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ABSTRACT:

The application of recommendation systems in e-commerce and streaming services has piqued
the interest of many scholars, leading to an influx of research in this field in the past decade.
While the majority of prior research on this field has been done to improve recommendation
system’s performance based on accuracy as the sole performance metric, the roles of other
performance metrics like coverage and novelty have long been realized by researchers [1,2]. As a
result, other performance metrics are increasingly being used for current research.

The aim of this study is to implement three popular recommendation systems and evaluate their
performances using ‘accuracy’, ‘scope’ and ‘similarity’ as evaluation or performance metrics.
Furthermore, a secondary objective of this work is to observe and report any trends or

similarities between the performance metrics based on the results observed.
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1. INTRODUCTION:

Recommendation systems have emerged as one of the more popular tools with growing
popularity of internet marketplace and content streaming services. Large internet companies like
Amazon, Google and Netflix all use their highly sophisticated recommendation systems to
improve user experience and ensure higher visibility of certain products. A recommendation
system can be defined as a model that constantly trains itself and provides a set of
recommendations to users based on their previous interactions with the system [3]. One of the
most popular techniques used in design of recommendation systems is collaborative filtering.
Collaborative filtering technique makes recommendations based on similarities between users’
interests from the ratings provided by the users to items [4]. Collaborative filtering models can
be user-based, item-based or hybrid in nature. This has been discussed further under experiment
section.

In order to evaluate recommendation systems implemented by different methodologies, three
different systems have been implemented. First model is an item-based K-Nearest Neighbours
model that has been implemented using machine learning technique, the second model is an
item-based collaborative filtering model and the third model is a user-based collaborative
filtering model. Both collaborative models are memory-based systems.

The evaluation metrics used in this study are accuracy, scope and similarity. Accuracy and scope
are commonly used evaluation metrics for recommendation systems and ideas of similarity
between recommended items has been proposed in earlier studies [1,2]. However, this study
proposes a different method for calculation of degree of similarity between recommended items.
The proposed similarity metric uses attributes like type of content- TV show, movie etc., number
of episodes and number of ratings to provide a similarity score to all items in the dataset.

The datasets used for this work have been collected from www.myanimelist.net, one of the most
popular anime aggregator websites, by user CooperUnion and have been made publicly available
on Kaggle under CCO: public domain license. The reason behind the selection of these datasets
is that despite the increasing popularity of anime in current popular culture, not much work has
been done on anime recommender systems. Two datasets have been used for the study- an anime

dataset and a user ratings dataset. The anime dataset contains data about 12,294 anime shows and
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movies based on the following attributes: “name”, “anime_id”, “genre”, “episodes”, “type”,
“rating” and “members”. Similarly, the user ratings dataset contains the user ratings provided by
over 73000 users for anime in the previous set. It contains the following attributes: “user id”,
“anime id” and “rating”. The detailed description of both datasets has been given under the
experiments section.

According to Wikipedia, “Anime is a hand-drawn and computer animation originating from
Japan. The word anime is the Japanese term for animation, which means all forms of animated
media. Owing to rapid growth of distribution platforms like Crunchyroll, Daisuki, Netflix,
Amazon, among others, Japanese anime has found remarkable number of new takers. The live
entertainment and internet streaming of such content has led to a substantial rise in international
distribution of Japanese anime. Thus, internet distribution has become the most reliable and
lucrative route for its distribution across the globe.

The recommendation systems implemented in this project are content recommendation systems,
that recommend content to users based on their interests, or in case of user-based
recommendation systems based on interests of similar users. From here on the terms item anime
and content have been used interchangeably, due to the former being the formal term for research
in recommendation systems and the later being the type of item being recommended.

The experiment section of this paper discusses the recommendation models, evaluation metrics
and datasets in detail. The implementation of each recommendation system has been discussed
under the models subsection in the experiment section, the evaluation metrics and the
methodology of calculations of these metrics have been discussed under evaluation metrics and
methods subsection under the experiment section.

The results and discussion section contains observed results from the study in form of graphs and
tables and discusses the conclusions derived from these results in details.

The future work section provides suggestions for future studies based on the results and

conclusions derived from this study.
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2. Literature Review:

[1.] “Improving Recommendation Lists Through Topic Diversification” by Ziegler et. al.

The study is based on the premise that the use of accuracy as a sole metric for evaluation of
performances of recommendation systems is not very effective and masks some inherent flaws of
recommendation systems such as recommendations not being completely based on user interests.
This research focuses on the concept of diversification in evaluating recommendation systems
using metrics like novelty and coverage in addition to the more popular accuracy metric, the
paper also presents intra-list similarity as a new metric for evaluation for recommendation
systems. After using the proposed metrics to assess user-based as well as item-based
recommendation systems it was concluded that though the results of diversification were not
very effective on user-based systems, the performance of item-based systems could be improved

significantly, and suggested finding the right trade-off between accuracy and diversification.

[2] “ Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems” by Saul
Vargas and Pablo Castells

The study builds upon the work done above study and others and aims to establish a clear
common methodological and conceptual ground between various metrics for evaluation of
recommendation systems. It proposes ‘discovery’, ‘choice’ and ‘relevance’ as three factors in

relationship between users and items, and discusses item discovery and diversity.

[3] “Toward the next generation of recommender systems: a survey of the state-of-the-art and
possible extensions” by Adomavicius G. and Tuzhilin A., IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 6, pp. 734-749, June 2005.

This paper discusses various state-of-the-art recommendation systems, their developments,
discusses limitations of each of these systems and suggests measures to improve their

performances.
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3.Methodology Adopted:

This study was conducted to compare the performances of three animated show recommendation
system models on basis of three metrics- accuracy, scope and similarity. The metrics can be
defined as:
I.  Accuracy- the degree of precision in recommending content based on item attributes or
user interests.
ii.  Scope- the percentage of content recommended from entire dataset.
iii.  Similarity- the degree of similitude or likeness between various items within the

recommended content.

The three recommendation system models used for the study are:
i.  Anitem-based recommendation system based on K-nearest-neighbours regression
algorithm.
ii.  Anitem-based collaborative filtering model.

iii. A user-based collaborative filtering model.

Collaborative filtering technique makes recommendations based on similarities between users’
interests from the ratings provided by the users to items. Item-based collaborative filtering
recommends items to users based on the similarity between these items and the items that user
has interacted with or rated in the past. User based collaborative filtering finds similar users
based on their mutual likes or dislikes and recommend items to a particular user based on items
liked by similar users. All three recommendation systems used in the study are top-n

recommendation systems. These models have been discussed in below.

3.1 Data Collection and Dataset Used:

The datasets used for the study have been collected from anime aggregator Myanimelist.net by
user CooperUnion and have been made publicly available on Kaggle under CCO: public domain
license. Two datasets have been used for the study- an anime dataset and a user ratings dataset.
The anime dataset contains data about 12,294 anime shows and movies based on the following
attributes:

(a)anime_id- a unique id for each anime.
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(b)name- title of the anime.

(c)genre- genre of the anime, an anime can have multiple genres.
(d)type-type of anime such as TV, OVA, special, musical or movie.
(e)rating-average rating out of 10 for the anime

(ffmembers- number of community members in an anime’s group.

(9)episodes-the number of episodes in the anime.

Similarly, the user ratings dataset contains the user ratings provided by over 73000 users for

anime in the previous set. It contains the following attributes:
(a) user_id — a unique user id for each user.

(b) anime_id- the anime that the user has rated and,

(c)rating- user rating from 1 to 10 and -1 if user has seen the anime but not assigned the rating.

Due to restrictions in hardware capability here we have used data for 10000 users containing

over a million ratings.

