

AUTOMATIC CAR PARKING SYSTEM

A Report for the Evaluation 3 of Project 2

Submitted by

ANSHUMAN DWIVEDI

(1613101155)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Ms. Anisha, M.Tech, MCA

Professor

APRIL / MAY- 2020

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “AUTOMATIC CAR PARKING SYSTEN” is

the bonafide work of “ANSHUMAN DWIVEDI (1613101155)” who carried out

the project work under my supervision.

SIGNATURE OF HEAD

SIGNATURE OF SUPERVISOR

Dr. Raju Shanmugam,

PhD (CS), ME(CS)

Professor & Dean,

School of Computing Science &

Engineering

Ms. Anisha, M.Tech.,

MCA

Assistant Professor

School of Computing Science &

Engineering

ABSTRACT

The Automatic car Parking System had been conceived with the view to

automate the manual work-flows involved in the management of car

Parking Lots. It drastically reduces the effort, inaccuracies, error-prone

tendencies, delays and overheads involved in performing the same tasks

by hand.

It was aimed to provide a fully automated system that was capable of

checking in and out of cars entering and exiting the designated parking

lot, and recording relevant information about them. Revenue calculation

and data entry is automated to the largest possible extent. Only minimum

intervention from the manual user is required, with a possibility of

eliminating it altogether with further advancement in the technology

encompassed by the project, and supporting hardware.

A rich and easy-to-use GUI aids the user in navigating the system easily

and comprehensively. Features such as multiple searching and viewing

options further add to the capabilities of the system and thereby also help

in reducing the entry time. Transactions concurrency and their

unambiguous nature have been carefully balanced and user sessions are

purposefully managed. Direct implementation of the printing code helps

the entry clerks as well as managers/administrators, to print the parking

slips, reports and user information as and when required.

TABLE OF CONTENT

 1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definition, Acronyms and Abbreviations

1.4 Overview

 2. System Analysis

2.1 Existing System

 2.2 Proposed System

 2.3 Feasibility study

 2.4 Assumptions and Dependencies

3. Specific Requirements

 3.1 External Interface

 3.1.1 User Interface

 3.1.2 Hardware Interface

 3.1.3 Software Interface

 3.1.4 Communication Interface

 3.2 Functional Requirements

 3.3 Performance Requirements

 3.4 Design constraints

 3.5 System Attributes

 3.5.1 Reliability

 3.5.2 Availability

 3.5.3 Security

 3.5.4 Maintainability

 3.5.5 Portability

4. Analysis and Design

 4.1 Use Case Diagram

 4.1.1 Overview Use Case

 4.1.2 Login Use Case

 4.1.3 Manage Member Information Use Case

 4.2 Activity Diagram

 4.2.1 Login Activity Diagram

 4.3 Sequence Diagram

 4.3.1 Sequence Diagram Overview

 4.4 ER Diagram

 4.4.1 ER Diagram Overview

 4.5 Data Flow Diagram

 4.5.1 Login Process

 4.5.2 Working Process

5. User Interface Implementation

6. Testing

6.1 Testing Objective

 6.2 Unit Testing

 6.3 Integration Testing

 6.4 System Testing

 6.5 Acceptance Testing

7. Implementation, Evaluation & Maintenance

7.1 Implementation

 7.2 Evaluation

 7.3 Maintenance

8. Conclusions

9. References

1. Introduction

1.1 Purpose:

The purpose of the report document is to specify all the information

required to design, develop and test the software. The purpose of this

project is to provide a friendly environment to maintain the details of

Car and Employers of the Parking area.

The main purpose of this project is to maintain easy circulation

system using computers and to provide different reports.

1.2 Definition, Acronyms, Abbreviation:

JAVA -> Platform independence

SQL -> Structured query Language

DFD -> Data Flow Diagram

CFD -> Context Flow Diagram

ER -> Entity Relationship

IDE -> Integrated Development Environment

SRS -> Software Requirement Specification

1.3 Overview:

Everyone who owns or drives a car in India or abroad would be all too

familiar with the hassles of finding parking spaces, misbehaving

parking attendants, inconsistent or monopolized rates and other

problems associated with it.

