establish the
image's class.



4.2 DEEP LEARNING

INTRODUCTION TO DEEP LEARNING

Deep learning is a machine learning technique. It instructs a computer to learn how
to predict and classify information by filtering inputs through layers. Images,
writing, and music can all be used to express observations. Deep learning was
inspired by the way the human brain filters information. Its goal is to generate
some actual magic by simulating how the human brain functions. There are around
100 billion neurons in the human brain. Each neuron has approximately 100,000
neighbors. We're re-creating it, nevertheless, in a way and on a level that robots
cannot understand. In human brains, a neuron has a body, dendrites, and an axon.
A neuron's signal travels down the axon to the dendrites of the next neuron. A
synapse is the connection through which the signal travels. Neurons are somewhat
useless on their own. When there are a lot of them, however, they may create some
major magic. That's how a deep learning algorithm works! You collect data from
observations and combine it into a single layer. That layer generates an output,
which is then used as an input by the next layer, and so on. This process continues
till your ultimate output signal is reached! The neuron (node) receives one or more
signals (input values) that travel across it. The output signal is delivered by that
neuron.

Consider your senses as the input layer: what you can see, smell, and feel. For a
single observation, These are factors that are unrelated. This data is broken down
into integers and binary bits that a computer can understand. To bring these
variables into the same range, you'll need to standardize or normalize them. For
feature extraction and transformation, they employ multiple layers of nonlinear
processing units. The output of the previous layer is used as the input for the next
layer. What they learn is organized into a hierarchy of ideas. Each level of this
structure learns to adapt its input data into increasingly composite and abstract
representations. This signifies the input of a picture, eg., might be a pixel matrix.
The initial layer may encrypt the borders and pixel composition. The following
layer could be a configuration of lines. A nose and eyes could be encoded in the
next layer. The next layer may detect the presence of a face in the image, and so
on.



What goes on within a neuron?

The input node receives data in numerical format. Each node is allocated a number,
and the data is delivered as an activation value. The greater the number, the
stronger the activation. Based on the connection strength (weights) and transfer
function, the activation value is sent to the next node. Every node adds up
activation values it gets (calculates the weighted sum) and adjusts it according to
its transfer function. It then performs an activation function. A function that is
applied to this specific neuron is called an activation function. The neuron then
determines whether or not it needs to transmit a signal.

Weights are allocated to each synapse, which are vital in Artificial Neural
Networks (ANNs). ANNs learn through weights. The ANN determines how far
signals are carried along by altering the weights. You decide how the weights are
modified when you're training your network.

The activation propagates throughout until it reaches the output nodes of the
network. The information is subsequently presented to us in an intelligible manner
via the output nodes. To compare the output with the actual expected output, your
network will employ a cost function. The cost function is used to assess the
model's performance. It is calculated as the difference between the actual and
projected values.

You can use a variety of cost functions to determine what kind of network fault do
you have? You are attempting to reduce the function of loss. (In other words, the
lower the loss function, the closer you are to the desired output.) The data is
returned, and the neural network proceeds to study with a purpose of cost function
reduction by adjusting scales. Backpropagation is the term for this procedure.

In forward propagation, information is fed into the input layer and transmitted
forward across the network to create our output values. We compare the values to
what we predicted. We next calculate the errors and reverse the information. This
allows us to update the weights and train the network. (We can alter all the weights
at the same time via backpropagation.) Because of the way the algorithm is set up,
you can alter all of the weights at the same time during this procedure. This helps
to examine how each of your neural network weights contributes to the overall
error.



You're ready to go on to the testing process once you've adjusted the weights to the
ideal level.

What is the learning process of an artificial neural network?

There are two methods for getting a programme to do what you want. The first is a
method that is carefully led and pre-programmed. You tell the application exactly
what you want it to do. There are also fully connected layers to take into account.
You tell your neural network which inputs to utilize and which outputs you want,
and then you sit back and watch it learn on its own.

enabling our system to figure things out for itself eliminates the need to manually
enter each and every rule. We can design the structure and after that learn from it.
After it has been trained, you may feed it a new image and it will be able to
distinguish between input and output.

