

1

 CNN: IMPLEMENTATION OF HANDWRITTEN DIGIT
RECOGNITION SYSTEM

A Report for the Evaluation 3 of Project 2

Submitted by

AKSHIT GAMBHIR (1613101096/16SCSE101510)

in partial fulfillment for the award of the degree of

Bachelor of Technology

IN

Computer Science and Engineering

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING Under the Supervision of DR. ARVIND KUMAR Associate Professor

2

APRIL / MAY- 2020 TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.
1. Abstract 3
2. Introduction 4
3. Existing System 6
4. Proposed system 8
5. Implementation or architecture diagrams 9
6. Output / Result / Screenshot 12
7. Conclusion/Future Enhancement 13
8. References 14

3

Abstract

Handwritten digit recognition is the working of a machine to train itself for recognizing the digits
from various sources like emails, bank cheques, etc, in real-world scenarios. Our input consists
of numerous images of digits, which are fed in the model, where they are preprocessed and
converted in an array. That array is passed as input to our Working Model, i.e. Convolution
Model. After repeated convolution and pooling, the convolution network predicts the output,
based on factors like density and shape of the area under consideration.
In addition to that, we have added some of our own data that we have preprocessed and added to
the data of MNIST. We have added those test cases that we found were missing in the given data
set, and adding them will make sure that no kind of image remains uncovered by our model. It
will help in improving the accuracy of our model, which it did as expected. We achieved an
accuracy of 99.28%, and our loss percent is approximately 0.2. It makes our model stand out in
terms of increased efficiency. Handwritten digit recognition is an important problem in today’s
world scenario because there are millions and millions of people across the globe with millions
of different handwriting styles that could be trouble for recognition by a human being. After all,
some digits are quite confusing. That is why I thought of working on this project.

4

Introduction
What is a Handwritten Digit Recognition System?
 In this, the machine trains itself to recognize human written digits from various sources like
emails, bank cheques, etc. in real-world scenarios. The inputs are then taken and fed in a model
where they are processed and converted into an array. The main problem lies in developing an
efficient algorithm for recognizing handwritten digits which are submitted by the users. There
are more than millions of people in the world and each individual has their way of writing digits
which can either be understood or can even make you confuse, to reduce the complexity of
understanding digits this system can be of help to people. It will not only save time but also
increase the efficiency of the work that is to perform. There are various techniques for
implementing this system like the machine learning algorithms-support vector machine, naïve
Bayes, Bayes net, etc. And various neural network approach like a simple neural network, KNN,
CNN, ANN, etc. Here we will be focusing on the Convolutional neural network approach.
The MNIST problem is a dataset developed by Yann LeCun, Corinna Cortes, and Christopher
Burges for evaluating machine learning models on the handwritten digit classification problem
that I will be using to train my datasets.
The dataset was constructed from several scanned document datasets available from the National
Institute of Standards and Technology (NIST). This is where the name for the dataset comes
from, as the Modified NIST or MNIST dataset.
Images of digits were taken from a variety of scanned documents, normalized in size and
centered. This makes it an excellent dataset for evaluating models, allowing the developer to
focus on machine learning with very little data cleaning or preparation required.
Each image is a 28 by 28-pixel square (784 pixels total). A standard split of the dataset is used to
evaluate and compare models, where 60,000 images are used to train a model and a separate set
of 10,000 images are used to test it.
It is a digit recognition task. As such there are 10 digits (0 to 9) or 10 classes to predict. Results
are reported using prediction error, which is nothing more than the inverted classification
accuracy.
Excellent results achieve a prediction error of less than 1%. State-of-the-art prediction error of
approximately 0.2% can be achieved with large Convolutional Neural Networks.

