
 
 
 
 
 
 
 
 

 

Face Recognition System 

A Project Report of Capstone Project - 2 
 

Submitted by 

Ashish Kamra 

(1613101188) 

 

 

 

in partial fulfilment for the award of the degree 
 

of 
 

 

BACHELOR OF TECHNOLOGY 
 

IN 
 

COMPUTER SCIENCE AND ENGINEERING 
 

 

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING 
 
 
 

Under the Supervision of 

 

    Ms. Nidhi 

 

 

APRIL / MAY- 2020 
 
 
 

      



  
 
 
 
 
 
 
 
 
 

 

SCHOOL OF COMPUTING AND SCIENCE AND 
ENGINEERING 

 
BONAFIDE CERTIFICATE 

 

 
Certified that this project report “Face Recognition System” is the 
 
bonafide work of “ASHISH KAMRA(1613101188)” who carried out the 
 
project work under my supervision. 
 

 

SIGNATURE OF HEAD       SIGNATURE OF SUPERVISOR 
 
Dr. Raju Shanmugam                Ms. Nidhi 
PROFESSOR & DEAN     ASSOCIATE PROFESSOR 
SCHOOL OF COMPUTER    SCHOOL OF COMPUTER 
SCIENCE & ENGINEERING    SCIENCE & ENGINEERING 
 
 
 
 
 



ABSTRACT 

The face is our primary focus of attention in social interaction playing a major 

role in conveying identify and emotion. Although the ability to infer intelligence 

or character from facial appearance is suspect, the human ability to recognize face 

is remarkable. The data and information accumulating in abundance, there is a 

crucial need for high security. Biometrics has now received more attention. Face 

biometrics, useful for a person’s authentication is a simple and non-intrusive 

method that recognizes face in complex multidimensional visual model and 

develops a computational model for it.  we present an overview of face 

recognition and discuss the methodology and its functioning. Thereafter we 

represent the most recent face recognition techniques listing their advantages and 

disadvantages. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE OF CONTENTS 

 

1. Introduction 

2. Scope and Objective  

3. Purpose 

3.1  Objective 

4. System Analysis 

5. Requirement Analysis 

5.1  Functional Requirements 

5.2  Hardware Requirements 

6. Functionality and Design. 

6.1  Application Design 

7. Design 

7.1  Introduction 

7.2  Class Diagram 

8. SDLC Methodologies 

9. Application Development 

10.  Software Testing 

11.  Conclusion 

12. References 

 

 



 

Introduction 

Facial recognition software is based on the ability to recognize a face and then 

measure the various features of the face. This project is aimed to identify the 

face of the person using various features like eyes, hair, lips, nose, etc. The 

details such as distance between the eyes or shape of the chin, are then 

converted into a mathematical representation and compared to data on other 

faces collected in a face recognition database. 

 Face Detection: Look at the picture and find a face in it. 
 

 Data Gathering: Extract unique characteristics of Aditya’s face that it can 
use to differentiate him from another person, like eyes, mouth, nose, etc. 
 

 Data Comparison: Despite variations in light or expression, it will compare 
those unique features to all the features of all the people you know. 
 

 Face Recognition: It will determine “Hey, that’s my boy Aditya! 

 

 

 

 

 

 

 

 

 



 

Scope and Objective 

PROJECT SCOPE: 

          The scope of the project is confined to store the image and store in the 

database. When a person has to be identified the images stored in the database 

are compared with the existing details. Over the last ten years or so, face 

recognition has become a popular area of research in computer vision and one 

of the most successful applications of image analysis and understanding. 

Because of the nature of the problem, not only computer science researchers 

are interested in it, but neuroscientists and psychologists also. It is the general 

opinion that advances in computer vision research will provide useful insights 

to neuroscientists and psychologists into how human brain works, and 

vice versa. 

Face Recognition systems use computer algorithms to pick out specific, 

distinctive details about a person’s face. These details, such as distance 

between the eyes or shape of the chin, are then converted into a 

mathematical representation and compared to data on other faces collected in 

a face recognition database. The data about a particular face is often called a 

face template and is distinct from a photograph because it’s designed to only 

include certain details that can be used to distinguish one face from another. 



 

PROJECT OBJECTIVE: 

This project is intended to identify a person using the images previously taken. 