What is proposed here, is not just another automation of a manual

workflow system, it can also be viewed as a solution to the

aforementioned problems of the everyday consumer. Rise to the

occasion, an Automated car Parking System.

It not only rids the car owner from the hassles of finding parking

spots, it ensures that there is never over or under accommodation of

cars beyond the lot’s capacity. The system completely eliminated even

the possibility of embezzlements. The rates are fixed and predefined.

No tampering can be done with the automated calculation of the

revenue based on the time taken directly from the console.

2. System Analysis

2.1 Existing System:

Some of the problems being faced in Existing system are as follows:

1. Fast report generation is not possible.

2. Tracing a car is difficult.

3. Information about entry/exit of the cars are not properly

maintained.

4. No central database can be created as information is not available

in database.

2.2 Proposed System:

The proposed Car Parking System will take care of the current Car

detail at any point of time. The Car entry, Car exit will update the

current car details automatically so that user and employers of the

parking area will get the update of current ongoing parking details.

2.3 Feasibility study:

The overall scope of the feasibility study was to provide sufficient

information to allow a decision to be made as to whether the Car

Parking System project should proceed and if so, its relative priority

in the context of other existing car parking Technology.

The feasibility study phase of this project had undergone through

various steps which as describe as under:

 Identity the origin the information at different level.

 Identity the expectation of user from computerized system.

- Analyze the drawback of existing system(manual

system)

 2.4 Assumption and dependencies:

All the data entered will be correct and up to date. This software

package is developed using java as front end which is supported by

sun micro system. Microsoft SQL server as the back end.

3. Specific Requirements

3.1 External Interface Requirement:

The user should be simple and easy to understand and use. Also be an

interactive interface .The system should prompt for the user and

administrator to login to the application and for proper input criteria.

3.1.1 User Interface:

The software provides good graphical interface for the

user any administrator can operate on the system,

performing the required task such as create, update,

viewing the details of the car.

 Allows user to view quick reports like car Entry/Exit

etc in between particular time.

 Stock verification and search facility based on

different criteria.

3.1.2 Hardware Interface:

 Operating system : Windows

 Hard disk :160 GB

 RAM : 512 MB

 Processor : Pentium(R)Dual-core CPU

3.1.3 Software Interface:

● Java language

● Net beans IDE

● Oracle DB server

3.1.4 Communication Interface:

Window

3.2 Functional requirements:

 car entry: In this module we can store the details of the car.

 Manage Users: In this module we can manage all users.

 car entry: This module is used to keep a track of car entry details.

 car exit: This module enables to keep a track of exiting the car.

3.3 Performance requirements:

The capability of the computer depends on the performance of the

software. The software can take any number of inputs provided the

database size is larger enough. This would depend on the available

memory space.

3.4 Design constraints:

Each User will be having a Parking receipt which can be used for

the car entry, fine payment etc. whenever car member wish to take

a car, the car entry by the car authority will be check both the car

details as well as the user details and store it in car database. In

case of retrieval of car much of human intervention can be

eliminated.

3.5 System attributes:

3.5.1 Maintainability: There will be no maintained requirement

for the software. The database is provided by the end user and

therefore is maintained by this user.

3.5.2 Portability: The system is developed for secured purpose,

so it is can’t be portable.

3.5.3 Availability: This system will available only until the

system on which it is install, is running.

3.5.4 Scalability: Applicable.

4. Analysis and Design

4.1 Use Case Diagram:

4.1.1 Use Case Overview:

4.1.2 Login User Case:

4.1.3 Manage Member Information Use Case:

4.2 Activity Diagram:

Activity diagrams are graphical representations of work-flows of

stepwise activities and actions with support for choice, iteration

and concurrency. In the Unified Modeling Language, activity

diagrams can be used to describe the business and operational step-

by-step work-flows of components in a system. An activity

diagram shows the overall flow of control.

Activity diagrams are constructed from a limited repertoire of

shapes, connected with arrows. The most important shape types:

 rounded rectangles represent activities;

 diamonds represent decisions;

 bars represent the start (split) or end (join) of concurrent

activities;

 a black circle represents the start (initial state) of the work-

flow;

 an encircled black circle represents the end (final state).

Arrows run from the start towards the end and represent the order

in which activities happen.