5

EXISTING MODEL

 1. First, an image is taken as an input. 2. Then that image is preprocessed and converted into an array and that array is passed as input to the convolution model. 3. we get the regions of interest to classify the objects in the image. 4. All these regions are then reshaped as per the input of the CNN, and each region is passed to the ConvNet. 5. CNN then extracts features for each region and uses a fully connected layer that uses softmax as an activation function to interpret the output as probabilities. 6. Finally, the maximum of the probability is classified as the output using np.argmax ().

To recognize the handwritten digits, a seven-layered convolutional neural network with one
input layer followed by five hidden layers and one output layer is designed. The input layer
consists of 28 by 28-pixel images which means that the network contains 784 neurons as input
data. The input pixels are grayscale with a value 0 for a white pixel and 1 for a black pixel. Here,
this model of CNN has five hidden layers. The first hidden layer is the convolution layer 1 which
is responsible for feature extraction from input data. This layer performs convolution operation
to small localized areas by convolving a filter with the previous layer. Also, it consists of
multiple feature maps with learnable kernels and rectified linear units (ReLU). The kernel size
determines the locality of the filters.

6

 ReLU is used as an activation function at the end of each convolution layer as well as a fully
connected layer to enhance the performance of the model. The next hidden layer is pooling layer
1. It reduces the output information from the convolution layer and reduces the number of
parameters and computational complexity of the model. The different types of pooling are max
pooling, min pooling, average pooling, and L2 pooling. Here, max pooling is used to subsample
the dimension of each feature map.

Convolution layer 2 and pooling layer 2 which has the same function as convolution layer 1 and
pooling layer 1 and operates in the same way except for their feature maps and kernel size varies.
A Flatten layer is used after the pooling layer which converts the 2D featured map matrix to a 1D
feature vector and allows the output to get handled by the fully connected layers. A fully
connected layer is another hidden layer also known as the dense layer. It is similar to the hidden
layer of Artificial Neural Networks (ANNs) but here it is fully connected and connects every
neuron from the previous layer to the next layer. To reduce overfitting, the dropout regularization
method is used at fully connected layer 1.

Issues with Existing Model
 The performance of the previous models can be increased by tuning the parameters and the
proposed model works on the same and excels over the previous models [1-3] in metrics like
accuracy and loss by hyperparameter tuning, the accuracy has now been significantly increased
in comparison to previous model [2] and now the accuracy comes to about 99.3 % and loss is
calculated as 0.0235 which is also low.

7

Proposed System
 CNN is a neural network that consists of Convolution layers, max-pooling layers, and

fully connected layers of a neuron. Each neuron consists of some input weights known as
connections, biases, and applied activation functions and these connections help the
network to determine which neuron is to be givens more preference and in which layer. In
general, a neural net involves two processes the feed-forward process that involves
feeding the inputs to the model and the backpropagation process that involves
backpropagation of the loss but the CNN can be divided into two parts the first one being
the feature extraction and the second one is the classification part. The feature extraction is
done by combining the two layers the Convolutional layer and the max or min pooling
layer whereas the classification part is performed by the dense layers i.e. the fully
connected layers followed by the softmax activation at the output layer.

.

1. Convolution layer – For a pixel, this layer is responsible for taking the weighted

average of the neighboring pixels, and hence determining and learning new features,
unlike the fully connected layers it only depends on the neighboring pixels and not all
of them. This layer can have one or more filters the more the number of filters the
more diverse our image feature can become, major advantages of the convolution
layer over fully connected layers is the significant reduction in the number of
parameters due to weight sharing i.e. a common kernel for all the neurons. Apart from
that, it learns the areas of interest without human intervention.

2. Pooling layer - this layer is applied to down-sample the inputs for reducing the
computational complexity of the model and for avoiding the overfitting problem, the
common techniques used are max pooling, average max pooling, min pooling.

3. Dense layer – Also Known as the Fully Connected Layer, after the features have been
extracted those features are flattened and fed to the Dense Layer and hence involves
the maximum number of parameters to be trained.