Feedback and feedforward networks

Inputs, outputs, and hidden layers are all part of a feedforward network. The
signals are only capable of traveling in one way (forward). Input data is passed to a
layer that performs calculations. The weighted total of each processing element's
inputs is used to compute. The new values are fed into the next layer as new input
values (feed-forward). This is repeated throughout all layers and determines the
final result. Data mining, for example, frequently employs feedforward networks.
There are feedback channels in a feedback network (such as a recurrent neural
network). This means that they can use loops to send messages in both ways. All
conceivable neuron connections are permitted. Because this form of network has
loops, it creates a dynamic system that is non-linear that alters continually till the
equilibrium is reached In optimization issues, evaluations are frequently used to
find the optimal arrangement of interconnected components.

Weighted Average
A neuron's inputs might be either features from a training set or outputs from
previous layer neurons. Each link between two neurons has its own synapse, which
has its own weight. You must travel along the synapse and pay the "toll" to move
from one neuron to the next (weight). The sum of the weighted inputs from each
incoming synapse is then applied to an activation function by the neuron. It sends
the result to all of the neurons in the following layer. We're talking about altering
the weights on these synapses when we talk about updating weights in a network.



The sum of the weighted outputs from all the neurons in the previous layer is a
neuron's input. The weight associated with the synapse connecting the input to the
current neuron is multiplied by each input. Each neuron in the current layer will
have three separate weights: one for each synapse, if the prior layer has three
inputs or neurons.
The output of a node is determined by its activation function, in a nutshell.
Input signals are converted into output signals via the activation function (also
known as the transfer function). It converts the output numbers to a range between
0 and 1 or -1 and 1. It's a representation of the cell's action potential firing rate as
an abstraction. It's a number that indicates the probability of the cell firing. The
function is binary at its most basic level: yes or no (the neuron fires) (the neuron
does not).The output can be a number between 0 and 1 (on/off or yes/no) or any
value in between. If you're estimating the chances that a picture is a cat using a
method that converts a range between 0 and 1, an output of 0.9 means your image
has a 90% chance of being a cat.

Activation feature
In a nutshell, a node's activation function determines the node's output.
Input signals are converted into output signals via the activation function (also
known as the transfer function). It converts the output values into a 0 to 1 or -1 to 1
range. It's a simplified representation of the cell's action potential firing rate. It's a
number that represents the probability of the cell firing. The function is binary at
its most basic level: yes (the neuron fires) or no (the neuron does not fire). The
output can be a single digit or a range of digits.
What are our options? There are several activation functions, but these four are the
most commonly used.

Function of Threshold
A step function is what this is. If the input's total value exceeds a specific
threshold, the function returns 0. It will pass on 1 if it is equal to or greater than
zero. It's a yes-or-no function with very strict parameters.

Function sigmoid
In logistic regression, this function is utilized. It's a smooth, progressive
development from 0 to 1, unlike the threshold function. It's useful at the output
layer, and it's commonly employed in linear regression.

Tangent Hyperbolic Function
The sigmoid function is extremely close to this one. The value spans from -1 to 1
in contrast to the sigmoid function, which varies from 0 to 1. Even though this



function is not very close to what occurs in the brain, it gives better results when
neural networks are trained. During sigmoid function training, neural networks can
become "stuck." This occurs when a large amount of strongly negative input
maintains the output near zero, causing the learning process to be disrupted.

Rectifier feature
In the world of neural networks, this may be the most prevalent activation function.
It's the most effective and biologically sound option. Despite the fact that there is a
kink at 0, it is slick and steady afterwards. For instance, your result may be "no" or
a percentage of "yes." This function doesn't require any difficult computations or
normalization.

When robots can execute jobs that would ordinarily need human intellect, artificial
intelligence is required. It falls inside the machine learning layer, where robots may
learn from past experience and develop skills without the involvement of humans.
Artificial neural networks, algorithms inspired by the human brain, are used in
deep learning to learn from vast volumes of data. Deep learning is built on human
experiences; the deep learning algorithm will repeatedly do a task in order to
improve the outcome. Learning is enabled by the many (deep) layers of neural
networks. Any flaw that requires "thinking" to solve It's possible that deep learning
can learn to fix this problem.

