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                                                                    Abstract   

 
 

For autonomous vehicle driving technology to move forward from the 
testing phase to actual self-driving car, safety measures and error 
minimization plays a key role. This project explains the techniques to 
outline the road lanes through the lane detection method. The width of 
the road lanes can be explicitly calculated to define the relative position 
of the vehicle in the defined lane. Inbuilt camera sensor produces lots of 
information from the surrounding which are processed through a 
machine vision system. The advanced system predicts trajectories 
collected during human handling of the vehicle and employs these to 
produce automatic tags for training a semantic-based pathway prediction 
model. Besides, a camera’s actual inclination angle and the lane width 
can be obtained by active normalization. This approach is used to find 
the lane and width of the road from both sides effectively when there is a 
hindrance on one side. The drivable route knowledge is necessary 
particularly in unorganized situations and is crucial for an intelligent 
transport system to get reliable driving choice. 
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Chapter 1. 

  

1.Introduction  

 

Using the machine learning algorithms and python it will predict the 
width of the road .It will also tell the distance from the roadside and also 
guide for overtaking the vehicles. The trained machine become the 
powerful feature in the driverless car as the vehicle get proper assistance 
in the overtaking and parking also .It can also be used in the cruise 
control of the car make the more impact of the car and easy in controlling 
the car. Active safety is currently a key topic in the automotive industry, 
which fosters the development of Autonomous Vehicle functions. 
Various advanced driver assistance systems (ADAS) and active safety 
systems have the potential to improve road safety, driver comfort, fuel 
economy, and traffic flow by assisting the driver during different driving 
conditions. It is estimated that human error is a contributing factor in 
more than 90% of all accidents. In order to save the human lives caused 
by road accidents, it is hence of interest to develop such systems using 
modeling and simulation 7tools which is quick and more efficient as 
compared to the real driving testing. Overtaking is one of the most 
complex maneuvers with the high risk of collision (75% human error) so 
the automation of this maneuver still remains one of the toughest 
challenges in the development of autonomous vehicles. Since overtaking 
is one of the complex maneuvers and so many factors affect it, the 
automation of this maneuver has been considered to be one of the 
toughest challenges in the development of autonomous vehicles. 
Overtaking involves a great interaction between both longitudinal 
(throttle and brake) and lateral (steering) actuators. Nowadays, in the 
field of driver assistance systems and automated driving, development 
approaches for lateral maneuver control are the very big challenge. 
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Computerized reasoning in autos has highlighted in numerous 
exploration tasks and trials have been led since the 1980s when first 
models for self-ruling autos were displayed via Carnegie Mellon 
College’s Navlab. From that point forward, there have been a lot of 
innovative headways in the field of self-governing vehicles and Navlab 
11, the most recent auto by CMU’s Route Research facility, is a 2000 
Jeep Wrangler introduced with several pieces of equipment such as GPS, 
magnetometers, proximity laser censors, and omni-directional camera . 
Stanley, an autonomous car created by Stanford University in 
cooperation with Volkswagon won first driver-less car racing challenge 
known as ‘DARPA Grand Challenge’ in 2005. 

 

Numerous studies have been led about vehicle robotization and Driver 
Assistance Systems. A portion of the highlights of a self-governing 
vehicle incorporates Automatic Cruise Control, Automatic Parking, 
Collision Avoidance as well as Lane Departure Warning systems. Aside 
from the said, the potential advantages of autonomous cars incorporate 
decreased framework costs, expanded security, expanded consumer 
satisfaction, and a critical lessening in car accidents. . Some in favor of 
autonomous vehicles additionally trust that conveying robotics to the car 
will kill more typical wrongdoings like insurance scams and vehicle 
burglary. 

  

On account of above mentioned benefits, many countries have taken a 
step forward to bring self-driving cars on the roads for public. UK, in 
2014, announced that driver less cars2 will be allowed on public roads 
and soon a prototype called ’Lutz pod’ was launched as UK’s first 
driver-less car [6] [7]. Moreover, In 2017, first autonomous vehicle was 
demonstrated at Christchurch Airport [8]. However, despite significant 
amount of benefits, there exist some foreseeable challenges in 
completely accepting self-driven vehicles. A few opposer believe that 
widespread adoption of driver-less cars will bring dearth of driving 
related jobs and will also compromise with the passenger’s safety . It is 
also believed that an autonomous car will likely lead to the loss of 
privacy and increased risks of hacking attacks and terrorism. 

