

 DETECTION OF ROAD LANE FOR
AUTOMATED DRIVING SYSTEM

 THE Final Report of Capstone Project -2

 Submitted by

ANAND SHANKAR

(1613107006)

in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

 COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of
MS.SWATI SINGH

ASSISTANT Professor

APRIL / MAY- 2020

 SCHOOL OF COMPUTING SCIENCE AND
 ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “ DETECTION OF ROAD LANE
FOR AUTOMATED DRIVING SYSTEM” is the bonafide work of
“ANAND SHANKAR (1613107006)” who carried out the project work under
my supervision.

 SIGNATURE OF HEAD

 Dr. MUNISH SHABARWAL,

 PhD (Management), PhD (CS)

 Professor & Dean

School of Computer Science &
Engineering

SIGNATURE OF SUPERVISOR

 MS. Swati Singh, M.Tech
 Assistant Professor
School of Computing Science &
Engineering

3

 Abstract

For autonomous vehicle driving technology to move forward from the
testing phase to actual self-driving car, safety measures and error
minimization plays a key role. This project explains the techniques to
outline the road lanes through the lane detection method. The width of
the road lanes can be explicitly calculated to define the relative position
of the vehicle in the defined lane. Inbuilt camera sensor produces lots of
information from the surrounding which are processed through a
machine vision system. The advanced system predicts trajectories
collected during human handling of the vehicle and employs these to
produce automatic tags for training a semantic-based pathway prediction
model. Besides, a camera’s actual inclination angle and the lane width
can be obtained by active normalization. This approach is used to find
the lane and width of the road from both sides effectively when there is a
hindrance on one side. The drivable route knowledge is necessary
particularly in unorganized situations and is crucial for an intelligent
transport system to get reliable driving choice.

4

Table of Contents

Abstract --- 3

LIST OF FIGURES: --- 5

1.Introduction -- 6

2.RELATED WORK -- 9

3. LANE DETECTION ALGORITHM -- 11

3.1 Overview -- 11

3.2 Data Collection -- 12

3.3 Data Preprocessing --- 12

3.3.1 Masking --- 12

3.3.2 Grayscaling -- 13

3.3.3 Gaussian Blurring -- 14

3.4 Detecting Gradient Change - Edge detection using Canny Edge Detection in OpenCV------- 15

3.5 Computing Hough lines based on the detected edges --- 16

3.6 Filtering resulting lines -- 18

4.Block Diagram -- 20

5.Implementation --- 21

6. Output / Screenshot --- 25

7. Conclusion -- 26

8. References --- 27

5

LIST OF FIGURES:

FIGURE 1.A RASPBERRYPI TOUCHSCREEN .. 11
FIGURE 2: RESIZED ORIGINAL IMAGE ... 13
FIGURE 3: IMAGE AFTER GRAY SCALING .. 14
FIGURE 4: IMAGE AFTER GAUSSIAN BLURRING .. 15
FIGURE 5: IMAGE WITH DETECTED EDGE PIXELS .. 16
FIGURE 6: IMAGE WITH DETECTED LINES USING PROBABILISTIC HOUGH TRANSFORM 17
FIGURE 7. IMAGE AFTER FILTERING BASED ON SLOPE AND INTERCEPT VAL 19
FIGURE 8: BLOCK DIAGRAM IMAGE OF CONVERSION.. 20
FIGURE 9: INPUT IMAGE ... 25
FIGURE 10: OUTPUT IMAGE .. 25

6

Chapter 1.