Hence they can be regarded as a form of flowchart. Typical

flowchart techniques lack constructs for expressing concurrency.

However, the join and split symbols in activity diagrams only

resolve this for simple cases; the meaning of the model is not clear

when they are arbitrarily combined with decisions or loops.

4.2.1 Login Activity Diagram:

4.3 Sequence Diagram:

 A sequence diagram is a kind of interaction diagram that shows how

processes operate with one another and in what order. It is a construct

of a Message sequence chart. A sequence diagram shows, as parallel

vertical lines (lifelines), different processes or objects that live

 simultaneously, and, as horizontal arrows, the messages exchanged

between them, in the order in which they occur.

4.3.1 Sequence Diagram Overview:

.

4.4 ER Diagram:

It is clear that the physical objects from the previous section – the

member, cars, and car – correspond to entities in the Entity-

Relationship model, and the operations to be done on those entities

– holds, checkouts, and so on – correspond to relationships.

However, a good design will minimize redundancy and attempt to

store all the required information in as small a space as possible.

4.4.1 ER Diagram Overview:

.

4.5 Data Flow Diagram (DFD):

A data flow diagram (DFD) is a graphical representation of the

"flow" of data through an information system. DFDs can also be

used for the visualization of data processing (structured design).

PARKING

AREA carType

Password

UserID

EmpType

EmpName

Status TotalSlots

VacantSlots

FloorNo

carType

EMPLOYEE

car

carNo

FloorNo Revenue

SlipNo

TimeOut

TimeIn

SlipStatus
Enters

Details

Enters

In/ Exits

From

1

1..*

1..*

1..*

Logs

Into/

LOGIN

1..*

1

UserID

Password

TerminalNo

EmpInTime

EmpOutTime

On a DFD, data items flow from an external data source or an

internal data store to an internal data store or an external data sink,

via an internal process.

A DFD provides no information about the timing of processes, or

about whether processes will operate in sequence or in parallel. It is

therefore quite different from a flowchart, which shows the flow of

control through an algorithm, allowing a reader to determine what

operations will be performed, in what order, and under what

circumstances, but not what kinds of data will be input to and

output from the system, nor where the data will come from and go

to, nor where the data will be stored (all of which are shown on a

DFD).

4.5.1 Login Process:

4.5.2 Working Process

AUTOMATE

D car

PARKING
SYSTEM

Clerk
car Type

car No.

Manager

Reports

Parking

Slips
Report/User

Details

Slip/car No.

Fig: 0 Level DFD

1 Level DFD

5. User Interface Implementation

5.1 Login:

IN
Terminal

Clerk
Manager

Parking slips

car Type

car No.

DATABASE

(AVPS)

Manager

Terminal

OUT

Terminal

Report/User

Details

Clerk

Slip/car No.

Reports

5.2 Employee Login Page:

6. Testing

6.1 Testing Objective:

The main objective of testing is to finding a host of errors,

systematically and with minimum effort and time. We can say as

follows:

 Testing is a process of executing a program with the intent

of finding an error.

 A good test case is one that has a high probability of finding

error, if it exists.

 The tests are inadequate to detect possibly present errors.

 The software should be based on the quality and reliable

standards.

6.2 Unit testing:

Unit testing focuses verification effort on the smallest unit of

software i.e. the module. Using the detailed design and the process

specifications, testing is done to uncover errors within the

boundary of the module. All modules must be successful in the unit

test before the start of the integration testing begins.

In this project each service can be thought of a module. There are

so many modules like administrator,user,visitor. Each module has

been tested by giving different sets of inputs. When developing the

module as well as finishing the development, the module works

without any error. The inputs are validated when accepting them

from the user.

6.3 Integrated testing:

After unit testing, we have to perform integration testing. The goal

here is to see if modules can be integrated properly, the emphasis

being on testing interfaces between modules. This testing activity

can be considered as testing the design and hence the emphasis on

testing module interactions.

In this project the main system is formed by integrating all the

modules. When integrating all the modules I have checked whether

the integration effects working of any of the services by giving

different combinations of inputs with which the two services run

perfectly before integration.