  

It is understood that the discrepancy between people’s beliefs of the 
necessary government intervention may cause a delay in accepting 
autonomous cars on the road . This will keep the drivers in control of the 
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car for some years to come. Therefore, it is important to seek solutions to 
make their driving experience safer and easier. This thesis presents one 
such solution - Real time road lane lines detection in different weather 
conditions. A real time vision-based lane detection system can be used to 
assist the driver in locating the lanes or warning the driver if the vehicle 
goes out of lane. In this thesis, a Lane Detection algorithm is presented 
for real-time detection of road lane lines in various climate conditions. 
The algorithm runs on a 7 inch display attached to a RaspberryPi 3.0 
computer with a Pi camera installed. The entire system is placed on the 
car’s dashboard. The Pi Camera is placed inside the car fixed to the 
windshield to capture the real time video while driving. The display 
screen and the RaspberryPi computer is powered by a 12V-to-5V car 
power supply port. Lane Detection algorithm presented in this thesis 
implements the concepts of Computer Vision - like gradient change and 
probabilistic Hough transform, to detect the lane lines in the road images. 
Moreover, certain filtering techniques, such as filtering based on slope 
and intercept values, are used to determine the exact location of road lane 
lines. The algorithm is implemented in Python 2.7 with OpenCV 3.0.  

The entire thesis is organized as follows. In Chapter 2, other work related 
to the lane detection or autonomous driving is discussed. Chapter 3 
contains the details of the algorithm used to detect road lane lines in this 
research. Chapter 4 presents the statistics of the results from the 
experiments conducted during this research. Chapter 5 presents the 
conclusion and talks about the future work. 
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                                          CHAPTER 2. 

 

2.RELATED WORK 

Enhancing autonomous driving, especially by performing accurate road 
lane line detection, has been a major research interest in past few years. 
Several researchers have performed real time vision based lane detection 
using various techniques. This chapter discusses few of those research 
works and related algorithms in brief. Yuan et al established a novel 
method for tracking road lanes for vision-guided autonomous vehicle 
navigation. They use an inverse perspective mapping to remove the 
perspective from the camera and then detect the edges of the road lanes 
from the inverse perspective mapping images. An algorithm for ’particle 
filtering’ is used to compute the likelihood between all the particles with 
the edge images, henceforth estimating the three parameters of the real 
state of road lane lines. This lane detection method is tested in real  

road images to achieve reliable results.  

 

P. Mandlik and A.B. Deshmukh  presented a Lane Departure Detection 
System(LDWS) in accordance with Advanced Diver Assistance 
System(ADAS) to warn the driver when the vehicle tends to depart it’s 
lanes. LDWS is based on the lane identification and tracking algorithm 
and uses OpenCV implementations of ’Hough Transform’ to detect 
vehicle lane departure on a Raspberry Pi. The experiments are conducted 
on the images captured using a toy vehicle with a USB camera, ‘Intex 
IT-305WC webcam’, mounted on top. Out of many straight lines 
detected by Hough Transform, the longest straight lines are identified as 
the lane lines. The results are collected using Intel Core i3 1.80 Ghz 
processor. 

 

 K. H. Lim et al.  constituted a real-time implementation of lane detection 
and tracking system to localize lane boundaries and estimate a linear-
parabolic lane model. For experiments, a CCD camera is used to capture 
video frames and stored in video port buffer of a TMS320DM642 DSP 
board. Horizon localization is used to discern the sky from road5 in the 
input image. To recognize lane markings, road pixels are removed from 
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the road region by performing lane analysis. Once lane boundaries are 
located, the conceivable edge pixels are scanned to ceaselessly to obtain 
the lane model. A Linear-parabolic model is used to construct the 
geometry of the lane and the model parameters are updated with Kalman 
filtering. X. Du et al. proposed a robust vision-based methodology to 
deal with challenges during lane detection like shadows, shifting lighting 
conditions, faded-away lane lines, etc.  