The identification will be done according the previous images of different 

persons. Every face has numerous, distinguishable landmarks, the different 

peaks and valleys that make up facial features. It defines these landmarks 

as nodal points. Each human face has approximately 80 nodal points. Some of 

these measured by the software are: 

 Distance between the eyes 

 Width of the nose 

 Depth of the eye sockets 

 The shape of the cheekbones 

 The length of the jaw line 

These nodal points are measured creating a numerical code, called a faceprint, 

representing the face in the database. 

 

 

 

 



 

System Analysis 

The first step in developing anything is to state the requirements. This 

applies just as much to leading edge research as to simple programs and to 

personal programs, as well as to large team efforts. Being vague about your 

objective only postpones decisions to a later stage where changes are much more 

costly. 

 The problem statement should state what is to be done and not how it is to 

be done. It should be a statement of needs, not a proposal for a solution. A user 

manual for the desired system is a good problem statement. The requestor should 

indicate which features are mandatory and which are optional, to avoid overly 

constraining design decisions. The requestor should avoid describing system 

internals, as this restricts implementation flexibility. Performance specifications 

and protocols for interaction with external systems are legitimate requirements. 

Software engineering standards, such as modular construction, design for 

testability, and provision for future extensions, are also proper. 

 Many problems statements, from individuals, companies, and government 

agencies, mixture requirements with design decisions. There may sometimes be 

a compelling reason to require a particular computer or language; there is rarely 



justification to specify the use of a particular algorithm. The analyst must separate 

the true requirements from design and implementation decisions disguised as 

requirements. The analyst should challenge such pseudo requirements, as they 

restrict flexibility. There may be organizational reasons for the user requirements, 

but at least the analyst should recognize that these externally imposed design 

decisions are not essential features of the problem domain. 

 A problem statement may have more or less detail. A requirement for a 

conventional product, such as a payroll program or a billing system, may have 

considerable detail. A requirement for a research effort in a new area may lack 

many details, but presumably the research has some objective, which should be 

clearly stated. 

 Most problem statements are ambiguous, incomplete, or even inconsistent. 

Some requirements are just plain wrong. Some requirements, although precisely 

stated, have unpleasant consequences on the system behaviour or impose 

unreasonable implementation costs. Some requirements seem reasonable at first 

but do not work out as well as the request or thought. The problem statement is 

just a starting point for understanding the problem, not an immutable document. 

The purpose of the subsequent analysis is to fully understand the problem and its 

implications. There are no reasons to expect that a problem statement prepared 

without a fully analysis will be correct. 



 The analyst must work with the requestor to refine the requirements so 

they represent the requestor’s true intent. This involves challenging the 

requirements and probing for missing information. The psychological, 

organizational, and political considerations of doing this are beyond the scope of 

this book, except for the following piece of advice: If you do exactly what the 

customer asked for, but the result does not meet the customer’s real needs, you 

will probably be blamed anyway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    

 

 

Requirement Analysis 

Functional Requirements: 

By conducting the requirements analysis, we listed out the requirements that 

are useful to restate the problem definition. 

 Insert the image into database 

 Split the image into no of parts. 

 Merge the parts. 

 Identify the image. 

 Draw image manually. 

 Maintain information about each person 

 

Minimum Hardware Requirements: 

Processor: Pentium III – 900 MHz 

     Hard Disk: 20 GB 

     RAM: 128 MB 

 

 



 

 

Functionality and Design 

A newly-emerging trend in facial recognition software uses a 3D model, 

which claims to provide more accuracy. Capturing a real-time 3D image of a 

person's facial surface, 3D facial recognition uses distinctive features of the face 

-- where rigid tissue and bone is most apparent, such as the curves of the eye 

socket, nose and chin -- to identify the subject. These areas are all unique and 

don't change over time. 

Using depth and an axis of measurement that is not affected by lighting, 3D facial 

recognition can even be used in darkness and has the ability to recognize a subject 

at different view angles with the potential to recognize up to 90 degrees (a face 

in profile). 

Using the 3D software, the system goes through a series of steps to verify the 

identity of an individual. 

Detection 

Acquiring an image can be accomplished by digitally scanning an existing 

photograph (2D) or by using a video image to acquire a live picture of a subject 

(3D). 



Alignment 

Once it detects a face, the system determines the head's position, size and pose. 