A B C D
anime id  name genre type
32281 Kimi no Na wa, Drama| Romance| School| Supernatural Movie
5114 Fullmetal Alchemist; Brotherhood Action| Adventure| Drama| Fantasy| Magic| Militar'y| Shounen TV
28977 GintamaA® Action| Comedy| Historical| Parody| Samurai| Sci-Fi| Shounen TV
9253 Steins;Gate Sci-Fi| Thriller v
11061 Hunter x Hunter (2011) Action| Adventure| Shounen| Super Power v
21469 Stand By Me Doraeman Comedy| Kidls| Sci-Fi| Shounen Movie

Figure 1. A sample of Anime Dataset

A B C

user id anime_id rating
5496 32013 8
5496 32093 6
5496 32542 8
5496 32828 -1
5497 16 8
5497 44 7
5497 45 -1
5497 46 9
5497 47 7
5497 53 8
5497 101 7

Figure 2. A sample of User Ratings Dataset

E

F

episodes rating

1
64
51
L

148

9.37
9.26
9.25
9.17
9.13
8.12

G
members
200630
793665
114262
673572
425855
5712
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3.2 Models Used:

3.2.1 KNN regression-based recommendation system:

Upon analyzing the anime dataset, it can be assumed that out of all attributes for each anime
‘genre’ and ‘members’ attributes have a significant impact on an anime’s average rating whereas
the attributes ‘type’ and ‘episodes’ do not have a direct relation with the average rating of an
anime. This assumption can be explained based on the empirical evidence that anime that
contained ‘action’ as their major genre had an average rating of 6.7 whereas anime that had
‘kids’ as their primary genre scored only 5.5 on average. The attribute ‘members’ relates to the
popularity of an anime, therefore, it can be assumed that anime with more members will tend to
have a higher average rating, whereas the attributes ‘type’ do not directly impact the average
ratings as both movies and show can have high as well as low ratings, and movies can only have
1 episode despite being rated highly.

KNN regression-based recommendation system model is an item-based, machine learning model
that uses k-nearest neighbors regression algorithm to predict the likely rating of an anime. Based
on the predicted average rating for an anime, the model produces top-n recommendations having
average ratings in the neighborhood of predicted ratings.

The anime dataset contains content from 44 genres. Therefore, implementing a model based on
genre as a factor requires 43 dummy variables for genres. This can lead to high dimensionality of
data which affects the robustness and accuracy of the model. In order to counter this, we use a
method proposed by the BellKor team during the Netflix prize competition [5,6]. It was proposed
that only the top-n most frequently occurring genre are used. In this study, top 15 most
frequently occurring genres were considered.

The independent variable set X contains ‘members’ attribute and 15 dummy variables for the
top-15 genres and the dependent variable set y consisted of the ‘rating’ attribute. Here n variables
have been used instead of n-1, as the value of a variable cannot be predicted based on set of n-1
values.

X= {‘members’, ‘Comedy’, ‘Action’, ‘Adventure’, ‘Drama’, ‘Mature’, ‘Fantasy’, ‘Kids’,
‘Music’, ‘Dementia’, ‘Historical’, ‘Mecha’, ‘Slice of life’, ‘Romance’, ‘Demons’, ‘Sci-fi’}

Y={‘ratings’}

15



After separation of independent and dependent variables, the dataset is split into training and
testing sets. A ratio of 80:20 for training and testing set has been used for this study. The
resultant variable sets are X_train, X_test, y_trainand y_test. Upon the separation of training
and testing sets, feature scaling is performed on the independent variable-sets X_train and
X_test, so all the values are scaled between -1 to 1. Finally, the regressor is trained on training
data and the model is ready. The vector y_pred is used for storing predicted ratings on the test
data.

This recommendation system is a top-n recommendation system. The recommendations for an
item ¢, produced by this system, are based on the distance between the predicted rating for ¢ and
actual values of ratings for other items in the dataset.

For evaluation of this model- accuracy, scope and similarity metrics have been applied to the
model. The results of evaluation are discussed in the results section.

3.2.2 Item-Based Collaborative Filtering Model:

The Item-based collaborative filtering model is memory-based recommendation system model

that uses collaborative filtering technique to recommend items from item set C related to an item
ci, such that the top-n items having highest correlation with ci are recommended. For calculation
of correlation between items Pearson’s correlation coefficient (p) has been used. The formula for

PCC for a pair of random variables X and Y is given by

Yy = Cov(X,Y)

Where:

Cov (X, Y) = covariance px is standard deviation of X

py is standard deviation of Y

For data cleaning, all unused tuples where the user has not watched and rated any content and all
columns representing items that have not been rated by any users are removed. This removes
most of the runtime errors as correlation on an empty matrix consisting only of nan values cannot
be calculated. This model makes use of the anime dataset as well as the user ratings dataset to

create a user-item matrix Mui: Mui = [U * C], where U is the set of all the users and C is the set of

16



all the items. This matrix stores the value of the rating provided by a user u, to an item ¢ for all u
inUandallcinC.
Mui[][j] = rating provided by the user ui to the item c;
To generate recommendations from item-set C for a particular item, say ci, a correlation vector
Ri is created which stores the correlation of ¢ with all the other items in item-set C. This can be
written as:

Riljl =pcic, Ve, €C
After generating the correlation vector R, the top n items having highest correlation with item c;
can be produced. This may lead to the system recommending some content that has high
correlation with item c;, but is not rated by many users. This may affect the accuracy of the
system. Therefore, a final filter is applied where the system filters out the content which has not
been rated by more than n users. In this study this n is taken as 100.
This model is evaluated on the basis of accuracy, scope and similarity. The results of these

evaluations have been discussed under the results section.

3.2.3 User-Based Collaborative Filtering Model:

Similar to the previous model, the user-based collaborative filtering model is a memory-based
recommendation system and is more computationally intensive than the K-NN regressor based
model. The model uses collaborative filtering technique to find the users in user-set U, having
similar interests as a particular user ui. Again, similar to the previous model Pearson’s
Correlation Coefficient is used for calculating the correlation. The formula for PCC is discussed
in the previous system.

In data pre-processing, all unused tuples for items that have not been rated by any user and all
columns representing users that have not rated any movie are removed. This reduces dimensions
of user-item matrix to be formed and provides better accuracy.

Like the item-based recommendation model, this model also uses both the anime and user ratings
datasets. This model creates an item-user matrix Miy: Miy= [C * U] where C is the set of all the
items and U is the set of all the users. This matrix stores the values of the ratings provided to an
item ¢ by a user u for all u in U and for all ¢ in C.

My, [i][j] = rating r provided to the item c; by user u;

17



To generate recommendations from user set U for a particular user uj, a correlation vector Rui is
created which stores the correlation of user u; with all other users in user-set U. This is denoted
as:

R,i[jl = pu;,u;Vu; €U

Upon generating the correlation vector Ry, a set Usim Of top-n users with highest correlation
coefficient values when correlated with user u;jcan be obtained. Merging this set with user ratings
dataset on ‘user_id’ the dataset ‘Usim-item dataset’ of all items rated by the top n similar users
(denoted by usim) is obtained. A question that arises now is in regards to the process that should
be used to recommend top-m content based on interests of top-n similar users. The solution
proposed here is using a recommendation score metric. The recommendation score for each tuple
in Usim-item dataset is given by multiplication of rating provided by user usimto an item c; and the
correlation between the users u; and usim. This metric is not an indicator of the quality of an item
ci, but provides a ranking order for top-m items. An item chigh having a high value of this metric
indicates that it has been highly rated by a user usim-nigh Who is also highly correlated with user ui.
After this the average recommendation score for each item in Usim-Item dataset is calculated, as
some items may have been ranked by multiple users usim. The number of times an item appears
in Usim-item dataset is also counted; this is another important metric that indicates the number of
similar users who have watched the item/content. An item with high frequency in Usim-item
dataset indicates that high number of people have watched the content and therefore, if its
recommendation score is high, it is likely to be recommended.

To recommend a list of top-m items based on top-n users, the top m*n contents having highest
frequencies in Usim-item dataset were filtered out first. From this list, another list containing top-

m items with highest recommendation scores is produced.
Recommendation Score(ci,usimj) = Rating(cl-,usimj) * P U, UsimJ

This recommendation system is evaluated on basis of accuracy, scope and similarity. The results

of these evaluations have been discussed under the results section.
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3.3 Evaluation Metrics Used:

Like any other study, evaluation of the models helps not only in determining the consistency,
robustness and precision of the models, but also the inaccuracies and scope for future
development. Therefore, it becomes necessary that the models are evaluated using multiple and
meaningful metrics. Accuracy is the most widely used evaluation metric on recommendation
systems but it presents an incomplete picture upon which the models should be evaluated. For
example, accuracy does not take into account the diversity or similarity of items recommended
by a system or what fraction of items out of all the items are ever recommended. This may lead
to an inefficiency where the recommendations are not up to the user’s interests. Therefore, we
use two additional metrics- scope and similarity.