The methodology incorporates four key 
advances: Using a ridge detector, the line pixels are pooled. Then, using 
a noise filtering mechanism, noisy pixels are removed. After removing 
noises, a sequential Random Sample consensus is employed to ensure 
that each lane line in the image is collected correctly. In the final step, a 
technique parallelism reinforcement is employed to enhance the accuracy 
of the model. The model is also fit to localize vehicles with respect to the 
road lane lines.  

Q. Truong and B.R. Lee  used the principal 
approach to detect road boundaries and lanes using a vision-based system 
in the vehicle. The paper presented a methodology to detect and estimate 
the curvature of lane boundaries. A vector-lane-concept and nonuniform 
B-spline (NUBS) interpolation method is used to construct the 
boundaries of road lane lines. Based on the lane boundary, the curvature 
of left and right lane boundaries are calculated. For experimental 
purposes, images are captured using a monocular camera. Experimental 
results are based on real world road images, as presented in the paper.  
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                                  CHAPTER 3. 

 

3. LANE DETECTION ALGORITHM  

3.1 Overview 

  

This section describes in detail the algorithm designed for the real time 
road lane lines detection. The algorithm is divided into five stages - data 
collection, data preprocessing, gradient change detection using Sobel, 
line detection using Hough, and line filtering using slope and intercept 
values. Subsequent sections describe each stage in detail.  

 

The hardware used for this research is shown in the Fig. 1. A wooden 
board is used to hold the touchscreen display and the Raspberry Pi 
computer together. This wooden board is placed on the vehicle’s 
dashboard. A Pi camera, attached to the Raspberry Pi. 

 

Figure 1.A RaspBerryPi Touchscreen 
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3.2 Data Collection  

 

The data set is collected over multiple drives during varying climate 
conditions. A Pi camera is used to capture 10 frames per second over an 
interval of 30 minutes (i.e. 1800 seconds). The camera settings for 
capturing the data is given in the algorithm section below.  

 

For experiments, the collected videos are saved to the local Pi in the 
memory space8 provided by the attached memory card. The videos 
collected in h264 format are converted into mp4 and individual frames 
are extracted from mp4 videos and are converted to jpg images.   

The results from the above algorithm are stored in a directory on the 
local machine and each file is read individually to be processed and 
saved in the output directory. 

 

3.3 Data Preprocessing  

 

The images collected by extracting frames using the above algorithm are 
iterated over individually and re-sized. A resided original image can be 
seen in Fig. 2. 

  

dim = (400, 255)  

 

resized = cv2.resize(input image, dim, interpolation = cv2.INT ER AREA)  

 

The re-sizing is performed using cv2.resize() method of OpenCV. The 
resided image then undergoes masking, gray-scaling and Gaussian 
blurring. 

 

3.3.1 Masking  
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It is understood that in any image containing road (or lane lines), the road 
surface area is present in the bottom half of the image. Using this 
knowledge, the region of interest is decided. 

 

 

Figure 2: Resized original image 

 

 

 

The entire y section(vertical height) of the image is horizontally cut into 
the half and the region lying above that horizontal line is discarded. This 
was performed using cv2.fillPolly() and cv2.bitwise and() method of 
OpenCV. This method takes a row number as an input and creates a 
mask such that the region of interest is only below the given row.  

 

3.3.2 Grayscaling  

 

In the future stages of the presented algorithm, edge detection and Hough 
transformation, the image is required to be converted into a single color 
scale, also called as grayscale.  

 

Therefore, the region of interest extracted in the previous stage during 
masking, is rendered to grayscale image as shown below. 
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This is performed using cv2.cvtColor() method of OpenCV. 
This method takes a colored image as an input (RGB) and returns a 
grayscaled image as an output. Further processing is done on the 
resulting grayscaled image.  

 

 

                Figure 3: Image after gray scaling 

                 

 

3.3.3 Gaussian Blurring  

Once the grayscaling is done, noise reduction is performed on the image. 
A gaussian kernel is used to blur/smoothen the image. It is done with the 
help of an OpenCv function, cv2.GaussianBlur(). The width and height 
of the kernel are required to be defined which should be positive and 
odd(both are defined as 5 in our case). We should also specify the  

standard deviation in X and Y direction, sigmaX and sigmaY 
respectively (defined as 0 in our algorithm).  