As stated earlier, the subject has the potential to be recognized up to 90 degrees, 

while with 2D, the head must be turned at least 35 degrees toward the camera. 

Measurement 

The system then measures the curves of the face on a sub-millimeter (or 

microwave) scale and creates a template. 

Representation 

The system translates the template into a unique code. This coding gives each 

template a set of numbers to represent the features on a subject's face. 

Matching 

If the image is 3D and the database contain 3D images, then matching will take 

place without any changes being made to the image. However, there is a challenge 

currently facing databases that are still in 2D images. 3D provides a live, moving 

variable subject being compared to a flat, stable image. New technology is 

addressing this challenge. When a 3D image is taken, different points (usually 

three) are identified. For example, the outside of the eye, the inside of the eye and 

the tip of the nose will be pulled out and measured. Once those measurements are 

in place, an algorithm (a step-by-step procedure) will be applied to the image to 



convert it to a 2D image. After conversion, the software will then compare the 

image with the 2D images in the database to find a potential match. 

Verification or Identification 

In verification, an image is matched to only one image in the database (1:1). For 

example, an image taken of a subject may be matched to an image in the 

Department of Motor Vehicles database to verify the subject is who he says he is. 

If identification is the goal, then the image is compared to all images in the 

database resulting in a score for each potential match (1:N). In this instance, you 

may take an image and compare it to a database of mug shots. 

 

 

 

 

 

 

 

 

 

 

 

 



Design 

During analysis, the focus is on what needs to be done, independent of how 

it is done. During design, decisions are made about how the problem will be 

solved, first at high level, then at increasingly detailed levels. 

System design is the first design stage in which the basic approach to solving the 

problem is selected. During system design, the overall structure and style are 

decided. The system architecture is the overall organization of the system into 

components called subsystems. The architecture provides the context in which 

more detailed decisions are made in later design stages. By making high level 

decisions that apply to the entire system, the system designer partitions the 

problem into subsystems so that further work can be done by several designers 

working independently on different subsystems. 

The system designer must make the following decisions: 

 Organize the system into subsystems. 

 Identify the concurrency inherent in the problem. 

 Allocate subsystems to processors and tasks. 

 Choose an approach for management of data stores. 

 Handle access to global resources. 

 Choose the implementation of control in software. 

 Handle boundary conditions. 

 Set trade-off priorities. 



Breaking the System into Subsystems: 

The first step in system design is to divide the system into small number of 

components. Each major component of a system is called a sub system. Each 

subsystem encompasses aspects of the system that share some common property 

– similar functionality, the same physical location, or execution on the same kind 

of hardware. 

A subsystem not an object nor a function but a package of classes, associations, 

operations, events, and constraints that are interrelated and that have a reasonably 

well-defined and small interface with other subsystems. A subsystem usually 

identified by the services it provides. A service is a group of related functions that 

share some common purpose such as I/O processing. A subsystem defines a 

coherent way of looking at one aspect of the problem. 

Each subsystem has a well-defined interface to the rest of the system. The 

interface specifies the form of all interactions and the information flow across 

subsystem boundaries but does not specify how the sub system is implemented 

internally. Each subsystem then can be designed independently without affecting 

the others. 

The decomposition of systems into subsystems may be organized as a sequence 

of horizontal layers or vertical partitions. 

A layered system is an ordered set of virtual worlds, each built in terms of the 

ones below it and providing the basis of implementation for the ones above it. 



The objects in each layer can be independent, although there is often some 

correspondence between objects in different layers. Knowledge is one-way only: 

a subsystem knows about the layers below it, but has no knowledge of the above 

layers. Each layer may have its own set of classes and operations. Each layer is 

implemented in terms of the classes and operations of lower layers. 

Layered architecture comes in two forms: closed and open. In a closed 

architecture, each layer is built only in terms of the immediate lower layer. In an 

open architecture, a layer can use features of any lower layer to any depth. 

We decomposed our system into three subsystems as layers. The three layers are 

closed architecture form. The three layers are GUI layer, Network layer and I/O 

layer. The purpose of GUI layer is to provide an efficient user interface to the 

user to interact with the system. It is built upon the Network layer which provides 

basic FTP services. The lowest layer is the I/O layer that provides services like 

reading or writing file to and from local and remote systems. 