1.Introduction

Using the machine learning algorithms and python it will predict the
width of the road .It will also tell the distance from the roadside and also
guide for overtaking the vehicles. The trained machine become the
powerful feature in the driverless car as the vehicle get proper assistance
in the overtaking and parking also .It can also be used in the cruise
control of the car make the more impact of the car and easy in controlling
the car. Active safety is currently a key topic in the automotive industry,
which fosters the development of Autonomous Vehicle functions.
Various advanced driver assistance systems (ADAS) and active safety
systems have the potential to improve road safety, driver comfort, fuel
economy, and traffic flow by assisting the driver during different driving
conditions. It is estimated that human error is a contributing factor in
more than 90% of all accidents. In order to save the human lives caused
by road accidents, it is hence of interest to develop such systems using
modeling and simulation 7tools which is quick and more efficient as
compared to the real driving testing. Overtaking is one of the most
complex maneuvers with the high risk of collision (75% human error) so
the automation of this maneuver still remains one of the toughest
challenges in the development of autonomous vehicles. Since overtaking
is one of the complex maneuvers and so many factors affect it, the
automation of this maneuver has been considered to be one of the
toughest challenges in the development of autonomous vehicles.
Overtaking involves a great interaction between both longitudinal
(throttle and brake) and lateral (steering) actuators. Nowadays, in the
field of driver assistance systems and automated driving, development
approaches for lateral maneuver control are the very big challenge.

7

Computerized reasoning in autos has highlighted in numerous
exploration tasks and trials have been led since the 1980s when first
models for self-ruling autos were displayed via Carnegie Mellon
College’s Navlab. From that point forward, there have been a lot of
innovative headways in the field of self-governing vehicles and Navlab
11, the most recent auto by CMU’s Route Research facility, is a 2000
Jeep Wrangler introduced with several pieces of equipment such as GPS,
magnetometers, proximity laser censors, and omni-directional camera .
Stanley, an autonomous car created by Stanford University in
cooperation with Volkswagon won first driver-less car racing challenge
known as ‘DARPA Grand Challenge’ in 2005.

Numerous studies have been led about vehicle robotization and Driver
Assistance Systems. A portion of the highlights of a self-governing
vehicle incorporates Automatic Cruise Control, Automatic Parking,
Collision Avoidance as well as Lane Departure Warning systems. Aside
from the said, the potential advantages of autonomous cars incorporate
decreased framework costs, expanded security, expanded consumer
satisfaction, and a critical lessening in car accidents. . Some in favor of
autonomous vehicles additionally trust that conveying robotics to the car
will kill more typical wrongdoings like insurance scams and vehicle
burglary.

On account of above mentioned benefits, many countries have taken a
step forward to bring self-driving cars on the roads for public. UK, in
2014, announced that driver less cars2 will be allowed on public roads
and soon a prototype called ’Lutz pod’ was launched as UK’s first
driver-less car [6] [7]. Moreover, In 2017, first autonomous vehicle was
demonstrated at Christchurch Airport [8]. However, despite significant
amount of benefits, there exist some foreseeable challenges in
completely accepting self-driven vehicles. A few opposer believe that
widespread adoption of driver-less cars will bring dearth of driving
related jobs and will also compromise with the passenger’s safety . It is
also believed that an autonomous car will likely lead to the loss of
privacy and increased risks of hacking attacks and terrorism.

It is understood that the discrepancy between people’s beliefs of the
necessary government intervention may cause a delay in accepting
autonomous cars on the road . This will keep the drivers in control of the

8

car for some years to come. Therefore, it is important to seek solutions to
make their driving experience safer and easier. This thesis presents one
such solution - Real time road lane lines detection in different weather
conditions. A real time vision-based lane detection system can be used to
assist the driver in locating the lanes or warning the driver if the vehicle
goes out of lane. In this thesis, a Lane Detection algorithm is presented
for real-time detection of road lane lines in various climate conditions.
The algorithm runs on a 7 inch display attached to a RaspberryPi 3.0
computer with a Pi camera installed. The entire system is placed on the
car’s dashboard. The Pi Camera is placed inside the car fixed to the
windshield to capture the real time video while driving. The display
screen and the RaspberryPi computer is powered by a 12V-to-5V car
power supply port. Lane Detection algorithm presented in this thesis
implements the concepts of Computer Vision - like gradient change and
probabilistic Hough transform, to detect the lane lines in the road images.
Moreover, certain filtering techniques, such as filtering based on slope
and intercept values, are used to determine the exact location of road lane
lines. The algorithm is implemented in Python 2.7 with OpenCV 3.0.