4.3 CONVOLUTIONAL NEURAL NETWORK

INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS (CNN)

Neural Networks (Artificial)



The concept of artificial neural networks (ANNs) is founded on the premise that
the human brain's functioning may be mimicked by employing silicon and wires as
living neurons and dendrites.

Fig. 4.3.1 Neurons

Neurons are 86 billion nerve cells that make up the human brain. Axons connect
them to thousands of other cells. Dendrites accept stimuli from the outside world as
well as sensory organ inputs. Electric impulses are generated by these inputs and
travel fast across the neural network. The message can then be forwarded to
another neuron to handle the problem, or it can be ignored.

ANNs are built up of many nodes that mimic brain neurons. The neurons are
connected and communicate with one another. The nodes may take in data and
perform simple actions on it. Other neurons get the outcome of these operations.
The activation or node value of each node is the output. Each link has a weight
connected with it. Learning is possible with ANNs, which is accomplished by
changing weight values.

Neural network :

In a more contemporary definition, a neural network is a network or circuit of
neurons, or an artificial neural network made up of artificial neurons or nodes. As a
result, a neural network can be either biological (made up of real biological
neurons) or artificial (made up of artificial neurons). The biological neuron's
connections are modeled as weights. An excitatory link has a positive weight,
while inhibitory connections have a negative weight. All inputs are given a weight
and then added together. A linear combination is the name for this action. Finally,
the output's amplitude is controlled by an activation function. For instance, an
acceptable output range is normally between zero and one, although it might also
be between -1 and 1.



These artificial networks might be utilized in predictive modeling, adaptive
control, and other applications that need a training dataset. Self-learning based on
experience can take place neural networks, which can derive conclusions from a
complex and apparently disconnected set of data.

Fig. 4.3.2 A straightforward neural network

A deep neural network is an artificial neural network (ANN) with several layers
between the input and output layers (DNN). The DNN identifies the necessary
mathematical adjustment to transform the input into the output, whether it's a linear
or non-linear connection.

NEURAL NETWORKS IN CONVOLUTION :

Convolutional Neural Networks, like conventional Neural Networks, are made up
of neurons with learnable weights and biases. Each neuron accepts a set of inputs,
performs a dot product, and optionally adds nonlinearity to the outcome.
Convolutional Neural Networks (CNNs) are made up of neurons that learn to
optimize themselves, comparable to conventional artificial neural networks
(ANNs). Each neuron will still receive input and conduct an operation (such as a
scalar product followed by a nonlinear function) - the foundation of numerous
artificial neural networks. The entire network will still express a single perceptual
scoring function out of the raw data picture vectors to the class score's final output
(the weight). All of the normal ANN recommendations and methods will apply to
the final layer, which will include the loss functions associated with the classes.



The main significant distinction among CNNs and standard CNNs are the ANNs.
are mostly utilized in picture pattern recognition.This enables us to embed
image-specific features into the architecture, improving the network's suitability for
image-focused tasks while simultaneously reducing the number of parameters
required to build up the model. The computational complexity required to compute
picture data is one of the most significant drawbacks of older types of ANN.

Due to its relatively tiny picture dimensions of only 28 x 28, Most versions of
ANN may use typical machine learning benchmarking datasets like the MNIST
database of handwritten digits. A single neuron in the first hidden layer will
contain 784 weights (28281, where 1 is the number of black and white values in
MNIST), which is possible for most types of ANN using this dataset. When you
look at a 64 64 coloured visual input, the amount of weights on a single first-layer
neuron skyrockets to 12, 288. Assume that the network used to recognise
color-normalized MNIST digits will need to be much larger to deal with this
volume of data., and you will see why adopting such models has its drawbacks.

CNN STRUCTURE :

CNNs are feedforward networks, which means that information flows in just one
direction, from inputs to outputs. CNNs are biologically inspired, just like artificial
neural networks (ANN). Their architecture is inspired by the The brain's visual
cortex, which is made up of layers of basic and complicated cells alternate.