(a)Scope- the percentage of shows in a sample set that are recommended by a recommendation
system.

(b)Similarity-the degree of similarity between the recommended items.

Since the study uses two item-based recommendation systems and one user-based
recommendation system, same sample cannot be used to compare all the models on all metrics.

However, in order to maintain consistency in the experiments both item-based recommender

systems have been evaluated on same item samples and a different user sample has been used for

user-based recommendation system.

Moreover, the K-NN regressor model is a machine learning model, capable of high throughput,
whereas, the collaborative filtering models are memory-based models and take some time in
making each recommendation. During the data pre-processing phase, a lot of users and items
having sparse or empty vectors have been cleaned out to increase efficiency. To avoid
unexpected results and runtime errors, evaluation has not been performed on entire dataset in
case of both collaborative filtering models. However, results for entire dataset are provided for

KNN based model along with its sample results.

3.3.1 Accuracy:

Accuracy measures the precision in recommending an item based on an item attribute or user

interests. Accuracy is given by:

19



MAEP
100

Accuracy = (1 — ) * 100

Where:
MEAP- Mean Absolute Error Percentage
For a set of n operations:

n
MAEP = 1[ Kvalueactual— valueobserved)l
n

i=1

1% 100
valueactual

In KNN regressor system MAEP is calculated for each item cjusing the mean of ratings of top 5
recommendations as observed value and average rating of ¢; as actual value.

In Item-based collaborative filtering model MAEP for each item c; is calculated using mean
rating of recommended contents as observed value and average rating of c; as actual value. In
user based collaborative filtering model MAEP for each user is calculated using mean
recommendation score for each item c; as observed value and rating of item c; as actual value.
The size of sample set of items used for comparison of item-based recommendation systems is
100. Similarly, the size of sample set of users used for comparison of user-based

recommendation systems is 100.

3.3.2 Scope:

Scope metric indicates the ability of a recommendation system to make diverse predictions.
Scope is the percentage of items in the scope set that have been recommended at least once while
producing recommendations for items in test set. For a top-n recommendation system if the test
set size is X, then size of scope set should ideally be n*x. This study takes the value of n as n=5,

test set size = 100 and scope set size=500.

3.3.3 Similarity:

Similarity metric indicates likeness between items in the set of recommended items. Having a
very high similarity value between the recommended items means the recommended items are
alike in nature. For calculation of similarity between recommended items, ‘similarity score’
metric is introduced. Earlier it has been discussed how some attributes in the anime dataset, like

‘type’ and ‘episodes’, do not impact average ratings of items/content. However, these attributes
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can be used to determine similarity between recommended items. For calculation of similarity
scores across anime dataset, another KNN regressor model is created. This model takes
‘members’, ‘episodes’ and a dummy variable set containing five variables for ‘type’, as its
independent variables. Average ratings are taken as dependent variable. After obtaining
similarity scores calculations are performed as follows:

Assume a sample set S of m users/items (ui/ci). For each user/item a set of recommended items
Srec IS generated containing top-n recommended items denoted as crec. NOw, similarity scores for
each recommended item are obtained by the intersection, Srec N anime dataset on ‘user id. Now
mean value of similarity in Srec, denoted by prec, is calculated. Absolute deviation from mean prec
for each item crec is calculated in recommended set Srec @S | Jrec- Crec|, fOr all Crec in Srec. Now

percentage mean deviation is calculated for each item as:

| Hrec — Crecl

percent mean deviation = ( ) * 100

IJ'I'EC

Average of percent mean deviation for all items in a sample set is calculated. Similarity% is

given as:

Similarity % = 100 — average percentage mean deviation

Now average similarity% is calculated for Set S.
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4. Experiment:

In this section major steps in the implementation of each recommendation system have been
discussed in detail, along with relevant figures and tables. The models have been implemented in
python, using spyder IDE. This section uses various python modules such as NumPy. Pandas,
Matplotlib, Scikit-learn and Seaborn. The section also shows the methods used for collection of
results to evaluate each Recommendation System.

4.1 Implementation of Models:

4.1.1. The KNN Regressor based recommendation system:

The first step for implementing KNN Regressor based system is to import the relevant libraries.
NumPy, Pandas and Matplotlib libraries have been used in this model. After implementing the
libraries, the anime dataset is imported as anime_df. Now pre-processing and cleaning of data is
performed using the fillna() and dropna() methods of pandas module. In the data cleaning step,
we remove the anime where average ratings, genre are not available, as these attributes are

crucial in this model.

anime_df - DataFrame
Index anime_id name genre pe episodes  rating members

10886 32557 Zombie Clay Animation: I&#@39;m Stuck!!
30089 Zombie Clay Animation: Life of the Dead Comedy| Horror
30090 Zombie Ehon Comedy
10889 13167 Zoobles! Kids
10890 11097 Zou no Inai Doubutsuen Drama Movie
10891 11095 Zouressha ga vatte Kita Adventure Movie

10892 |[78e8 Zukkoke Knight: Don De La Mancha Adventure| Comedy| Historical| Romance ™

Zukkoke Sannin-gumi no Hi Asobi Boushi

893
10893 28543 Daisakusen

Drama| Kids

10894 18967 Zukkoke sannin-gumi: Zukkoke Jikuu Bouken comedy| Historical| sci-Fi

10895 13455  Zumomo to Nupepe Comedy

Action| comedy| Historical| Parody| Samurai|
Sci-Fi| shounen

Action| comedy| Parody| sci-Fi| seinen]|
Super Power| supernatural

10896 34096 Gintama (2017) unknown 13383

10897 34134 One Punch Man 2 ™ Unknown 20706

10898 30484  Steins;Gate @ sci-Fi| Thriller nan unknown 60999

10899 25777 shingeki no Kyojin Season 2 Action| Drama| Fantasy| Shounen| Super Power TV unknown 170054

Action| Drama| Mecha| military| Sci-Fi]

nan Unknown 22748
Super Power

10900 34437 Code Geass: Fukkatsu no Lelouch

10901 33486  Boku no Hero Academia 2nd Season Action| Comedy| School| Shounen| Super Power TV Unknown 46892

Figure-3: Figure showing the dataset anime_df before data cleaning
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anime_df - DataFrame

Index

10891

10892

10893

10894

10895

11114

11115

11116

11117

11118

11119

11120

11121

anime_id
11@95
7808
28543
18967
13455
11879
29575
15843
21097
2238
10779
10380

25345

name
Zouressha ga Yatte Kita

Zukkoke Knight: Don De La Mancha

Zukkoke sannin-gumi no Hi Asobi Boushi
Daisakusen

Zukkoke Sannin-gumi: Zukkoke Jikuu Bouken
Zumomo to Nupepe

Oni Chichi: Re-born

Mankitsu Happening

Koiito Kinenbi The Animation

Ooni Chichi: Rebuild

Fuyu no Semi

Eroge! H mo Game mo Kaihatsu Zanmai

Oni Chichi: Re-birth

Rance @1: Hikari wo Motomete The Animation

genre episodes

type
Adventure Movie 1
Adventure| Comedy| Historical| Romance v

Drama| Kids

Comedy| Historical| sci-Fi

Comedy

mature

mature

mature

mature

Historical| Romance| Samurai| Yaoi

Drama|

mature
mature

Fantasy| mature| Magic

rating

members

78

172

50

76

120

11122 22069 Swing Out Sisters (2014) mature

11123 8634 Koisuru Boukun Comedy| Romance| Yaoi

Figure-4 showing the dataset anime_df after cleaning

After data cleaning re-indexing is performed using the reset index() method. One of the attributes
that has a direct impact on average ratings is “genre”. The anime dataset contains content from
44 genres. Therefore, implementing a model based on genre as a factor requires 44 dummy
variables for genres(usually n-1 dummy variables are taken, but in this case the last attribute is
not dependent on other attributes as multiple genres can exist for one item). This can lead to high
dimensionality of data which affects the robustness and accuracy of the model. In order to
counter this, we use a method proposed by the Bellor team during the Netflix prize competition
[5,6]. It was proposed that only the top-n most frequently occurring genre are used. In this study,

top 15 most frequently occurring genres were considered.

top_15_genre_list - Index

ur

Figure-5:Figure showing the top-15 most frequent genres.
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The next step consists of populating these dummy variables.