The entire thesis is organized as follows. In Chapter 2, other work related
to the lane detection or autonomous driving is discussed. Chapter 3
contains the details of the algorithm used to detect road lane lines in this
research. Chapter 4 presents the statistics of the results from the
experiments conducted during this research. Chapter 5 presents the
conclusion and talks about the future work.

9

 CHAPTER 2.

2.RELATED WORK

Enhancing autonomous driving, especially by performing accurate road
lane line detection, has been a major research interest in past few years.
Several researchers have performed real time vision based lane detection
using various techniques. This chapter discusses few of those research
works and related algorithms in brief. Yuan et al established a novel
method for tracking road lanes for vision-guided autonomous vehicle
navigation. They use an inverse perspective mapping to remove the
perspective from the camera and then detect the edges of the road lanes
from the inverse perspective mapping images. An algorithm for ’particle
filtering’ is used to compute the likelihood between all the particles with
the edge images, henceforth estimating the three parameters of the real
state of road lane lines. This lane detection method is tested in real

road images to achieve reliable results.

P. Mandlik and A.B. Deshmukh presented a Lane Departure Detection
System(LDWS) in accordance with Advanced Diver Assistance
System(ADAS) to warn the driver when the vehicle tends to depart it’s
lanes. LDWS is based on the lane identification and tracking algorithm
and uses OpenCV implementations of ’Hough Transform’ to detect
vehicle lane departure on a Raspberry Pi. The experiments are conducted
on the images captured using a toy vehicle with a USB camera, ‘Intex
IT-305WC webcam’, mounted on top. Out of many straight lines
detected by Hough Transform, the longest straight lines are identified as
the lane lines. The results are collected using Intel Core i3 1.80 Ghz
processor.

 K. H. Lim et al. constituted a real-time implementation of lane detection
and tracking system to localize lane boundaries and estimate a linear-
parabolic lane model. For experiments, a CCD camera is used to capture
video frames and stored in video port buffer of a TMS320DM642 DSP
board. Horizon localization is used to discern the sky from road5 in the
input image. To recognize lane markings, road pixels are removed from

10

the road region by performing lane analysis. Once lane boundaries are
located, the conceivable edge pixels are scanned to ceaselessly to obtain
the lane model. A Linear-parabolic model is used to construct the
geometry of the lane and the model parameters are updated with Kalman
filtering. X. Du et al. proposed a robust vision-based methodology to
deal with challenges during lane detection like shadows, shifting lighting
conditions, faded-away lane lines, etc.

The methodology incorporates four key
advances: Using a ridge detector, the line pixels are pooled. Then, using
a noise filtering mechanism, noisy pixels are removed. After removing
noises, a sequential Random Sample consensus is employed to ensure
that each lane line in the image is collected correctly. In the final step, a
technique parallelism reinforcement is employed to enhance the accuracy
of the model. The model is also fit to localize vehicles with respect to the
road lane lines.

Q. Truong and B.R. Lee used the principal
approach to detect road boundaries and lanes using a vision-based system
in the vehicle. The paper presented a methodology to detect and estimate
the curvature of lane boundaries. A vector-lane-concept and nonuniform
B-spline (NUBS) interpolation method is used to construct the
boundaries of road lane lines. Based on the lane boundary, the curvature
of left and right lane boundaries are calculated. For experimental
purposes, images are captured using a monocular camera. Experimental
results are based on real world road images, as presented in the paper.

11

 CHAPTER 3.

3. LANE DETECTION ALGORITHM

3.1 Overview

This section describes in detail the algorithm designed for the real time
road lane lines detection. The algorithm is divided into five stages - data
collection, data preprocessing, gradient change detection using Sobel,
line detection using Hough, and line filtering using slope and intercept
values. Subsequent sections describe each stage in detail.