CNN designs occur in a variety of shapes and sizes, but they all have convolutional
and pooling (or subsampling) layers that are organized into modules. These
modules are followed by one or more fully linked layers, similar to a normal
feedforward neural network. To create a deep model, modules are frequently
stacked on top of one another. For a toy image classification problem, it shows a
conventional CNN design. The network receives an image directly and performs
multiple steps of pooling and convolution. These operations' output is subsequently
fed into one or more fully linked layers.

Ultimately, the name of the class is output by the last layer that is totally linked.
Despite the fact that this is the most widely used in the literature base architecture,
various architecture modifications have just been presented with the goal of
enhancing picture categorization precision or lowering costs of computation. We
only mention typical CNN architecture briefly in the rest of this section.



Fig: 4.3.3 CNN's structure

ARCHITECTURE IN GENERAL:

CNNs are made up of three layers. Convolutional layers, pooling layers, and
fully-connected layers are the three types. A CNN architecture is generated when
these layers are stacked. Figure 2 shows a simplified CNN architecture for MNIST
classification. convolution with ReLu pooling input 0 9 output fully-connected
with ReLu fully-connected... Fig. 2: A basic CNN design with only five layers
The core functionality of the CNN in the example above may be divided into four
categories.

1. The input layer, as with other types of ANN, will store the image's pixel
values.

2. Calculating the scalar product between their weights and the area associated
to the input volume in the convolutional layer will determine the output of
neurons connected to particular regions of the input. The ReLu aims to apply
a 'system is crucial' activation function like sigmoid to the output of the
preceding layer's activation function..

3. The max pooling executes levels that can indicate along the input's spatial
dimensions, reducing the number of factors inside that activation even
further.

4. The completely interconnected layers will then Make an effort to generate
class scores from the activations, which will be utilized for categorization, in
the same way that normal ANNs do. It's also possible to employ ReLu



between these layers to boost performance. It can use convolutional and
downsampling techniques to change the original input layer by layer to get
class scores for classification and regression. using this simple method of
transformation. It is important to remember, however, that simply grasping
the overall design of a CNN architecture is insufficient. It can take a long
time to create and optimize these models, and it might be confusing. We'll
now look at the various layers in further depth, including their connectivities
and hyperparameters

LAYERS OF CONVOLUTION:

It learns the feature representations of the pictures they're given and operate as
feature extractors.. The convolutional layers' neurons are organized into feature
maps. Each neuron in a feature map has a receptive field, which is linked to a
neighborhood of neurons in the previous layer by a filter bank of trainable weights.
To create a new feature map, inputs are convolved with learned weights, and the
convolved outputs are provided via a nonlinear activation function.

The values among all cells in a feature map must be equal; however, different
feature maps within the same convolutional layer might have different weights,
enabling numerous features to be extracted..

The convolutional layer, as its name suggests, is critical to how CNNs work. The
learnable kernels are the focus of the layers parameters.
The spatial dimensionality of these kernels is usually low, yet they cover the entire
depth of the input.As data travels through a convolutional layer, each filter is
convolved across the spatial dimensions of the input to form a 2D activation map..
These maps of activation can be seen.
The scalar product is calculated for each value in that kernel as we progress
through the input. As a result of this, the network will learn kernels that "fire"
when they perceive a given characteristic at a specific spatial point in the input.
This is referred to as activations.



Fig: 4.3.4 A convolutional layer's visual representation

The input vector is placed over the kernel's center element, After that, a weighted
sum of itself and any nearby pixels is calculated and substituted.
Each kernel will have its own activation map, which will be layered along the
depth dimension to form the whole output volume of the convolutional layer.

As we mentioned before, training ANNs on image inputs produces models that are
too large to train efficiently. This is due to the fully linked nature of traditional
ANN neurons, hence To mitigate this, each neuron in a convolutional layer is only
linked to a tiny fraction of the input volume. The receptive field size of the neuron
is frequently also known as the dimensionality of this region. The depth of the
input is virtually always equal to the magnitude of the connectivity through the
depth.