The independent variable set X contains ‘members’ attribute and 15 dummy variables for the
top-15 genres and the dependent variable set y consisted of the ‘rating”’ attribute. Here n variables
have been used instead of n-1, as the value of a variable cannot be predicted based on set of n-1
values.

X= {‘members’, ‘Comedy’, ‘Action’, ‘Adventure’, ‘Drama’, ‘Mature’, ‘Fantasy’, ‘Kids’,
‘Music’, ‘Dementia’, ‘Historical’, ‘Mecha’, ‘Slice of life’, ‘Romance’, ‘Demons’, ‘Sci-fi’}

Y={‘ratings’}

X - NumPy object array - [ul

179342

Figure-6:Figure showing the independent variable set X.

y - NumPy object array
Figure-7:figure showing the dependent variable set y
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After this we split the data set into training and testing sets using train_test_split() method of
scikit-learn’s model-selection library.

A ratio of 80:20 for training and testing set has been used for this study. The resultant variable
sets are X_train, X_test, y_train and y_test. Upon the separation of training and testing sets,
feature scaling is performed on the independent variable-sets X_train and X_test, so all the
values are scaled between -1 to 1.

X_train - NumPy object array -

1

-8.78341

1.27647

1.27647

1.27647

1.27647

-8.78341

1.27647

1.27647

1.27647

A 2] 04 1.27647 L] a _0 @ 5 3 05 _0.27283

Figure-8: Figure showing the X_train DataFrame after feature scaling

Finally, the KNN regressor model is fit into the training set using KNeighborsRegressor()
method of scikit-learn. Here we use algorithm= ‘auto’, leaf size=30, and metric= ‘minkowski’.
Now rating values for the test set are predicted using predict() method.

y_test - NumPy object array y_pred - NumPy object array

Format Resize Background « Format Resize Backgroun

Figure-9:Figure showing the predicted and actual values of y.
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For recommending content distance attribute is introduced, for each item the set of recommended
content will have the least value of distance from the predicted value of the said item.

The getNeighbors() function has been implemented to produce recommended results for any
given item. It takes the following attributes:

n= number of required recommendations, item= the items for which recommendations are

produced. Matrix- the dataset used for recommendations.

For the anime ‘Nano Invaders’, recommendations produced are:

9633 27943 Nano Invaders Action| Adventure| Shounen| Super Power

Value of y_pred[21] =7.35

recommended items - DataFrame
Index  anime_id name genre type  episodes rating members

PARE] 16417  Tamako Market comedy| Slice of Life v 12 .35 128529
2116 11777  Lupin III: Chi no Kokuin - Eien no Mermaid Action| Adventure| Comedy| Shounen Special 1 .35 3069

2115 32245  Kuromukuro Action| Mecha| Sci-Fi v 6 .35 46323

2114 1516 KirarinyrRevolution Comedy| Drama| Romance| Shoujo v 15 .35 14932

PARE] 3272 Kinnikuman Adventure| Comedy| Shounen| Sports Tv 1 .35 3623

Figure 10(a) showing the anime for which recommendations are made, figure10(b) shows set of
recommended shows.
Here we can observe that since this recommendation system finds the top-n shows with closest

ratings to the predicted rating of anime, all 5 recommendations have the rating of 7.35.

Similarly, we can make more than 5 predictions by increasing the value of n.

For n=10, the same anime gives following recommendations:
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recommended_itemns - DataFrame
Index  anime_id name genre type  episodes rating

2133 16417  Tamako Market Comedy| Slice of Life v 12
11777  Lupin III: Chi no Kokuin - Eien no Mermaid Action| Adventure| Comedy| Shounen Special 1

32245  Kuromukuro Action| Mecha| Sci-Fi v

1516 KirarinytRevolution Comedy| Drama| Romance| Shoujo v

3272 Kinnikuman Adventure| Comedy| Shounen| Sports v
3245 Kindaichi Shounen no Jikenbo Specials Mystery| Shounen Special :

3229 Kimi ga Aruji de Shitsuji ga Ore de Comedy| Ecchi| Harem| Parody| Romance v

Mobile Suit Zeta Gundam: A New Translation - as . s .
1967 ¢ _1 i s Satio Drama| Mecha| Military| Sci-Fi| Space Movie
Heir to the Stars

Kazoku Robinson Hyouryuuki: Fushigi na Shima

2544
no Flone

Adventure| Drama| Historical| Slice of Life TV

Hunter x Hunter Movie: The Last Mission Action| Adventure| Shounen| Super Power Movie 1

Figure10(c) shows the set of recommended content for n=10.

In the next section we will discuss about the item-based recommendation system.

4.1.2 Item-Based Recommendation System using Collaborative Filtering:

In this section, we will implement our second recommendation system model which is based on
item-based collaborative filtering technique. In item-based collaborative filtering, the ratings data
for multiple items are combined to find the items that were similarly rated by some users, once
we find a set of similar items these items can be recommended to users who have not used both
items.

The first step for building a recommendation system is to import the libraries. For this system,
NumPy, Pandas and Matplotlib libraries have been used. The next step is to import both the
anime and user_ratings datasets as anime_df and ratings_df. Now these two datasets are cleaned
to remove any users who have not rated any content or any content which has not been rated yet.
Since, this model is memory based, we now create an anime_user_matrix which contains ratings

provided by the users to the anime. This is done using the pivot_table() method.
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show_pivot - DataFrame

user_id Stocking i Stocking v ### Pisto ###frient Gaiden: S1 en: Sugoi ¢ Sailor S¢ uot;0&qu nashi yori: &quot; Ky 1 Shoujo& w Shoujo

n nan nan nan nan nan nan nan nan nan nan nan
nan nan nan nan nan nan nan nan n nan nan
nan nan nan nan nan nan nan nan nan nan
nan nan nar nan nan nar nan nan nan nan
nan nan nan nan nan nan nan nan
nan nan a nan nan a nan nan a nan nan
nan nan nan nan nan nan nan nan
nan nan nan nan nan nan nan nan
nan nan nan nan nan nan nan nan
nan nan nan nan nan nan a nan nan
nan nan a nan nan a nan nan a nan nan
nan nan nan nan nan nan nan nan
-1.00 nan nan nan nan nan nan nan

nan nan nan nan nan nan nan 8.00

nan nan nan nan nan nan a nan nan

Figure 11: the pivot table is a sparse matrix containing all users ratings for all shows, here nan
means the show has not been rated by the user and -1 means the show has been seen, but no
rating has been provided.

The Item-based collaborative filtering model is memory-based recommendation system model
that uses collaborative filtering technique to recommend items from item set C related to an item
ci, such that the top-n items having highest correlation with ci are recommended. For calculation
of correlation between items Pearson’s correlation coefficient (p) has been used. The formula for

PCC for a pair of random variables X and Y is given by

Yy = Cov(X,Y)

Where:

Cov (X, Y) = covariance px is standard deviation of X

py is standard deviation of Y
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In order to produce recommendations of items similar to a given item getSimilarltems() method
has been implemented. This method takes the following parameters:

n= number of recommendations to be produced

item- the item for which recommendations have to be made

matrix- the matrix userid_anime_matrix.