This method takes a grayscaled image as an input and returns a blurred 
image as an output depending on the kernel size. Further processing is 
done on the resulting grayscale blur(smooth) image. Gaussian blurring is 
illustrated in  Fig. 4. 
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Figure 4: Image after Gaussian Blurring 

 

 

3.4 Detecting Gradient Change - Edge detection using Canny Edge 
Detection in OpenCV 

 

OpenCV puts all the above in single function, cv2.Canny(). We will see 
how to use it. First argument is our input image. Second and third 
arguments are our minVal and maxVal respectively. Third argument 
is aperture size. It is the size of Sobel kernel used for find image 
gradients. By default, it is 3. Last argument is L2gradient which specifies 
the equation for finding gradient magnitude. If it is True, it uses the 
equation mentioned above which is more accurate, otherwise it uses this 

function: . By default, it is False. 

 

Smoothened image is then filtered with a Sobel kernel in both horizontal 
and vertical direction to get first derivative in horizontal direction ( ) 
and vertical direction ( ). From these two images, we can find edge 
gradient and direction for each pixel as follows: 
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Gradient direction is always perpendicular to edges. It is rounded to one 
of four angles representing vertical, horizontal and two diagonal 
directions. 

 

 

Figure 5: Image with detected edge pixels 

 

3.5 Computing Hough lines based on the detected edges  

 

Hough Transform takes a linear line equation and represents it in the 
parametric form. Any shape can be detected if it is represented in the 
mathematical form. A linear line equation is given as 

 

y = mx + c  

 

While in parametric form, a line is represented as -  

 

ϑ = xcosϑ + ysinϑ  

 

where ρ is the perpendicular distance from origin to the line, and θ is the 
angle formed by this perpendicular line and horizontal axis.  Any line can 
be represented in the form of ρ and θ. The motivation behind this method 
is to discover the instances belonging to a line shape by a voting 
procedure. This voting method is performed in a parameter space. [26]  
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In the given algorithm, this is performed by using an OpenCV method 
cv2.HoughLinesP().  

 

HoughLines P stands for Probabilistic Hough Transform, which is an 
optimization of Hough Transform discussed above. In addition to 
minimum number of votes it also takes two more parameters minimum 
length of line and maximum allowed gap.  

 

Hough parameters used in the presented algorithm are defined below:  

 

ρ = 1  

θ = pi/180  

threshold = 50  

min line len = 60 pixels  

max line gap = 400 pixels  

 

Where, threshold is the minimum number of votes required to consider 
the given edge as a line, minLineLength is the minimum length of line 
(line segments shorter than this are rejected) and maxLineGap is the 
maximum allowed gap between line segments to treat them as single 
line.  

An image with detected Hough lines is shown in Fig. 6. 

 

Figure 6: Image with detected lines using Probabilistic Hough Transform 
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3.6 Filtering resulting lines  

 

As shown in figure .6, multiple lines detected by Probabilistic Hough 
Transform do not belong to road lane lines. To discard the unwanted 
lines, two filtering methods are used - filtering using slope value and 
filtering using intercept value. 

 

The limitation of filtering lane lines based on the slope is that the 
filtering method considers the parallel lines(lines with the same slope 
values) as the potential lane lines.  

 

Therefore, another parameter is taken into account to determine the exact 
lane line position. This parameter is the y intercept value - c in 

 

 y = mx + c.  

 

To remove the false positives (non lane lines parallel to the lane lines), 
the y-intercept value for each resulting line is calculated.  

The equation of a line is:  

 

y = mx + c  

 

Hence, knowing the value of sloe m, the value of c can be found by -  

 

c = y - mx 
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Figure 7. Image after filtering based on slope and intercept values 
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                                           CHAPTER 4. 

 

4.Block Diagram 

 

 

Figure 8: Block diagram image of conversion  
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                                        Chapter 5. 