 

 

 

 

 

 

 

GUI subsystem 

N/W subsystem 

I/O subsystem 



When top-level subsystems are identified, the designer should show the 

information flow among the sub systems. There are several architectural 

frameworks that are common in existing systems. They are batch transformation, 

continuous transformation, interactive interface, dynamic simulation, real-time 

system and transaction manager. 

In the architectural frameworks specified above, our system will best suit in 

interactive interface architecture, since there are large number of interactions 

between system and user. 

An interactive interface is a system that is dominated by interactions between the 

system and external agents, such as humans, devices or other programs. The 

external agents are independent of system, so their inputs can’t be controlled, 

although the system may solicit responses from them. 

Identifying Concurrency: 

One important goal of system design is to identify which objects must be active 

concurrently and which objects have activity that is mutually exclusive. The latter 

objects can be folded together in a single thread of control or task. But there is no 

part that is concurrent in our system. 

Allocating Subsystems to Processor: 

In this step system designer estimates the hardware resources required and the 

implementation choice of either hardware or software. In our system all the 



subsystems will be implemented in software. The hardware requirements are 

general such as Pentium – III, 128 MB of RAM. 

Management of Data Stores: 

In this stage the system designer decides what format is used to store the data 

stores. There are DBMS systems or file systems and others. Here in our project 

there are no data stores except files. We then definitely prefer files to download 

and upload. 

Choosing Software Control Implementation: 

During the analysis, all interactions are shown as events between objects. But the 

system designer must choose among several ways to implement control in 

software. There are two kinds of control flows in a software system: internal and 

external. External control is the flow of externally visible events among the 

objects in the system. There are three kinds of control for external events: 

procedure driven, event driven sequential and concurrent. Internal control is the 

flow of control within a process. 

 

 

 

 

 

 



Class Diagram: 

 

 

 

 

 

 



SDLC Methodologies 

This document plays a vital role in the development of life cycle (SDLC) as it 

describes the complete requirement of the system.  It means for use by 

developers and will be the basic during testing phase.  Any changes made to 

the requirements in the future will have to go through formal change approval 

process. 

SPIRAL MODEL was defined by Barry Boehm in his 1988 article, “A spiral 

Model of Software Development and Enhancement.  This model was not the 

first model to discuss iterative development, but it was the first model to 

explain why the iteration models. 

As originally envisioned, the iterations were typically 6 months to 2 years 

long.  Each phase starts with a design goal and ends with a client reviewing 

the progress thus far.   Analysis and engineering efforts are applied at each 

phase of the project, with an eye toward the end goal of the project. 

The steps for Spiral Model can be generalized as follows: 

 The new system requirements are defined in as much details as possible.  

This usually involves interviewing a number of users representing all 

the external or internal users and other aspects of the existing system. 

 A preliminary design is created for the new system. 

 A first prototype of the new system is constructed from the preliminary 

design.  This is usually a scaled-down system, and represents an 

approximation of the characteristics of the final product. 

 A second prototype is evolved by a fourfold procedure: 

1. Evaluating the first prototype in terms of its strengths, weakness, 

and risks. 

2. Defining the requirements of the second prototype. 



3. Planning an designing the second prototype. 

4. Constructing and testing the second prototype. 

 At the customer option, the entire project can be aborted if the risk is 

deemed too great.  Risk factors might involve development cost 

overruns, operating-cost miscalculation, or any other factor that could, 

in the customer’s judgment, result in a less-than-satisfactory final 

product. 

 The existing prototype is evaluated in the same manner as was the 

previous prototype, and if necessary, another prototype is developed 

from it according to the fourfold procedure outlined above. 

 The preceding steps are iterated until the customer is satisfied that the 

refined prototype represents the final product desired. 

 The final system is constructed, based on the refined prototype. 

 The final system is thoroughly evaluated and tested.   Routine 

maintenance is carried on a continuing basis to prevent large scale 

failures and to minimize down time. 

 

 

 

 

 

 

The following diagram shows how a spiral model acts like: 

 



 

Fig 1.0-Spiral Model 

ADVANTAGES: 

 Estimates(i.e. budget, schedule etc .) become more relistic as work 

progresses, because important issues discoved earlier . 

 It is more able to cope with the changes that are software development 

generally entails. 

 Software engineers can get their hands in and start woring on the core 

of a project earlier. 