For example, if top 10 recommendations for the show “Stiens; Gate” have to be produced, the

function call is:

getSimilarltems(10,'Gintama’, userid_anime_matrix)

28977 Gintama® 51 9.25 114262

The list of recommended items is:

recommended _item_list1 - DataFrame
name Zorrelation:  count

Gintama 1.00 4974.00
Ojamajo Doremi Na-i-sho @.97 135.00
Waga Seishun no Arcadia .97 .00
Elf no Wakaokusama SE .00
Green Legend Ran -2 .00

Oseam o .00

Samurai Spirits: Haten Gouma no Shou . .80

Hyakuijitsu no Bara: Jinginaki Nikukyuu-hen - 53.00
Ys: Tenkuu no Shinden - Adol Christine no Bouken | @. .00

Puchimas!!: Petit Petit iDOLM@STER . .00

Harlock Saga: Nibelung no Yubiwa

Figure 12(a) showing the anime for which recommendations are made, figure12(b) shows set of

recommended shows.
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Similarly, if we require 5 recommendations for the same anime we call:

getSimilarltems(5,'Gintama', userid_anime_matrix)

recommended_item_list1 - DataFrame
name orrelation:  count

Gintama 1.00 4974 .00

Ojamajo Doremi Na-i-sho ||@.97

Waga Seishun no Arcadia | @-97

Elf no Wakaokusama .97
Green Legend Ran

Oseam

Figure12(c) for n=5

4.1.3 User Based Collaborative Filtering Model:

In this section, we will implement our third recommendation system model which is based on
user-based collaborative filtering technique. Similar to the previous model, the user-based
collaborative filtering model is a memory-based recommendation system and is more
computationally intensive than the K-NN regressor based model. The model uses collaborative
filtering technique to find the users in user-set U, having similar interests as a particular user ui.
Again, similar to the previous model Pearson’s Correlation Coefficient is used for calculating the
correlation. The formula for PCC is discussed in the previous system.

The first step for building a recommendation system is to import the libraries. For this system,
NumPy, Pandas and Matplotlib libraries have been used. The next step is to import both the
anime and user_ratings datasets as anime_df and ratings_df. Now these two datasets are cleaned
to remove any users who have not rated any content or any content which has not been rated yet.
Since, this model is memory based, we now create an anime_user_matrix which contains each

user’s ratings for the anime he/she has rated. This is done using the pivot_table() method.
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. B die>
: anime_rating_df=pd.merge(anime_df,rating_df, on='anime_id")

.: anime_rating_df.groupby('user_id')[ 'rating_y'].describe()

count mean std

user_id
4,
1.

.0oeeee .©000ee
.beeeoe HEN

9.
459.

NaN N EN
.3551280 .381293

1 e
p e
3 92.0 .565217 .549933
4 e
5 e

lee89 176. .357955 .87685@
leege 24. .250000 .73721e
10691 37. .270270 .017859
lee92 79. .493671 .023736
lee93 11e. .118182 .098221

[18893 rows x 8 columns]

-

Figurel3: Description of each user’s ratings, containing number of ratings, mean of ratings,

percentile ratings etc.

Now average rating provided by each user and the number of ratings provided by each user are
stored as ratings_df _mean and ratings_df _count respectively. These dataframes are now

combined to form ratings_df_mean_count dataframe.

ratings_df_mean - ! ratings_df_count -
user_id mean user_id  count

10.00 4.00
18.00 ; 1.00

7.57




ratings_mean_count_df - Data

user_id mean count

10.00 1.00

10.00 1.00

TS

Figuresl4(a) showing ratings_df mean dataframe, 14(b) showing ratings_df count dataframe

and 14(c) showing ratings_df_mean_count dataframe

In order to produce a list of users similar to a given user getSimilarUsers() method has been
implemented. This method takes the following parameters:

n= number of similar users to be found

user- the user for which similar users have to be found

matrix- the matrix userid_anime_matrix.
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similar_user list - DataFrame

user_id orrelation count

10072 1.00 589.00

.00 672.00

1.00 .00

1.00 .00

1.00 52.00

.00 .00

1.00 51.00

1.00 51.00

1.00 .00

1.00 .00

Figurel5: Figure showing ten similar users for user id=10
Here it is possible to find many users with perfect correlation as user 10 has only rated three
items, so anyone among the 10000 users rating same items as user 10 and giving them the same

ratings can achieve perfect correlation.

To generate recommendations from user set U for a particular user uj, a correlation vector Ryi is
created which stores the correlation of user u; with all other users in user-set U. This is denoted
as:

R,iljl = puj,u;Vu; €U

Upon generating the correlation vector Ry, a set Usim Of top-n users with highest correlation
coefficient values when correlated with user u;jcan be obtained. Merging this set with user ratings
dataset on ‘user id’ the dataset ‘Usim-item dataset’ of all items rated by the top n similar users
(denoted by usim) is obtained. A question that arises now is in regards to the process that should
be used to recommend top-m content based on interests of top-n similar users. The solution

proposed here is using a recommendation score metric. The recommendation score for each tuple
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in Usim-item dataset is given by multiplication of rating provided by user usimto an item c; and the
correlation between the users ui and Usim.

The function recommend_Anime_list() is used to generate a list of recommended items for a
user. It takes the following parameters:

number_recommended = number of similar users to be found

n= number of anime to be recommended

user- the user for which recommendations have to be produced.

matrix- the matrix userid_anime_matrix.

For user 10 on userid_anime_matrix to get a list of 10 recommended anime using 10 most
similar users we call:
recommended_anime_listl=recommendAnimeL.ist(10,10,userid_anime_matrix[10],userid_anim
e_matrix)

recommended _anime list1 - DataFram

anime_id  count mean

5114 10.00  9.50

9253 7.00 9.43

2904 8.00 9.12

11061 .00 9.00

1575 .00 .00

12355 5.00 .80

18115 .00 .71

11771 .00 .71

16894 .00 .67

19815 . .62

Format Resize Background color

Figure-16:Recommendation list in User-Based Recommendation System

But this does not show the names of recommended anime, therefore we map the following list
with anime_df on anime_id to get the names of the anime:

For this purpose a new function recommendAnime() is created, it takes the following parameters:
number_recommended = number of similar users to be found

n= number of anime to be recommended

user- the user for which recommendations have to be produced.

34



matrix- the matrix userid_anime_matrix.

Using the recommendAnime() function on the same user with same parameters we get:

recommended_anime _list1 - DataFrame

Index anime id count mean name rating

10.00 9.50 Fullmetal Alchemist: Brotherhood
7.00 ). Steins;Gate
.00 . Code Geass: Hangyaku no Lelouch R2
.00 - Hunter x Hunter (2011)
.00 o Code Geass: Hangyaku no Lelouch
.00 . Ookami Kodomo no Ame to Yuki
.00 . Magi: The Kingdom of Magic
11771 .00 - Kuroko no Basket
16894 .00 o Kuroko no Basket 2nd Season

19815 .00 . No Game No Life

Figurel7:figure showing the list of recommended anime for user with user id=10, based on its

top 10 most similar users.

Similarly if we want to recommend top-15 shows to user with user_id=100, based on top 10
neighbours we call the function:

recommendAnimeList(10,15,userid_anime_matrix[100],userid_anime_matrix)
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recommended_anime _list1 - DataFrame
Index anime_id count mean name rating

12.00 9, Clannad: After Story 9.86
Steins;Gate
Death Note
Code Geass: Hangyaku no Lelouch R2 ¢
Cowboy Bebop
Code Geass: Hangyaku no Lelouch
Shingeki no Kyojin

9.00 c Great Teacher Onizuka

9.00 . Suzumiya Haruhi no Shoushitsu

12.00 c Tengen Toppa Gurren Lagann

10.00 c Toki wo Kakeru Shoujo

9.00 . Boku dake ga Inai Machi
Usagi Drop
Nodame Cantabile: Paris-hen

Nodame Cantabile

Figure 18: figure showing the list of 15 recommended anime for user with user id=100, based on

its top 10 most similar users.