6.4 System testing:

System testing involved is the most widely used testing process

consisting of five stages as shown in the figure. In general, the

sequence of testing activities is component testing, integration

testing, and then user testing. However, as defects are discovered

at any one stage, they require program modifications to correct

them and this may require other stages in the testing process to be

repeated.

Unit testing

Module testing

Acceptance testing

Sub-system testing

System testing

(Component testing) (Integration testing)

(User testing)

Fig. show Prototype model

 Testing is the process of detecting errors. Testing performs a very

critical role for quality assurance and for ensuring the reliability of

the software. The results of testing are used later on during

maintenance also.

 Testing is vital to the success of the system. System testing makes

a logical assumption that if the parts of the system are correct, the

goal will be successfully achieved. In adequate testing or non-

testing leads to errors that may not appear until months or even

years later. This creates two problems:

 The time lag between the cause and the appearance of the

problem.

 The time interval effect of the system errors on files and the

records on the system.

 A small error can conceivably explode into a much larger

problem. Effective testing early in the process translates directly

into long term cost savings from a reduced number of errors.

Another reason for system testing is its utility as a user oriented car

before implementation. The best program is worthless if it does not

meet the user requirements. Unfortunately, the user’s demands are

often compromised by efforts to facilitate program or design

efficiency in terms of processing time or design efficiency.

 Thus in this phase we went to test the code we wrote. We needed

to know if the code compiled with the design or not? Whether the

code gave the desired outputs on given inputs? Whether it was

ready to be installed on the user’s computer or some more

modifications were needed?

Through the web applications are characteristically different from

their software counterparts but the basic approach for testing these

web applications is quite similar. These basic steps of testing have

been picked from software engineering practices. The following

are the steps, we undertook:

 The content of the Intranet site is reviewed to uncover content

errors. Content errors covers the typographical errors, grammatical

errors, errors in content consistency, graphical representation and

cross referencing errors.

The design model of the web application is reviewed to uncover

the navigation errors. Use cases, derived as a part of the analysis

activity allows a web designer to exercise each usage scenario

against the architectural and navigational design. In essence these

non-executable tests help to uncover the errors in navigation.

When web applications are considered the concept of unit changes.

Each web page encapsulates content navigation links, content and

processing elements. It is not always possible to test each of these

individually. Thus is the base of the web applications the unit to be

considered is the web page. Unlike the testing of the algorithmic

details of a module the data that flows across the module interface,

page level testing for web applications is driven by content,

processing and links encapsulating the web page.

The assembled web application is tested for overall functionality

and content delivery. The various user cases are used that test the

system for errors and mistakes. The web application is tested for a

variety of environmental settings and is tested for various

configurations and upon various platforms.

The modules are integrated and integration test are conducted.

Thread based testing is done to monitor the regression tests so that

the site does not become very slow is a lot of users are

simultaneously logged on.

Levels of Testing

In order to finding the errors present in different phases, we have

the concept of levels of testing. The basic levels of testing are

Client Needs

Requirements

Acceptance Testing

System Testing

Integration Testing

6.5 Acceptance testing:

Acceptance Testing is performed with realistic data of the client to

demonstrate that the software is working satisfactorily. Testing

here is focused on external behavior of the system of the internal

logic of program is not emphasized.

Test cases should be selected so that the largest number of

attributes of an equivalence class is exercised at once. The testing

phase is an important part of software development. It is the

process of finding errors and missing operations and also a

complete verification to determine whether the objectives are met

and the user requirements are satisfied.

Software testing is an investigation conducted to provide

stakeholders with information about the quality of the product or

service under test. Software testing also provides an objective,

independent view of the software to allow the business to

appreciate and understand the risks at implementation of the

software. Test techniques include, but are not limited to, the

process of executing a program or application with the intent of

finding software bugs.

http://en.wikipedia.org/wiki/Software_bugs

Software testing can also be stated as the process of validating and

verifying that a software program/application/product:

1. meets the business and technical requirements that guided its

design and development;

2. works as expected; and

3. can be implemented with the same characteristics

Functional Vs Non-functional Testing

Functional testing refers to tests that verify a specific action or

function of the code. These are usually found in the code

requirements documentation, although some development

methodologies work from use cases or user stories. Functional tests

tend to answer the question of "can the user do this" or "does this

particular feature work".