The hardware used for this research is shown in the Fig. 1. A wooden
board is used to hold the touchscreen display and the Raspberry Pi
computer together. This wooden board is placed on the vehicle’s
dashboard. A Pi camera, attached to the Raspberry Pi.

Figure 1.A RaspBerryPi Touchscreen

12

3.2 Data Collection

The data set is collected over multiple drives during varying climate
conditions. A Pi camera is used to capture 10 frames per second over an
interval of 30 minutes (i.e. 1800 seconds). The camera settings for
capturing the data is given in the algorithm section below.

For experiments, the collected videos are saved to the local Pi in the
memory space8 provided by the attached memory card. The videos
collected in h264 format are converted into mp4 and individual frames
are extracted from mp4 videos and are converted to jpg images.

The results from the above algorithm are stored in a directory on the
local machine and each file is read individually to be processed and
saved in the output directory.

3.3 Data Preprocessing

The images collected by extracting frames using the above algorithm are
iterated over individually and re-sized. A resided original image can be
seen in Fig. 2.

dim = (400, 255)

resized = cv2.resize(input image, dim, interpolation = cv2.INT ER AREA)

The re-sizing is performed using cv2.resize() method of OpenCV. The
resided image then undergoes masking, gray-scaling and Gaussian
blurring.

3.3.1 Masking

13

It is understood that in any image containing road (or lane lines), the road
surface area is present in the bottom half of the image. Using this
knowledge, the region of interest is decided.

Figure 2: Resized original image

The entire y section(vertical height) of the image is horizontally cut into
the half and the region lying above that horizontal line is discarded. This
was performed using cv2.fillPolly() and cv2.bitwise and() method of
OpenCV. This method takes a row number as an input and creates a
mask such that the region of interest is only below the given row.

3.3.2 Grayscaling

In the future stages of the presented algorithm, edge detection and Hough
transformation, the image is required to be converted into a single color
scale, also called as grayscale.

Therefore, the region of interest extracted in the previous stage during
masking, is rendered to grayscale image as shown below.

14

This is performed using cv2.cvtColor() method of OpenCV.
This method takes a colored image as an input (RGB) and returns a
grayscaled image as an output. Further processing is done on the
resulting grayscaled image.

 Figure 3: Image after gray scaling

3.3.3 Gaussian Blurring

Once the grayscaling is done, noise reduction is performed on the image.
A gaussian kernel is used to blur/smoothen the image. It is done with the
help of an OpenCv function, cv2.GaussianBlur(). The width and height
of the kernel are required to be defined which should be positive and
odd(both are defined as 5 in our case). We should also specify the

standard deviation in X and Y direction, sigmaX and sigmaY
respectively (defined as 0 in our algorithm).

This method takes a grayscaled image as an input and returns a blurred
image as an output depending on the kernel size. Further processing is
done on the resulting grayscale blur(smooth) image. Gaussian blurring is
illustrated in Fig. 4.

15

Figure 4: Image after Gaussian Blurring

3.4 Detecting Gradient Change - Edge detection using Canny Edge
Detection in OpenCV

OpenCV puts all the above in single function, cv2.Canny(). We will see
how to use it. First argument is our input image. Second and third
arguments are our minVal and maxVal respectively. Third argument
is aperture size. It is the size of Sobel kernel used for find image
gradients. By default, it is 3. Last argument is L2gradient which specifies
the equation for finding gradient magnitude. If it is True, it uses the
equation mentioned above which is more accurate, otherwise it uses this

function: . By default, it is False.

Smoothened image is then filtered with a Sobel kernel in both horizontal
and vertical direction to get first derivative in horizontal direction ()
and vertical direction (). From these two images, we can find edge
gradient and direction for each pixel as follows:

16

Gradient direction is always perpendicular to edges. It is rounded to one
of four angles representing vertical, horizontal and two diagonal
directions.