Similarly, to increase the number of similar users to a number we have to change the value of
number_recommended to that number:

Example: To get the top-10 recommendations for user with user_id=100, based on his/her 10
most similar users, we call the following function:

recommendAnimeList(15,10,userid_anime_matrix[100],userid_anime_matrix)
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recommended_anime_list1 - DataFrame

Index animeid count mean name rating

4181 .00

.00

.00

.00 - Cowboy Bebop
Death Note
Great Teacher Onizuka
Toki wo Kakeru Shoujo
Code Geass: Hangyaku no Lelouch
Usagi Drop

Shingeki no Kyojin

Figure 19: Figure showing top-10 recommendations for user with user_id=100, based on his/her

10 most similar users, we call the following function:

The next section discusses the evaluation of these recommendation systems based on accuracy,
scope and similarity.
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4.2 Evaluation Metrics Used:

4.2.1 Accuracy:
Accuracy measures the precision in recommending an item based on an item attribute or user

interests. Accuracy is given by:

MAEP)
100

For the KNN regressor system MAEP is calculated for each item c;using the mean of ratings of

Accuracy = (1 -

top 5 recommendations as observed value and average rating of c; as actual value.

In Item-based collaborative filtering model MAEP for each item c; is calculated using mean
rating of recommended contents as observed value and average rating of c; as actual value. In
user based collaborative filtering model MAEP for each user is calculated using mean
recommendation score for each item c; as observed value and rating of item c; as actual value.
The size of sample set of items used for comparison of item-based recommendation systems is
100. Similarly, the size of sample set of users used for comparison of user-based
recommendation systems is 100.

In case of KNN regressor system we calculate the values of MAE simply by finding the absolute
value of difference between y_pred and y_test. After this MAEP is calculated simply by dividing
obtained MEA value by original y_test value and multiplying the resultant by 100.

For example, for an anime its predicted value is 6.07 and actual value is 6.35

MAE= |6.35-6.07|= 0.28

MAEP = (MAE/actual_value)*100 -> (0.28/6.35)*100= 4.4%

Similarly, we calculate MAEP for all test items and value of accuracy% is:
Accuracy%=100-MAEP

In case of item-based recommendation system we define the functions meanAbsoluteError() and
meanAbsoluteErrorPercentage() to calculate MAE and MAEP respectively. These functions take
the following parameters:

n= number of recommendations to be produced

item- the item for which recommendations have to be made

matrix- the matrix userid_anime_matrix.
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For example, to calculate MAE for an anime ‘Persona 3 the Movie 1: Spring of birth’

In [18]: MAE_example= meanAbsoluteError(5, 'Persona 3 the Movie 1: Spring of
Birth',userid_anime_matrix)

: MAEP_example= meanAbsoluteErrorPercentage(5, '‘Persona 3 the Movie 1:
Spring of Birth',userid_anime_matrix)

In [11]: MAE_example
©.6633333333333331

In [12]: MAEP_example
8.47169008088548

In [13]:|

Figure 20: figure showing sample MAE and MAEP values for item-based recommendation
systems.

Here, MAE=0.66 and MAEP=8.47%, therefore

Accuracy%=100-MAEP=91.53%

In case of user-based recommendation system, we define the functions meanAbsoluteError() and
meanAbsoluteErrorPercentage() to calculate MAE and MAEP respectively. These functions take
the following parameters:

number_recommended = number of similar users to be found

n= number of anime to be recommended

user- the user for which recommendations have to be produced.

matrix- the matrix userid_anime_matrix.

For example, if we want to calculate MEA and MEAP for a user with user_id=85

We call the functions as:
meanAbsoluteError(10,10,userid_anime_matrix[85],userid_anime_matrix)

meanAbsoluteErrorPercentage(10,10,userid_anime_matrix[85],userid_anime_matrix)

39



| ] Console 2/A Console 3/A
In [13]:

example_MAE=meanAbsoluteError(10,10,userid_anime_matrix[85],userid_anime_matrix)

example_MAEP=meanAbsoluteErrorPercentage(10,10,userid_anime_matrix[85],userid_ani
me_matrix)
C:\Users\anadi\Anaconda3\1lib\site-packages\numpy\lib\function_base.py:2526:
RuntimeWarning: Degrees of freedom <= 8 for slice

c = cov(x, y, rowvar)
C:\Users\anadi\Anaconda3\1lib\site-packages\numpy\lib\function_base.py:2455:
RuntimeWarning: divide by zero encountered in true_divide

c *= np.true_divide(1, fact)

In [14]: example_MAE
©.7044523809523808

In [15]: example_MAEP
7.531656359789537

In [16]:

@ conda: base (Python 3.7.7) Line 126, Col 96 UTF-8 CRLF RW Mem 69%
Figure 21: figure showing sample MAE and MAEP values for user-based recommendation

systems.

Here MAE=0.704 and MAEP=7.53%
Therefore accuracy% =100-7.53=92.47%

4.2.2 Scope:

Scope metric indicates the ability of a recommendation system to make diverse predictions.
Scope is the percentage of items in the scope set that have been recommended at least once while
producing recommendations for items in test set. For a top-n recommendation system if the test
set size is X, then size of scope set should ideally be n*x. This study takes the value of n as n=5,
test set size = 100 and scope set size=500.

No specific functions were defined for calculation of scope but it was simply calculated by
taking all the recommendations from experiment set and matching them from sample set, then

percentages of matching items were calculated from total number of items in the matching set.
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4.2.3 Similarity:

Similarity metric indicates likeness between items in the set of recommended items. Having a
very high similarity value between the recommended items means the recommended items are
alike in nature. For calculation of similarity we use a new metric similarity using a different
KNN regressor model that takes ‘episode’, ‘members’ and ‘type’ as the set of independent
variables and ‘rating’ as the dependent variable.

Assume a sample set S of m users/items (ui/ci). For each user/item a set of recommended items
Srec IS generated containing top-n recommended items denoted as crec. NOw, similarity scores for
each recommended item are obtained by the intersection, Srec N anime dataset on ‘user id. Now
mean value of similarity in Srec, denoted by Wrec, is calculated. Absolute deviation from mean prec
for each item crec is calculated in recommended set Srec @S | Jrec- Crec|, fOr all Crec in Srec. NOow

percentage mean deviation is calculated for each item as:

| Hrec — Crecl

IJ'I‘EC

Similarity % = 100 — average percentage mean deviation

percent mean deviation = ( ) * 100

To calculate similarity, we first define a similarity dataset similarity_df, this is just the anime_df

dataset with an added predicted similarity column.
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similarity_df1 - DataFrame - X

80679
72534

81189

Gintama

157670 6.96

Figure22: figure showing similarity dataset. Here similarity column is labelled as 0.

In each case of calculation of similarity, we maintain an average list to find the average mean
deviation of each recommended item from the mean similarity in the recommendation set. Now
we take the average of this list to give us average of average mean deviation. This value is then
subtracted from 100 to give us the similarity percentage:

Merged_set in each case is the dataframe formed by merging the recommendation list with
similarity_df to get similarity values for all items in the recommended list.
For example, in case of KNN system if we take values between 100 to 109 in a loop to calculate

similarity, the average list contains 10 values of average mean deviation in similarity metric.
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# avg_list - List (10 elements)

Type Size

floated 1 5.777287934233349

floate4 8.42055466855893

floate4 11.432744889816534

floate4 13,47952037539363

floate4 17.29623526429285

floate4 9.694837853682618

floate4 ).116586538461542

floate4 .8249378598621915

floate4 18.8266513936617082

floate4 7.607601219598668

Figure23: List of average mean deviation in similarity metric
Taking the average of values in this list we get:
Percentage mean deviation= 7.61%

Therefore Similarity= 100- Percentage mean deviation= 92.39%

Similarly, in case of item-based recommendation system using collaborative filtering for a list of

10 anime in anime_df defined by aid_list(figure a) the average list is given by(figure b):
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Diamond no Ace: Second Season

Magi: The Kingdom of Magic

Mahou Shoujo MadokajkMagica Movie 3: Hangyaku no Monogatari

Major: World Series

Samurai Champloo

Shokugeki no Souma: Ni no Sara

Katanagatari

Mahou Shoujo MadokayMagica Movie 2: Eien no Monogatari
Major S6

Mononoke

Type

floate4
floate4
floate4
floatea 12.063748234819448
floate4 8.464281323905043
floate4 7.5841087489634178
floate4 10.9707884911084765
floatea .924466338259442
floate4 13.590206276757598

floate4 11.328878990348922

Figure 24(a) aid_list and 24(b) avg_list for item-based collaborative filtering system
Taking the average of values in this list we get:
Percentage mean deviation= 11.33%