If the network's input is a 64 * 64 * 3 picture (aRGB color picture with 64 X 64
dimensions and a 6 * 6 receptive field size, each neuron in the convolutional layer
will have a total of 108 weights. (6 * 6 * 3), where 3 denotes strength of
connectedness over the volume's density. A typical neuron in other forms of ANN
might have 12, 288 weights, to put this into perspective.

It can also greatly decrease the model's intricacy by optimizing its output. The
depth, stride, and establishing zero-padding are the three hyperparameters that are
optimized
.
The number of neurons within the layer can be manually set to the same region of
the input to set the depth of the output volume created by the convolutional layers.
Other forms of ANNs, where all of the neurons in the hidden layer were previously
directly linked to each other, may exhibit this behaviour. Reducing this



hyperparameter reduces the total number of neurons in the network, but it also
reduces the model's pattern recognition skills.

We can also select the surrounding spatial depth dimensions of theinput for
receptive field placement. If we set the stride to 1, for example, we will get a
massively overlapped receptive field with extraordinarily big activations.
Alternatively, increasing the stride will limit the amount of overlapping and result
in a lower spatial dimension output.

Zero-padding is a basic operation that involves padding the input's boundary, and
it's a good way to manage the output volumes' dimensions.

It's crucial to realize that by employing these strategies, we'll change the spatial
dimensionality of the convolutional layers' output.
Using an image input of any actual dimensionality will still result in our models
becoming gigantic, despite our best efforts thus far. However, techniques have been
devised to drastically reduce the amount of parameters in the convolutional layer.

The notion behind parameter sharing is that if one area characteristic is beneficial
to calculate in one spatial region, it will almost certainly be useful in another. By
restricting each individual activation map inside the output volume to the same
weights and bias, we may dramatically minimize the amount of parameters created.

As a result, when the backpropagation step occurs, each neuron in the output will
reflect the overall gradient, which may be totalled throughout the depth, instead of
updating all of the weights.

Stacking Layers

The feature maps' spatial resolution is reduced by the pooling layers, resulting in
spatial invariance to input distortions and translations. To transport the average of
all the input values of a local neighborhood of an image to the next layer, use
average pooling aggregation layers. was typical practice at first. Max pooling
aggregation layers, on the other hand, propagate the maximum value inside a
receptive field to the next layer in more modern models.

Pooling layers attempt to gradually lower the representation's dimensionality,
reducing the number of parameters and the model's computing complexity.



The "MAX" function is used by the pooling layer to scale the dimensionality of
each activation map in the input. Most CNNs employ max-pooling layers with
dimensionality 2 2 kernels and a stride of 2 along the input's spatial dimensions.
The activation map is reduced to 25% of its original size, while the depth volume is
kept at its full size.

There are only two commonly observed techniques of max-pooling due to the
destructive nature of the pooling layer. The pooling layer's stride and filters are
generally both set to 2 2, allowing the layer to extend across the input's full spatial
dimensions. Another option is Overlapping pooling, with the stride set to 2 and the
3 is the kernel size. Because of Pooling is detrimental, and having a kernel size
bigger than 3 will typically result in a significant reduction in model performance.

It's also vital to note that, in addition to max-pooling, CNN designs can also
include general-pooling. Pooling neurons in general pooling layers are capable of
performing a variety of common operations such as L1/L2-normalization and
average pooling. However, the focus of this lesson will be on using max-pooling.

Fully Connected Layers

When traveling through the network, To extract more abstract feature
representations, numerous convolutional and pooling layers are commonly layered
on top of each other. Following these layers are fully linked layers that read these
feature representations and do high-level reasoning. The softmax operator is
commonly used on top of a DCNN for classification challenges. The classifier on
top of the convolutional towers discovered that using a support vector machine
(SVM) instead of the softmax operator improved classification accuracy, leading to
early success.

Neurons in the fully-connected layer are directly linked to neurons in the two
adjoining layers, but not to neurons in any of the layers inside them.