Figure 5: Image with detected edge pixels

3.5 Computing Hough lines based on the detected edges

Hough Transform takes a linear line equation and represents it in the
parametric form. Any shape can be detected if it is represented in the
mathematical form. A linear line equation is given as

y = mx + c

While in parametric form, a line is represented as -

ϑ = xcosϑ + ysinϑ

where ρ is the perpendicular distance from origin to the line, and θ is the
angle formed by this perpendicular line and horizontal axis. Any line can
be represented in the form of ρ and θ. The motivation behind this method
is to discover the instances belonging to a line shape by a voting
procedure. This voting method is performed in a parameter space. [26]

17

In the given algorithm, this is performed by using an OpenCV method
cv2.HoughLinesP().

HoughLines P stands for Probabilistic Hough Transform, which is an
optimization of Hough Transform discussed above. In addition to
minimum number of votes it also takes two more parameters minimum
length of line and maximum allowed gap.

Hough parameters used in the presented algorithm are defined below:

ρ = 1

θ = pi/180

threshold = 50

min line len = 60 pixels

max line gap = 400 pixels

Where, threshold is the minimum number of votes required to consider
the given edge as a line, minLineLength is the minimum length of line
(line segments shorter than this are rejected) and maxLineGap is the
maximum allowed gap between line segments to treat them as single
line.

An image with detected Hough lines is shown in Fig. 6.

Figure 6: Image with detected lines using Probabilistic Hough Transform

18

3.6 Filtering resulting lines

As shown in figure .6, multiple lines detected by Probabilistic Hough
Transform do not belong to road lane lines. To discard the unwanted
lines, two filtering methods are used - filtering using slope value and
filtering using intercept value.

The limitation of filtering lane lines based on the slope is that the
filtering method considers the parallel lines(lines with the same slope
values) as the potential lane lines.

Therefore, another parameter is taken into account to determine the exact
lane line position. This parameter is the y intercept value - c in

 y = mx + c.

To remove the false positives (non lane lines parallel to the lane lines),
the y-intercept value for each resulting line is calculated.

The equation of a line is:

y = mx + c

Hence, knowing the value of sloe m, the value of c can be found by -

c = y - mx

19

Figure 7. Image after filtering based on slope and intercept values

20

 CHAPTER 4.

4.Block Diagram

Figure 8: Block diagram image of conversion

21

 Chapter 5.

5.Implementation

Program Code:

import cv2

import numpy as np

def

make_coordinates(image,line_para

meters):

slope,intercept=line_parameters

print(image.shape)

y1=image.shape[0]

y2=int(y1*(3/5))

x1=int((y1-

intercept)/slope)

17x2=int((y2-

intercept)/slope)

return

np.array([x1,y1,x2,y2])

return

def average_slope_intercept(image,lines):

18left_fit=[]

right_fit

=[]

22

for line in lines:

x1,y1,x2,y2=line.resha

pe(4)

parameters=np.polyfit((x1,x2),(y1,

y2),1) slope=parameters[0]

intercept=parameters[1]

if slope <0:

left_fit.append((slope,inter

cept))

else:

right_fit.append((slope,intercept))

19left_fit_average=np.average(left_fit,axis=0)

right_fit_average=np.average(right_fit,axis=

0)

left_line=make_coordinates(image,left_fit_a

verage)

right_line=make_coordinates(image,right_fit

_average) return

np.array([left_line,right_line])

def canny(image):

p

20gray=cv2.cvtColor(image,cv2.COLOR_RG

B2GRAY)

blur=cv2.GaussianBlur(gray,(5,5),0)

canny=cv2.Canny(blur,50,150)

return canny

def display_lines(image,lines):

23

line_image=np.zeros_like(i

mage) if lines is not

None:

for x1,y1,x2,y2 in lines:

cv2.line(line_image,(x1,y1),(x2,y2),(255,

0,0),10) return line_image

def

region_of_interest(im

21age): height=image.shape[0]

polygons=np.array([[(200,height),(

1100,height),(550,250)]