Therefore Similarity= 100- Percentage mean deviation= 88.67%
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in case of user-based recommendation system using collaborative filtering for a list of 5 users

with user_ids from 17 to 21 the average list is given by:

# avg_list - List (5 elements)

Value

floate4 10.091856617078527

floate4 11.67102825722603

floate4 8.521415747627596

floate4 9.64429303624589

floate4 10.040813743790935

Figure 25: avg_list for user-based system

Taking the average of values in this list we get:

Percentage mean deviation= 10.09%

Therefore Similarity= 100- Percentage mean deviation= 89.91%

This concludes our experiment section, results and discussions for these experiments are given in

the next section.
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5.Results and Discussion:

Accuracy:

Accuracy for item-based recommendation systems were taken using a common continuous
sample consisting of 100 items and calculating MAEP for each item. The observed results were
as follows: - (a)The value of MAEP for KNN regressor model was found to be 5.37% and its

accuracy was found to be 94.63%. (b.) The value of MAEP for item-based collaborative filtering

model was found to be 5.03% and hence its accuracy was calculated as 94.97%. For User-based
collaborative filtering model a sample of 100 users was taken for calculation of MAEP and
accuracy. The results observed were: - (a)The value of MAEP for user-based collaborative

filtering model was found to be 8.53%, hence its accuracy was calculated as 91.47%.

Serial No. Model Name MAEP Accuracy

1. KNN regressor based model 5.37% 94.63%

2. Item-based collaborative 5.03% 94.97%
filtering model

3. User-based collaborative 8.53% 91.47%
filtering model

TABLE 3- Table showing the values of MAEP and Accuracy for each model.
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KNN regression model | Item-Based Collaborative
Serial No. Filtering Model

MAEP Accuracy MAEP Accuracy
802 6.41% 93.59% 8.47% 91.53%
803 2.17% 97.83% 0.87% 99.13%
804 3.04% 96.96% 5.13% 94.87%
805 2.32% 97.68% 6.9% 93.1%
806 6.49% 93.51% 6.53% 93.47%

TABLE-4 Table comparing the values of MAEP and Accuracy between both item-based

recommendation system models. Only 5 comparisons are shown here.

User Id User-Based Collaborative Filtering Model
MAEP Accuracy

140 4.92% 95.08%
141 7.61% 92.39%
142 5.24% 94.76%
143 6.52% 93.48%
144 12.13% 87.87%

TABLE 5- showing the values of MAEP and Accuracy for user-based recommendation

system model.
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Figure 26:Graph (a) showing the comparative frequency distribution of accuracy% for KNN
regressor based and Item Based Collaborative filtering system. Figure27:Graph (b) shows
frequency distribution of accuracy% for user based collaborative filtering model.

Upon calculating the accuracy for the entire test set in KNN regressor based system, the accuracy
was found to be 90.27%.

From the above results following conclusions can be made:

(1) All the recommendation systems performed well on this metric, as accuracy was found to
be greater than 90% in all cases.

(2) Out of KNN regressor system and Item-Based collaborative filtering model, the
collaborative filtering model performed slightly better, with the difference in accuracy
percent being 0.34% between the two of them.

(3) 3 out of 100 samples gave accuracy less than 75% for user based collaborative filtering
model, this could be the result of cold-start problem, where it becomes difficult to
recommend items to the new user due to the data on the user being sparse. This results in

loss of accuracy.

Scope:
Upon using the same scope sample set and experiment set for all three recommendation systems,
the following results were observed: (a)54 out of 500 items in scope sample set were
recommended by KNN regressor based model. (b)15 out of 500 items in scope sample set were
recommended by item based collaborative filtering system. And (c) 7 out of 500 items in scope
sample set were recommended by user based collaborative filtering system. From this result it
can be concluded that:

(1) The low values of scope can be due to the systems being top-N recommendation system

and hence neglecting majority of items that have low average ratings.

Similarity:
For calculation of similarity a sample set of items of size =100 for KNN regressor and ltem-
based collaborative filtering model is used. Another sample set of 100 users is used for user-

based collaborative filtering model. Upon application of similarity score metric and calculation
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of average similarity percentage, the results observed were: (a)The value of Average similarity

percentage for KNN regressor based model was found to be 90.31%, whereas, average similarity

percentage for item-based collaborative filtering model was found to be 91.25%. (b) the value
average similarity percentage for user-based collaborative filtering model was observed to be
90.01%.

Serial No. Model Name Similarity
1. KNN regressor based model 90.31%
2. Item-based collaborative 91.25%

filtering model
3. User-based collaborative 90.01%

filtering model

TABLE 6- Table showing the values of similarity percentage for each model.

Following Conclusions can be made from the above results:
(1) All three recommendation systems achieve high values of similarity, which indicates
strong likeness between recommended items in a set.
(2) However, having high values of similarity can make recommendations systems

monotonous and affect their ability to make unique recommendations.
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Finally, the results in this section can be summarized as:

Serial
No. Model Name Accuracy | Scope Similarity
1. KNN regressor based 94.63% | 10.8% 90.31%
model
2. Item-based collaborative 94.97% 3% 91.25%
filtering model
3. User-based collaborative 91.47% 1.4% 90.01%
filtering model

Table 7: overall performance of all systems under all the metrics.

From the above study, it can therefore, be concluded that:

(1) There seems to be some degree of correlation between the accuracy and similarity values,
based on the results of this study, the item-based collaborative filtering model had the higher
values of accuracy and similarity percentages than KNN regressor based model for the same
samples, while the user-based recommendation system should not be compared with the
other systems due to the use of different samples, it is worth noting that it had the lowest
values of accuracy and similarity for any recommendation system model.

(2) None of the three recommendation system models performed well in case of scope metric.
The possible reasons for this could be: - (a) lack of observations performed. (b)poor
definition of metric.

(3) The recommendation systems performed well in case of accuracy metric. The content
recommended by these systems had less difference with ratings of the content based on
which they were recommended, or in case of user-based recommendation systems the

recommendation scores for items had low difference compared to actual rating of items.
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Additional Tables, Figures and Graphs:

A

1

2 0
3 1
4 2
5 3
6 4
7 5
8 6
9 7
10 8
11 9
12 10
13 11
14 12
15 13
16 14
17 15
18 16
19 17
20 18
21 19
22 20
23 21
24 22
25 23
26 24

Table 8: Table showing sample results for accuracy metric in KNN Regressor based

B C
MAE MAEP
0.502 6.411239
0.17 2.171137
0.238 3.039591
0.182 2,324393
0.508 6.487867
0.556 7.100894
0.818 10.447
0.178 2.276215
0.856 10.94629
0.308 3.938619
0.88 11.2532
0.214 2.736573
0.274 3.503836
0.53 6.777494
0.254 3.248082
0.038 0.485934
0.576 7.365729
0.576 7.365729
1.008 12.89003
0.3 3.836317
1.228 15.70332
0.514 6.57289
0.132 1.68798
0.664 8.491049
0.108 1.381074

Recommendation system.