8

Implementation Details

SOFTWARE REQUIREMENT SPECIFICATIONS :
Python Libraries Required:
 ■ Matplotlib
■ NumPy
■ CV2
 ■ TensorFlow v1.12 (TensorFlow-GPU)
 ■ Keras
■ tqdm
API Required:
 ■ Image Recognition API
Dependencies for TensorFlow-GPU:
 ■ CUDA Toolkit v9.0
■ Nvidia graphic drivers associated with CUDA Toolkit v9.0
■ CuDNN v7.0 associated with CUDA Toolkit v9.0

9

DATASET USED

The proposed system uses the MNIST data set [7]. It has 70,000 images that can be
used to train and evaluate the system. The train set has 60,000 images and the test set
has 10,000 images [9]. It is the subset of the NIST dataset (National institute of
standards and technology), having 28 x 28 size input images and 10 class labels from
(0-9).

These are a few examples of the MNIST data sets used for the execution.
All the digits are normalized and also centered. Each image in the referenced data set
is represented as an array of 28x28. The array has 784 pixels whose values range from
0 to 255. If the pixel value is ‘0’ it indicates that the background is black and if it is
‘1’ the background is white.

 As seen the accuracy and the loss calculated of the handwritten digit recognition
model using CNN is approx 99.28 and 0.02 respectively.

10

SOURCE CODE FOR MODEL IMPLEMENTATION-

Importing Libraries

import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.layers.normalization import BatchNormalization
import matplotlib.pyplot as plt
import numpy as np
import os
import cv2
from tqdm import tqdm
import pickle

11

Connecting TensorFlow to the GPU

%tensorflow_version 2.x
import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
 raise SystemError('GPU device not found')
print('Found GPU at: {}'.format(device_name))

Load Train and Test data from MNIST
input image dimensions
img_rows, img_cols = 28, 28

the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols
, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1
)
input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

12

Model building and Training

batch_size = 64
num_classes = 10
epochs = 15

convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()

model.add(Conv2D(10, (5, 5), input_shape=(28,28,1)))
model.add(Activation('relu'))

"""BatchNormalization(axis=-1)
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))"""

model.add(MaxPooling2D(pool_size=(2,2)))
BatchNormalization(axis=-1)

model.add(Conv2D(20,(5, 5)))
model.add(Activation('relu'))

"""BatchNormalization(axis=-1)

model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))"""

13

model.add(MaxPooling2D(pool_size=(2,2)))

model.add(Dropout(0.25))
model.add(Flatten())
Fully connected layer
BatchNormalization()

model.add(Dense(100))
model.add(Activation('relu'))
BatchNormalization()

model.add(Dense(10))
model.add(Activation('softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
 optimizer=keras.optimizers.Adam(),
 metrics=['accuracy'])

model.fit(x_train, y_train,
 batch_size=batch_size,
 epochs=epochs,
 verbose=2,
 validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=1)

print('Test loss:', score[0])
print('Test accuracy:', score[1])
model.save('recog_te1')

14

Creating Custom Test Data and using pickle to save it

test_data = []
path = "/content/attachements3"
IMG_SIZE = 28

def create_test():
 for img in tqdm(os.listdir(path)):
 plt.figure(figsize=(10,10))
 try:
 img_array = cv2.imread(os.path.join(path, img), cv2.
IMREAD_GRAYSCALE) # convert to array

 plt.imshow(img_array)
 new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZ
E)) # resize to normalize data size
 test_data.append([new_array]) # add this to our tra
ining_data
 except Exception as e:pass

def create_test1():
 for x in range(10):
 path1 = '/content/attachements3/' + str(x) + '.png'
 plt.figure(figsize=(10,10))
 try:

 img_array = cv2.imread(path1, cv2.IMREAD_GRAYSCALE
) # convert to array
 plt.subplot(10/10, 10, x + 1)

15

 plt.imshow(img_array)
 new_array = cv2.resize(img_array, (IMG_SIZE, IMG_S
IZE)) # resize to normalize data size
 test_data.append([new_array]) # add this to our t
raining_data
 except Exception as e:pass
create_test1()