])

mask=np.zeros_like(image)

cv2.fillPoly(mask,polygons,255)

22masked_image=cv2.bitwise_and(ima

ge,mask) return masked_image

cap=cv2.VideoCapture("test2.

mp4") while(cap.isOpened()):

_, frame=cap.read()

canny_image=cann

y(fra me)

cropped_image=reg

ion_

of_interest(canny_i

mage

)

24

lines=cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np.array([]),min
Li

neLength=40,m ax LineGap=5)

23averaged_lines=average_slope_intercept(frame,l

ines)

line_image=display_lines(frame,averaged_lines)

combo_image=cv2.addWeighted(frame,0.8,line_

image,1,1) cv2.imshow("result",combo_image)

if cv2.waitKey(1)==ord('q'):

24break

cap.releas

e()

cv2.destroyAllWindows

25

 Chapter 6.

6. Output / Screenshot

Figure 9: Input Image

Figure 10: Output Image

26

 Chapter 7.

7. Conclusion

The problem of autonomous highway overtaking was solved. The test
protocol for highway overtaking assist was developed which was further
used for the development of an automated driving system for the
autonomous highway overtaking. The developed test protocol was
validated analytically using mathematical equations and the automated
driving system was tested virtually. The simulation results were found to
be in accordance with the desired host vehicle behavior. The system
drives the host vehicle through the selected use cases in a safe and
efficient manner, while interacting with target vehicles operating in the
traffic environment. The proposed autonomous highway overtaking
system has the following characteristics:

 Safe, comfortable, and robust: The safety of the developed system was
guaranteed by ensuring that the host vehicle remains outside the safe
time gap during overtaking. Also, the host vehicle was able to execute
the overtaking maneuver without exceeding the safe limits of
longitudinal acceleration, heading angle, yaw rate, and lateral velocity, it
was concluded that the developed fuzzy controller was suitable for
application to the steering control even at a higher speed. Thus, the
system is robust enough.

Feasible and modular framework of the autonomous highway overtaking
system., the developed system is feasible since it uses the sensors and
ADAS systems Also, the development of subsystems is performed
independently which might be beneficial to the future optimization and
into a real vehicle.

27

 Chapter 8.

8. References

[1] “Automated vs. Autonomous Vehicles: Is There a
Difference?”30https://www.autotrader.com/carnews/automated-vs-
autonomous-vehicles-there difference273139, 2018. [Online; accessed
25-04-2018].

[2] FENICHE, M., & MAZRI, T. (2019). Lane Detection and Tracking
for Intelligent Vehicles: A Survey. 2019 International Conference of
Computer Science and Renewable Energies (ICCSRE).
doi:10.1109/iccsre.2019.8807727

[3] G. Hegeman, Assisted overtaking: An assessment of overtaking on
two-lane rural roads. No. T2008/4, TRAIL Research School Delft, the
Netherlands, 2008.

[4] H.Tanveer and A.Sgorbissa, “An Inverse Perspective Mapping
Approach usingMonocular Camera of Pepper Humanoid Robot to
Determine the Position of Other Moving Robot in Plane” in 15th
International Conference on Informatics in Control, Automation and
Robotics, IEEE International Conference on ,(2018).

[5] J. E. Stellet, M. R. Zofka, J. Schumacher, T. Schamm, F. Niewels,
and J. M. Zöllner, “Testing of advanced driver assistance towards
automated driving: A survey and taxonomy on existing approaches and
open questions,” in Intelligent Transportation Systems (ITSC), 2015
IEEE 18th International Conference on, pp. 1455–1462, IEEE, 2015.

[6] Y.Yenİaydin, K.W.Schmidt, “A lane detection algorithm based on
reliable lane markings” in Signal Processing and Communications
Applications Conference (SIU), IEEE International Conference on ,
(2018)