 



Application Development 

N-TIER APPLICATIONS 

N-Tier Applications can easily implement the concepts of Distributed 

Application Design and Architecture. The N-Tier Applications provide strategic 

benefits to Enterprise Solutions. While 2-tier, client-server can help us create 

quick and easy solutions and may be used for Rapid Prototyping, they can easily 

become a maintenance and security night mare 

The N-tier Applications provide specific advantages that are vital to the business 

continuity of the enterprise. Typical features of a real-life n-tier may include the 

following: 

 Security 

 Availability and Scalability 

 Manageability 

 Easy Maintenance 

 Data Abstraction 

The above-mentioned points are some of the key design goals of a successful n-

tier application that intends to provide a good Business Solution. 

 

DEFINITION 

Simply stated, an n-tier application helps us distribute the overall functionality 

into various tiers or layers: 

 Presentation Layer 

 Business Rules Layer 

 Data Access Layer 

 Database/Data Store 



Each layer can be developed independently of the other provided that it adheres 

to the standards and communicates with the other layers as per the specifications. 

This is the one of the biggest advantages of the n-tier application.  Each layer can 

potentially treat the other layer as a ‘Block-Box’. 

In other words, each layer does not care how other layer processes the data as 

long as it sends the right data in a correct format. 

 

 

Fig 1.1-N-Tier Architecture 

 

 

1. THE PRESENTATION LAYER 

Also called as the client layer comprises of components that are dedicated 

to presenting the data to the user. For example: Windows/Web Forms and 

buttons, edit boxes, Text boxes, labels, grids, etc. 

2. THE BUSINESS RULES LAYER 

This layer encapsulates the Business rules or the business logic of the 

encapsulations. To have a separate layer for business logic is of a great 

advantage. This is because any changes in Business Rules can be easily 

handled in this layer. As long as the interface between the layers remains 



the same, any changes to the functionality/processing logic in this layer can 

be made without impacting the others. A lot of client-server apps failed to 

implement successfully as changing the business logic was a painful 

process. 

3. THE DATA ACCESS LAYER 

This layer comprises of components that help in accessing the Database. If 

used in the right way, this layer provides a level of abstraction for the 

database structures. Simply put changes made to the database, tables, etc 

do not affect the rest of the application because of the Data Access layer. 

The different application layers send the data requests to this layer and 

receive the response from this layer. 

4. THE DATABASE LAYER 

This layer comprises of the Database Components such as DB Files, 

Tables, Views, etc. The Actual database could be created using SQL 

Server, Oracle, Flat files, etc.  

In an n-tier application, the entire application can be implemented in such 

a way that it is independent of the actual Database. For instance, you could 

change the Database Location with minimal changes to Data Access Layer. 

The rest of the Application should remain unaffected. 
 

 

 

 

 

 



Software Testing 

Software testing is a critical element of software quality assurance and 

represents the ultimate reviews of specification, design and coding. Testing 

represents an interesting anomaly for the software. During earlier definition and 

development phases, it was attempted to build software from an abstract concept 

to a tangible implementation. No system is error free because it is so till the next 

error crops up during any phase of the development or usage of the product. A 

sincere effort however needs to be put to bring out a product that is satisfactory. 

 The testing phase involves the testing of development system using various 

data. Preparation of the test data plays a vital role in system testing. After 

preparing the test data, the system under study was tested using those data. While 

testing the system, by using the test data, errors were found and corrected by using 

the following testing steps and corrections were also noted for future use. Thus, 

a series of testing is performed on the proposed system before the system is ready 

for implementation.  

 The various types of testing done on the system are:  

 Integration testing 

 Validation testing  

 Unit testing 

 Output testing 

 User Acceptance testing 



Unit testing: 

 Unit testing focuses on verification effort on the smallest unit of software 

design module. Using the unit test plans prepared in the design phase of the 

system development as a guide, important control paths are tested to uncover 

errors with in the boundary of the modules. The interfaces of the modules are 

tested to ensure proper flow of information into and out of the modules under 

consideration boundary conditions were checked. All independent paths were 

exercised to ensure that all statements in the module have been executed at least 

once and all error-handling paths were tested. 

  Each unit is thoroughly tested to check if it might fail in any possible 

situation. This testing is carried during the programming state itself. At the end 

of this testing phase each module is found to be have an adverse effect working 

satisfactorily, as regard to the expected output from the module. 