Despite the fact that a CNN only requires a few layers, there is no standard
technique to construct a CNN design. However, merely slapping a few layers
together and expecting it to work would be foolish. CNNs, like other types of
ANNs, tend to follow a similar design, as seen by reading relevant literature.
Figure 2 shows a standard design in which convolutional layers are layered, then
pooling layers are applied repeatedly preceding advancing to fully linked layers.



CNN varies from other types of Artificial Neural Networks in that they use
information about a single sort of input rather than focusing on the full issue
domain. As a result, a considerably simpler network design may be created.

The basic ideas of Convolutional Neural Networks have been presented in this
paper, along with the layers necessary to construct one and how to arrange the
network for most image processing applications.

In recent years, progress in the field of image processing utilizing neural networks
has stagnated. This is due in part to a misunderstanding about the amount of
intricacy and expertise required to get started modeling these incredibly powerful
algorithms for machine learning. I believe that this work has helped to clear up any
misunderstandings and made the area more approachable to newcomers.

Training

In order to get the intended network output, CNNs and ANNs in general require
learning algorithms to alter their free parameters. Backpropagation is the most
often used algorithm for this purpose. Backpropagation determines how to alter a
network's parameters to reduce mistakes that impact performance by computing the
gradient of an objective function. Overfitting, or Once the network has been trained
on a small or even big training set, poor performance on a held-out test set, is a
typical problem with training CNNs, particularly DCNNs. This has an impact on
the system capacity to be general to new information and a significant difficulty for
Regularization can be used to overcome DCNNs.



Fig: 4.3.5 CNN Model Training

Caffe Model
Caffe is defined as a Deep Learning structure that was created to build and access
the following features in an object detection system.
• Expression: Unlike other models that employ codes, the caffe model defines
models and optimizations as plaintext schemas.
• Speed is critical for state-of-the-art models and huge data in both research and
industry.
• Modularity: For new jobs and diverse circumstances, flexibility and expansion
are essential.
• Openness: The core needs of scientific and applied advancement are common
code, reference models, and reproducibility.

HIERARCHY OF LEARNING FEATURES:

From pixel classifiers to hierarchy, learn everything. One layer collects features
from the preceding layer's output, and all layers are trained together.

1. Zero-One Loss
These deep learning courses' models are mostly used for categorization. The
main goal of classifier training is to decrease the number of mistakes
(zero-one loss) on unknown samples.

2. Loss of Negative Log-Likelihood
Because the zero-one loss isn't differentiable, optimizing it for big models
(thousands or millions of parameters) is prohibitively costly



(computationally). Given all of the labels in a training set, the classifier's
log-likelihood is maximized. The number of correct predictions and the
likelihood of the suitable class are not equal., but from the perspective of a
randomly initialized classifier, they are quite close. Although the probability
and zero-one loss are distinct goals, we should constantly keep in mind that
they are associated with the validation set. However, one may grow while
the other lowers, or vice versa.

3. Descent using Stochastic Gradients
Ordinary gradient descent is a simple rule in which we generate little steps
downward on an error surface specified by a loss function of certain
parameters over and over again. The training data is incorporated into the
loss function, which we take into consideration for the purpose of normal
gradient descent. The pseudo code for this method is as follows: Stochastic
gradient descent (SGD) works in the same way as random gradient descent.
It works rapidly by calculating the gradient using a few examples at a time
rather than the whole training set. To estimate the gradient, we utilize just
one sample at a time in its purest form.

Caffe is a machine learning platform (or framework) focused on speed and
modularity of expression. It was created by young King Gia at Berkeley artificial
intelligence research. Tensorflow, Tiano, Charis, and SVM are just a few of the
deep learning or machine learning frameworks for computer vision. However, the
expressive architecture of the edition café is the reason for its implementation. We
can simply swap between CPU and GPU while training and optimizing GPU
machine modules. Configuration, rather than hard coding, defines our problem.
Cafes are open source libraries, therefore they support expandable programming. It
has grown to over 20,000 developers and, since its inception, has provided
development platforms in extensible languages such as Python and C++.