Non-functional testing refers to aspects of the software that may

not be related to a specific function or user action, such as

scalability or security. Non-functional testing tends to answer such

questions as "how many people can log in at once", or "how easy is

it to hack this software".

 Static Vs Dynamic Testing

There are many approaches to software testing. Reviews,

walkthroughs, or inspections are considered as static testing,

whereas actually executing programmed code with a given set of

test cases is referred to as dynamic testing. Static testing can be

http://en.wikipedia.org/wiki/Scalability
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Software_walkthrough
http://en.wikipedia.org/wiki/Software_inspection
http://en.wikipedia.org/wiki/Static_testing
http://en.wikipedia.org/wiki/Test_case
http://en.wikipedia.org/wiki/Dynamic_testing

(and unfortunately in practice often is) omitted. Dynamic testing

takes place when the program itself is used for the first time (which

is generally considered the beginning of the testing stage).

Dynamic testing may begin before the program is 100% complete

in order to test particular sections of code (modules or discrete

functions). Typical techniques for this are either using stubs/drivers

or execution from a debugger environment. For example,

spreadsheet programs are, by their very nature, tested to a large

extent interactively ("on the fly"), with results displayed

immediately after each calculation or text manipulation.

 Software Quality Assurance (SQA)

Though controversial, software testing may be viewed as an

important part of the software quality assurance (SQA) process. In

SQA, software process specialists and auditors take a broader view

on software and its development. They examine and change the

software engineering process itself to reduce the amount of faults

that end up in the delivered software: the so-called defect rate.

What constitutes an "acceptable defect rate" depends on the nature

of the software. For example, an arcade video game designed to

simulate flying an airplane would presumably have a much higher

tolerance for defects than mission critical software such as that

used to control the functions of an airliner that really is flying!

Although there are close links with SQA, testing departments often

exist independently, and there may be no SQA function in some

companies.

http://en.wikipedia.org/wiki/Function_%28computer_science%29
http://en.wikipedia.org/wiki/Method_stub
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/Spreadsheet
http://en.wikipedia.org/wiki/On_the_fly
http://en.wikipedia.org/wiki/Software_quality_assurance
http://en.wikipedia.org/wiki/Mission_critical

Software testing is a task intended to detect defects in software by

contrasting a computer program's expected results with its actual

results for a given set of inputs. By contrast, QA (quality

assurance) is the implementation of policies and procedures

intended to prevent defects from occurring in the first place.

 Testing Methods

 The Box Approach

Software testing methods are traditionally divided into and

white- and black-box testing. These two approaches are used to

describe the point of view that a test engineer takes when

designing test cases.

White Box Testing

White box testing is when the tester has access to the internal

data structures and algorithms including the code that

implement these. White box testing methods can also be used

to evaluate the completeness of a test suite that was created

with black box testing methods. This allows the software team

to examine parts of a system that are rarely tested and ensures

that the most important function points have been tested.

Black Box Testing

Black box testing treats the software as a "black box"—without

any knowledge of internal implementation. Black box testing

methods include: equivalence partitioning, boundary value

analysis, all-pairs testing, fuzz testing, model-based testing,

traceability matrix, exploratory testing and specification-based

testing.

http://en.wikipedia.org/wiki/Function_points
http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/All-pairs_testing
http://en.wikipedia.org/wiki/Fuzz_testing
http://en.wikipedia.org/wiki/Model-based_testing
http://en.wikipedia.org/wiki/Traceability_matrix
http://en.wikipedia.org/wiki/Exploratory_testing

Grey Box Testing

Grey box testing (American spelling: gray box testing) involves

having knowledge of internal data structures and algorithms for

purposes of designing the test cases, but testing at the user, or

black-box level. Manipulating input data and formatting output

do not qualify as grey box, because the input and output are

clearly outside of the "black-box" that we are calling the system

under test. This distinction is particularly important when

conducting integration testing between two modules of code

written by two different developers, where only the interfaces

are exposed for test. However, modifying a data repository

does qualify as grey box, as the user would not normally be

able to change the data outside of the system under test. Grey

box testing may also include reverse engineering to determine,

for instance, boundary values or error messages.