X = np.array(test_data).reshape(-1, IMG_SIZE, IMG_SIZE, 1)

pickle_out = open("Xtest.pickle","wb")
pickle.dump(X, pickle_out)
pickle_out.close()

Testing the Model

pickle_in = open("Xtest.pickle","rb")
X = pickle.load(pickle_in)
print(X.shape)
X = X/255.0

new_model = tf.keras.models.load_model('recog_te1')
predictions = new_model.predict(X)

for x in range(len(predictions)):
 print(np.argmax(predictions[x]))

16

Model Training

17

Model Summary

The Model involves two Convolution Layers with two max-pooling layers and two fully connected layers,
The total number of parameters to be trained is 38390 and the time is taken to train the model has been
significantly reduced and is approximately 91 seconds for the 15 epochs by utilizing the GPU of the
machine.
The Layered Structure of the Model is presented below:-

18

Visualization of Image transformation representations
undergoing a Convolutional model

The below image tries to visualize what happens to an image as it undergoes the convolution model and how some of the
image features are extracted by each filter : -

19

Result

After Testing the model the accuracy comes out to be very high approximately 99.28 % and
the loss is minimized to 0.0245 which is also considerably low. Also, the Training time of the
model is reduced drastically by making use of the GPU of the device

For the custom Inputs the result is displayed by the image:-

20

Conclusion
Using CNN we not only get the correct output but also the accuracy is more as compared to others
and even the loss is approximately 0.02 %. If the same procedure is done without using CNN then the
error rate obtained is 2.68% which is more hence CNN helps in giving the optimum result then other
methods with less error rate. And this is why because while using CNN we get more distinct image
features for training our datasets using the Convolutional layer than we can obtain through any other
method. That is why CNN should be preferred over other methods for the digit recognition

 FUTURE ENHANCEMENTS

• As different people in the world have different kinds of writing style so this system will be
very beneficial for identifying the handwritten digits even when it cannot be recognized by a
human.

• This system can be used in banks for identifying the digits written on the cheques.
• It can be used for postal card code reading.
• License plate reading.

21

References
1. Hand Written Digit Recognition using Convolutional Neural Network (CNN) Nimisha Jain,

Kumar Rahul, Ipshita Khamaru, Anish Kumar Jha, Anupam Ghosh IJIACS ISSN 2347 – 8616
Volume 6, Issue 5 May 2017.

2. A Comprehensive Data Analysis on Handwritten Digit Recognition using Machine Learning
Approach Meer Zohra, D.Rajeswara RaoSeewald, A. K. (2011). On the brittleness of
handwritten digit recognition models. ISRN Machine Vision, 2012.

3. Plamondon, R., & Srihari, S. N. Online and off-line handwriting recognition: a comprehensive
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84.

4. Yang, Xuan Jiang. “MDig: Multi-digit Recognition using Convolutional Neural Network on
Mobile.” (2015).

5. F. Ertam and G. Aydın, "Data classification with deep learning using Tensorflow," 2017
International Conference on Computer Science and Engineering (UBMK), Antalya, 2017, pp.
755-758.

6. Li Deng, "The MNIST Database of Handwritten Digits images for Machine Learning Research",
MIT Press, November 2012.

7. Visualizing and Understanding Convolution Networks 2013 by Matthew D Zeiler, Rob Fergus.

8. Image Preprocessing Loading in your own data - Deep Learning basics with Python, Sentdex

YouTube This video helped in the preprocessing of the image which was taken as input from the
user.
Source:
https://www.youtube.com/watch?v=j-
3vuBynnOE&list=PLQVvvaa0QuDfhTox0AjmQ6tvTgMBZBEXN&index=2

9. The MNIST DATABASE by Yann, LeCun, Corinna Cortes, Christopher J.C. Burges
http://yann.lecun.com/exdb/mnist