The third argument is that when it comes to training neural networks, speed is the
most important factor. With a conventional media GPU that processes photos in
milliseconds per image, Caffe can process over a million images in a single day.
Because it is an open source library, Tiana and Kara's Caffe is the fastest
convolution neural network in the current community. A large amount of studies
projects are driven by cafes. Every day, something new emerges from it.



4.4 OPENCV

INTRODUCTION TO OPENCV

OpenCV (Open Computer Vision Library) is a free software library for computer
vision and machine learning.The purpose of OpenCV was to develop a standard
infrastructure for computer vision applications and to speed up the adoption of
machine perception in business goods. Because The software OpenCV is
BSD-licensed, it is fairly simple for companies to use and change the code. It's a
very good package with 2500 optimized algorithms that cover both classic and
sophisticated machine vision and deep learning approaches. These algorithms are
utilized for a variety of tasks, including face recognition and discovery. Human
acts are classified by identifying objects. Track camera motions and moving
objects in movies. Remove red eyes from photographs shot with the flash, detect
eye movements, recognise scenery, and overlay it with augmented reality.

OpenCV was first started in 1999 as a part of a series of tests that included
real-time ray tracing and 3D display walls, an Intel Research initiative to build
CPU-intensive applications. Intel Russia's optimization expertise, as well as Intel's
Performance Library Team, were major contributors to the project. The project's
aims were characterized as follows in the early days of OpenCV:

● Advance vision research by making fundamental vision infrastructure code
not just available but also optimized. No need to reinvent the wheel.

● Distribute vision information by offering a standard framework on which
developers may build, making code more clear and transferrable.

● Make portable, performance-optimized code available for free — with a
license that doesn't need the source to be open or free.

In 2000, during the IEEE Conference on Computer Vision and Pattern
Recognition, the first alpha version of OpenCV was given to the public, followed
by five beta versions between the years 2001 and 2005. In 2006, the initial 1.0
version was launched. In October 2008, A "pre-release" of version 1.1 was made
available.

In Oct 2009, OpenCV released its second major version. OpenCV 2 makes
significant modifications to the C++ interface, aiming for simpler, more type-safe
patterns, new methods, and higher performance implementations for existing ones.



Official releases are now released every six months, and development is being
done by an independent Russian team with the assistance of commercial firms.

OpenCV support was taken up by a non-profit organization, OpenCV.org, in
August 2012, which maintains a development and user site.
In May 2016, Intel announced the acquisition of ITSEEZ, a prominent OpenCV
developer.

OpenCV (Open source computer vision) is a programming library primarily
designed for real-time computer vision. Itseez and Willow Garage supported it
after Intel established it (which was later acquired by Intel).The library is
cross-platform and free to use thanks to the open-source BSD license.

It supports Windows, Linux, Android, and Mac OS and offers C++, Python, Java,
and MATLAB interfaces. When MMX and SSE instructions are available,
OpenCV leans heavily toward real-time vision applications. A full-featured
CUDAandOpenCL interface is currently being developed.

Over 500 algorithms exist, having 10 times the number of functions that make up
or support them. OpenCV is written fully in C++ and has a user interface that is
templated.

Among the applications of OpenCV are :

● Toolkits for 2D and 3D features
● Estimation of egomotion
● Face recognition software
● Recognition of gestures
● Computer–human interaction (HCI)
● Robotics on wheels
● Understanding motion
● Object recognition
● Recognition and segmentation
● Depth perception from two cameras in stereopsis stereo vision
● Motion creates structure (SFM)
● Motion detection
● Virtual reality

OpenCV has a statistical machine learning library to support some of the
aforementioned areas:



● Increasing the effectiveness of decision-tree learning
● Trees that increase gradients
● k-nearest neighbor algorithm Expectation-maximization algorithm
● The classifier Naive Bayes
● Networks of artificial neurons
● Forest at random
● Forest at random
● Vector support machine (SVM)
● Deep neural networks (DNNs) are a kind of artificial intelligence (DNN)

Numpy libraries in OpenCV :

The term NumPy stands for "Numeric Python" or "Numerical Python." It's a
Python extension module that provides quick precompiled functions for
mathematical and numerical tasks. NumPy also adds strong data structures to the
Python programming language, allowing for faster multidimensional arrays and
matrix computation. Even large matrices and arrays are targeted by the approach.
The module also includes a large library of high-level mathematical functions for
working with these matrices and arrays.