 

5.Implementation  

Program Code: 

  

import cv2  

import numpy as np  

def  

make_coordinates(image,line_para  

meters):  

slope,intercept=line_parameters  

print(image.shape)  

y1=image.shape[0]  

y2=int(y1*(3/5))  

x1=int((y1-  

intercept)/slope)  

17x2=int((y2-  

intercept)/slope)  

return  

np.array([x1,y1,x2,y2])  

return  

def average_slope_intercept(image,lines):  

18left_fit=[]  

right_fit  

=[]  
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for line in lines:  

x1,y1,x2,y2=line.resha  

pe(4)  

parameters=np.polyfit((x1,x2),(y1,  

y2),1) slope=parameters[0]  

intercept=parameters[1]  

if slope <0:  

left_fit.append((slope,inter  

cept))  

else:  

right_fit.append((slope,intercept))  

19left_fit_average=np.average(left_fit,axis=0)  

right_fit_average=np.average(right_fit,axis=  

0)  

left_line=make_coordinates(image,left_fit_a  

verage)  

right_line=make_coordinates(image,right_fit  

_average) return  

np.array([left_line,right_line])  

def canny(image):  

p  

20gray=cv2.cvtColor(image,cv2.COLOR_RG  

B2GRAY)  

blur=cv2.GaussianBlur(gray,(5,5),0)  

canny=cv2.Canny(blur,50,150)  

return canny  

def display_lines(image,lines):  



23 

 

line_image=np.zeros_like(i  

mage) if lines is not  

None:  

for x1,y1,x2,y2 in lines:  

cv2.line(line_image,(x1,y1),(x2,y2),(255,  

0,0),10) return line_image  

def  

region_of_interest(im  

21age): height=image.shape[0]  

polygons=np.array([ [(200,height),(  

1100,height),(550,250)]  

])  

mask=np.zeros_like(image)  

cv2.fillPoly(mask,polygons,255)  

22masked_image=cv2.bitwise_and(ima  

ge,mask) return masked_image  

cap=cv2.VideoCapture("test2.  

mp4") while(cap.isOpened()):  

_, frame=cap.read()  

canny_image=cann  

y(fra me)  

cropped_image=reg  

ion_  

of_interest(canny_i  

mage  

)  
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lines=cv2.HoughLinesP(cropped_image,2,np.pi/180,100,np.array([]),min
Li  

neLength=40,m ax LineGap=5)  

23averaged_lines=average_slope_intercept(frame,l  

ines)  

line_image=display_lines(frame,averaged_lines)  

combo_image=cv2.addWeighted(frame,0.8,line_  

image,1,1) cv2.imshow("result",combo_image)  

if cv2.waitKey(1)==ord('q'):  

24break  

cap.releas  

e()  

cv2.destroyAllWindows 
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                                           Chapter 6. 

 

6. Output / Screenshot 

 

Figure 9: Input Image  

 

 

 

Figure 10: Output Image 
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                                             Chapter 7.  

 

7. Conclusion  

 

The problem of autonomous highway overtaking was solved. The test 
protocol for highway overtaking assist was developed which was further 
used for the development of an automated driving system for the 
autonomous highway overtaking. The developed test protocol was 
validated analytically using mathematical equations and the automated 
driving system was tested virtually. The simulation results were found to 
be in accordance with the desired host vehicle behavior. The system 
drives the host vehicle through the selected use cases in a safe and 
efficient manner, while interacting with target vehicles operating in the 
traffic environment. The proposed autonomous highway overtaking 
system has the following characteristics:  

 Safe, comfortable, and robust: The safety of the developed system was 
guaranteed by ensuring that the host vehicle remains outside the safe 
time gap during overtaking. Also, the host vehicle was able to execute 
the overtaking maneuver without exceeding the safe limits of 
longitudinal acceleration, heading angle, yaw rate, and lateral velocity, it 
was concluded that the developed fuzzy controller was suitable for 
application to the steering control even at a higher speed. Thus, the 
system is robust enough.  

Feasible and modular framework of the autonomous highway overtaking 
system., the developed system is feasible since it uses the sensors and 
ADAS systems Also, the development of subsystems is performed 
independently which might be beneficial to the future optimization and  
into a real vehicle.  
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                                        Chapter 8. 
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