Integration Testing: 

  Data can be lost across an interface, one module can on another; sub-

functions when combined may not produce the desired major function: global 

data structures can present problems. Integration testing is a systematic technique 

for the program structure while at the same time concluding tests to uncover 

errors associated with interface. All modules are combined in this testing step. 

Then the entire program is tested as a whole. Each of the module is integrated and 



tested separately and later all modules are tested together for some time to ensure 

the system as a whole works well without any errors. 

Validation Testing: 

 At the culmination of the integration testing, the software is completely 

assembled as a package, interfacing errors have been uncovered and corrected, 

and a final series of software validation testing began. Here we test if the system 

functions in a manner that can be reasonably expected by the customer. The 

system is tested against the system requirement specification. 

Output Testing: 

 After performing validation testing, the next phase is output testing of the 

proposed system, since no system can be useful if it does not produce the desired 

output in the specified format. The output generated or displayed by the system 

under consideration is tested by asking the user about the format required by 

them, here, the output format is considered in two ways: One is on the screen and 

the other is on the printed form. Beta testing is carried output by the client, and 

minor errors that have been discovered by the client are rectified to improve the 

user friendliness of the system. 

 

 



Object-Oriented Testing: 

 

 The overall objectives of the object-oriented testing – to find the maximum 

number of errors with a minimum amount effort – is identical to the to the 

objective of conventional software testing. But the strategy and tactics for OO 

testing differ significantly. The view of testing broadens to include the review of 

both the analysis and design model. In addition, the focus of testing moves away 

from the procedural component and toward the class. 

 Because the OO analysis and design models and the resulting source code 

are semantically coupled, testing begins during these engineering activities. For 

this reason, a review of CRC, object relationships, and object behaviour models 

can be viewed as first stage testing. As a result of this first stage testing, we 

encountered few problems in OOA done at analysis time. We have gone back and 

remodelled with new errorless classes and their relationships. The documented 

model is the revised model of earlier analysis model. 

 Once OOP has been accomplished, unit testing is applied for each class. 

Class testing uses a variety of methods: fault-based, random, and partition test 

methods. Each of those methods exercises the operations encapsulated by the 

class. Test sequences are designed to ensure that relevant operations are 

exercised. The state of the class, represented by the values of its attributes, is 

examined to determine if errors exist. 



 Integration test can be accomplished using a thread-based or use-based 

strategy. Thread-based strategy integrates the set of classes that collaborate to 

respond to one input or event. Use-based testing constructs the system in layers, 

beginning with those classes that do not make use of server classes. Integration 

test case design methods can also make use of random and partition tests. In 

addition, scenario-based testing and the tests derived from behavioural models 

can be used to test a class and its collaborators. A test sequence tracks the flow 

of operations across class collaborations. 

 OO system validation testing is black box oriented and can be 

accomplished by applying the same black box methods known for conventional 

software. However, scenario-based testing dominates the validation of OO 

systems, making the use case a primarily driver for validation testing. 

 

 

 

 

 

 

 

 

 



Conclusion: This Project Report gives us a brief idea about how the Face 

Recognition actually works and how it can be used for a lot of purposes. Working 

on the project was good experience. I understand the importance of Planning and 

designing as a part of software development. But it’s very difficult to complete 

the program for single person. Developing the project has given me some 

experience on real-time development Procedures. 

 

References: 
  
[1] Proyecto Fin de Carrera “Face Recognition Algorithms”, June 16, 2010 [2] 
Peter N. Belhumeur, “ Ongoing Challenges in Face Recognition”.  
[2] Kyong, K. and Jung, K.,” GPU Implementation of Neural Network. Pattern 
Recognition”, vol. 37, no. 6, pp. 1311-1314. Pergamon, 2004.  
[3] Ekman,"Facial action Coding System",COmsulting Psycologistic Press,CA 
1998.  
[4] D. J. Field, “Relations between the statistics of natural images and the 
response properties of cortical cells,” J. Opt. Soc. Amer. A, vol. 4, no. 12,pp. 
2379–2394, Dec. 1987.  
[5] Seyed Medi Lajevadi,Member IEEE,”Facial Expression Recognition in 
Perceptual Color Space” ,IEEE transaction on IMAGE 
PROCESSING,Vol.21,No.8,Aug.2012 

 

 