7. Implementation, Evaluation & Maintenance

7.1 Implementation:

System implementation is the stage when the user has thoroughly

tested the system and approves all the features provided by the

system. The various tests are performed and the system is approved

only after all the requirements are met and the user is satisfied.

The new system may be totally new, replacing an existing manual

or automated system, or it may be a major modification to an

existing system. In case of, proper implementation is essential to

provide a reliable system to meet organizational requirements.

Successful implementation may not guarantee improvement in the

organization using the new system, but improper will prevent it.

Implementation is the process of having systems personnel

check out and put new equipment into use, train users, install

the new application and construct any files of data needed to use

it. This phase is less creative than system design. Depending on

the size of the organization that will be involved in using the

http://en.wikipedia.org/wiki/Integration_testing
http://en.wikipedia.org/wiki/Reverse_engineering#Reverse_engineering_of_software

application and the risk involved in its use, systems developers

may choose to test the operation in only one area of the firm

with only one or two persons. Sometimes, they will run both old

and new system in parallel way to compare the results. In still

other situations, system developers stop using the old system

one day and start using the new one the next.

7.2 Evaluation:

The evaluation phase ranks vendor proposals and determines the

one best suited. Evaluation of the system is performed to identify

its strengths and weaknesses. The actual evaluation can occur along

any of the following dimensions:

7.2.1 Operational Evaluation

Assessment of the manner in which the system functions, including

case of use, response time, overall reliability and level of

utilization.

7.2.2 Organizational Impact

Identification and measurement of benefits to the organization in

such areas, as financial concerns, operational efficiency and

competitive impact.

7.2.3 Development Performance

Evaluation of the development process in accordance with such

yardsticks as overall development time and effort, conformance to

budgets and standards and other project management criteria.

7.3 Maintenance:

Maintenance or enhancement can be classified as

 Corrective

 Adaptive

 Perfective

Corrective maintenance means repairing processing or

performance failures or making changes because of previously

uncorrected problems or false assumptions. Adaptive

maintenance means changing the program function. Perfective

maintenance means enhancing the performance or modifying

the programs to respond to the user’s additional or changing

needs.

Maintenance is actually the implementation of the post

implementation review plan. As important as it is, many

programmers and analysts are reluctant to perform or identify

themselves with the maintenance effort. There are

psychological, personality and professional reasons for this. In

any case, a first class effort must be made to ensure that

software changes are made properly and in time to keep the

system in tune with user specifications.

Maintenance is costly. One way to reduce maintenance costs is

through maintenance management and software modification

audits. Software modification consists of program rewrites system

level updates, and re-audits of low ranking programs to verify and

correct the soft spots. The outcome should be more reliable

software, a reduced maintenance backlog, and higher satisfaction

and morale among the maintenance staff.

8. Conclusion

From a proper analysis of positive points and constraints on the

component, it can be safely concluded that the product is a highly

efficient GUI based component. This application is working properly

and meeting to all user requirements. This component can be easily

plugged in many other systems.

9. References

 http://www.java2s.com/

 http://docs.oracle.com/javase/tutorial/java/TOC.html

 Database Programming with JDBC and Java by O'Reilly

 Head First Java

 A Programmer's Guide to Java (Khalid A. Mughal and Rolf w.

Rasmussen)

 Sarthak Mendiratta, Debopam Deya and Deepika Rani Sona,”

Automatic Car Parking System with Visual Indicator along with

IoT”,IEEE 978-1-5386-1716-8/17/ 2017(Dec) .

 Smart Parking: an Application of optical Wireless Sensor Network,

Proceedings of the 2007

 International Symposium on Applications and the Internet

Workshops (SAINTW'07), 2007

 A Reservation-based Smart Parking System, The First International

Workshop on Cyber-Physical Networking Systems, 2011

 Smart Parking Assist System using Internet of Things (IoT),

International Journal of Control Theory and Applications, Volume

9-Number 40,2016

http://www.java2s.com/
http://docs.oracle.com/javase/tutorial/java/TOC.html

	Levels of Testing
	Functional Vs Non-functional Testing
	Static Vs Dynamic Testing
	Software Quality Assurance (SQA)
	Testing Methods
	The Box Approach
	White Box Testing
	Black Box Testing
	Grey Box Testing