It is the most important Python module for scientific computing. It has a number of
characteristics, including the following :

● A numpy array is a grid of identical-type items; a tuple of nonnegative
integers serves as the index.

● The array's rank is the number of dimensions;
● The shape is a collection of numbers indicating the array's size along each

dimension.

Array in Numpy:

A numpy array is a grid of identical-type items indexed by a tuple of nonnegative
integers. The array's rank is the number of dimensions; the shape is a tuple of
numbers indicating the array's size along each dimension.

SciPy:

SciPy is frequently discussed alongside NumPy. SciPy enhances NumPy's
capabilities by adding new functions for minimization, regression, Fourier



processing, and more. NumPy is built on top of two previous Python array
modules. Numeric is one among them. Numeric is similar to NumPy, a Python
package for high-performance numeric processing that is no longer supported.
Numarray, which is a full rebuild of Numeric but is also obsolete, is another
NumPy ancestor. NumPy is a combination of the two, since it is based on
Numeric's code and Numarray's capabilities.

Python as a Matlab Replacement:

Python may be used to replace MATLAB when combined with Numpy, Scipy, and
Matplotlib. NumPy, SciPy, and Matplotlib work together to provide a free (as in
"free beer") alternative to MATLAB. Despite the fact that MATLAB offers a large
number of supplementary toolboxes, NumPy has the benefit of being a more
current and comprehensive programming language that is also open source. SciPy
extends Python's capabilities to include additional MATLAB-like features. With
the Matplotlib package, which provides MATLAB-like charting features, Python is
rounded out in the direction of MATLAB.



CHAPTER 5

RESULTS AND DISCUSSIONS



RESULTS
This object identification method can recognise objects at up to 14 frames per
second, therefore even low-quality cameras at any frame rate may yield decent
results. In this scenario, a 6 frames per second camera is used. The SSD method
exhibited interior and outdoor feed video frames through camera in our testing,
although the location of the objects differed between two adjacent frames. The
webcam's footage and the algorithm reduce the size of a single frame to 300 x 300
pixels. With the precision of a class label, SSD can recognise items frame by frame
and create a bounding box around the discovered object.
The following figures demonstrate the outcomes of this process on a picture. With
a confidence level of 98.87 percent and a level of 100 percent (i.e., probability),
CNN has a system for identifying human traits that is extremely accurate. By
employing a higher proportion of default boxes, which can have a bigger effect,
and using various boxes for each location, the SSD can create several bounding
boxes for distinct classes with varied confidence levels. Frame difference is the
basis for this suggested single-shot multibox detection technique. The suggested
approach was evaluated using frames.

INPUT OUTPUT

Fig.5.1. Detection of Potted plant with confidence level of 100%



Fig.5.2. Detection of Dog with confidence level of 99.87%

Fig.5.3. Detection of Train with confidence level of 100%

Fig.5.4. Detection of  Car, Train and Airplane with confidence level of 99.90%, 54.40%
and 47.45% respectively.



CHAPTER 6

CONCLUSION



CONCLUSION
A high accuracy object detection solution has been devised using the MobileNet
and the SSD detector for object detection, which can push processing rates to 14
fps and make it efficient to all cameras that can only process at 6 fps. This system
can recognise things in its dataset such as a vehicle, bicycle, bottle, chair, and so
on. The dataset may be enlarged indefinitely by employing deep learning
technologies to add an endless number of objects. For the SSD algorithm
experiment, we utilized Windows 10, Pycharm, OpenCV 3.4.2, and the Python
programming language. The purpose of this study is to create an autonomous
system in which object and scene identification aids the community in making the
system more engaging and appealing. This study will be used mostly in the future
to identify items with superior characteristics in the external world.
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