D

MAEP
6.41
2.17
3.04
2,32
6.49
7.1
10.45
2.28
10.95
3.94
11,25
2.74
3.5
6.78
3.25
0.49
7.37
7.37
12.89
3.84
15.7
6.57
1.69
3.49
1.38

E
MAEP/100
0.0641
0.0217
0.0304
0.0232
0.0649
0.071
0.1045
0.0228
0.1095
0.0394
0.1125
0.0274
0.035
0.0678
0.0325
0.0049
0.0737
0.0737
0.1289
0.0384
0.157
0.0657
0.0169
0.0849
0.0138

F
Accuracy
0.9359
0.9783
0.9696
0.9768
0.9351
0.929
0.8955
0.9772
0.8905
0.9606
0.8875
0.9726
0.965
0.9322
0.9675
0.9951
0.9263
0.9263
0.8711
0.9616
0.843
0.9343
0.9831
0.9151
0.9862
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A B C D E F

1 NAME MAE MAEP MAEP MAEP/10C Accuracy
2 Persona 3 the Movie 1: Spring of Birth 0.663333 8.47169 8.47 0.0847 0.9153
3 |Rozen Maiden: Quvertiire 0.068333 0.872712 0.87 0.0087 0.9913
4 Seikai no Monshou 0.401667 5.129842 5.13 0.0513  0.9487
5 Shaman King 0.54 6.896552 6.9 0.069 0.931
6 Sword Art Online 0.511667 6.534696 6.53 0.0653  0.9347
7 Tetsuwan Birdy Decode:02 0.18 2.298851 2.3 0.023 0.977
8 Bishoujo Senshi Sailor Moon Crystal Season |lI 0.558333 7.130694 7.13  0.0713  0.9287
9 Bokurano 0.386667 4.944587 494 0.0494  0.9506
10 Bounen no Xamdou 0.205 2.621483 2,62 0.0262 0.9738
11 Break Blade 6: Doukoku no Toride 0.651667 8.333333 8.33 0.0833 0.9167
12 Detective Conan: Conan vs. Kid - Shark &amp; Jewel 0.125 1.598465 1.6 0.016 0.984
13 Dragon Ball Z Special 2: Zetsubou e no Hankou!l Nokosaret 0.283333 3.623188 3.62 0.0362 0.9638
14 Hakkenden: Touhou Hakken Ibun 2nd Season 0.695 8.887468 8.80 0.0883 0.9111
15 Hidamari Sketch x 365 Specials 0.623333 7.971014 7.97 0.0797 0.9203
16 K: Return of Kings 0.581667 7.438193 7.44 0.0744 0.9256
17 Kill la Kill Special 0.676667 8.653026 8.65 0.0865 0.9135
18 Kochira Katsushikaku Kameari Kouenmae Hashutsujo (TV) 0.011667 0.14919 0.15 0.0015 0.9985
19 Macross Plus 0.246667 3.154305 3.15 0.0315 0.9685
20 Macross Plus Movie Edition 0.226667 2.898551 2.9 0.029 0.971
21 Mitsudomoe Zouryouchuu! 0.331667 4.241262 4.24 0.0424 0.9576
22 Prince of Tennis: Another Story - Messages From Past and | 0.528333 6.756181 6.76  0.0676  0.9324
23 Saint Seiya: Meiou Hades Elysion-hen 0.321667 4.113384 4,11 0.0411 0.9589
24 To LOVE-Ru Darkness 0.403333 5.157715 5.16 0.0516  0.9484
25 To LOVE-Ru Darkness OVA 0.616667 7.885763 7.89 0.0789 0.9211
26 Working!! 0.203333 2.600171 2.6 0.026 0.974

Table 9 : Table showing sample results for accuracy metric in item-based collaborative

filtering Recommendation system.



A B C D E F

1 |User_ID MAE MAE_percent MAEP MAEP./100 Accuracy

2 140 0.399464 4.91879257 4.92 0.0492 0.9508
3 141 0.601128 7.606530303 7.61 0.0761 0.9239
4 142 0.464167 5.23728077 5.24 0.0524 0.9476
5 143 0.585214 6.515772261 6.52 0.0652 0.9348
6 144 1.141333 12.12262469 12.13 0.1213 0.8787
7 146 1.138333 12.02109663 12.03 0.1203 0.8797
8 147 1.753289 25.08237926 25.09 0.2509 0.7491
9 148 1.379405 19.1476662 19.15 0.1915 0.8085
10 149 0.387087 4,267635039 4.27 0.0427 0.9573
11 150 0.655286 6.959175038 6.96 0.0696 0.9304
12 152 2.391861 38.73327937 38.74 0.3874 0.6126
13 153 0.46015 5.510032262 5.52 0.0552 0.9448
14 154 0.48719 5.237318346 5.24 0.0524 0.9476
15 600 0.543 5.921539844 5.93 0.0593 0.9407
16 601 0.26395 3.073661153 3.08 0.0308 0.9692
17 602 0.834667 8.667180984 8.67 0.0867 0.9133
18 603 0.644667 7.118829808 7.12 0.0712 0.9288
19 604 2.580985 41.54388492 41.55 0.4155 0.5845
20 605 0.518285 5.892859018 5.9 0.059 0.941
21 606 0.48213 6.07848367 6.08 0.0608 0.9392
22 607 1.097857 11.26709926 11.27 0.1127 0.8873
23 608 0.220333 2.41889895 2.42 0.0242 0.9758
24 609 0.331179 3.857462521 3.86 0.0386 0.9614
25 705 0.626293 7.854144952 7.86 0.0786 0.9214
26 706 0.657 7.119286134 7.12 0.0712 0.9288
27 707 0.598305 6.443346328 6.45 0.0645 0.9355
28 708 0.65631 6.894647054 6.9 0.069 0.931

Tablel0 : Table showing sample results for accuracy metric in user-based collaborative

filtering Recommendation system.
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Tablell: Table showing sample results for similarity metric in KNN Regressor based

name
100 Diamond no Ace: Second Season
101 Magi: The Kingdom of Magic

102 Mahou Shoujo Madoka*Magica Movie 3: Hangyaku no Monogatari

103 Major: World Series

104 Samurai Champloo

105 Shokugeki no Souma: Nino Sara
106 Katanagatari

107 Mahou Shoujo MadokakMagica Movie 2: Eien no Monogatari

108 Major 56

109 Mononoke

110 Shirohako

111 Ashita no Joe 2

112 Hunter x Hunter

113 Noragami Aragoto

114 Sakamichi no Apollon

115 Tonari no Totoro

116 Ghost in the Shell: Stand Alone Complex
117 Kaze no Tani no Nausicad

118 No Game No Life

119 Romeo no Aoi Sora

120 YuusrYuusrHakusho

121 Kino no Tahi: The Beautiful World

122 Kuroko no Basket

123 Nodame Cantabile

124 Ookamito Koushinryou I|

125 Shingeki no Kyojin: Kuinaki Sentaku

126 Steins;Gate: Qukoubakko no Poriomania

Recommendation system.

C

mean_similarity_deviation

1163354665
9.842738205
12.4902298
9.249370044
11.430986
16.24181988
7.875194032
12.46320292
9.783000033
6.525349101
14.41623333
12.22384036
11.70349936
13.986767
1016546457
10.80308031
8.025493472
6.040162498
8.342407743
11,53926702
9.206063335
7391629728
7.91655845
8713517433
6.896300125
10.07787622
9.995033373

D

MSD

11.63
9.84
12.48
9.25
11.43
16.24
7.88
12.46
9.78
6.53
14.42
12.22
11.7
13.99
10.17
10.8
8.03
6.04
8.34
11,54
9.21
7.39
7.92
8.71
6.9
10,08
10

E

similarity percentage

88.37
90.16
87.51
90.75
88.57
83.76
92.12
87.54
90.22
9347
85.58
87.78
88.3
86.01
89.83
89.2
91.97
93.96
91.66
88.46
90.79
92,61
92,08
91.29
931
89.92
90
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A B C

1 name percent deviation from mean similarity _|simi|arity %

2 100 Diamond no Ace: Second Season 5.144593462 94.86
3 101 Magi: The Kingdom of Magic 2.795966162 97.2
4 102 Mahou Shoujo Madoka*Magica Movie 3: Hangyaku no Monogat 4,990954047 95.01
5 103 Major: World Series 12.06374823 87.94
6 104 Samurai Champloo 8.464281323 91.54
7 105 Shokugeki no Souma: Nino Sara 7.58410749 92.42
8 106 Katanagatari 10.97078849 89.03
9 107 Mahou Shoujo MadokaxMagica Movie 2: Eien no Monogatari 5.924466338 94,08
10 108 Major S6 13.55020628 86.41
11 109 Mononoke 11.32887899 88.67
12 110 Shirobako 4,273158905 95.73
13 111 Ashita no Joe 2 9.68292033 90.32
14 112 Hunter x Hunter 6.766309836 93.23
15 113 Noragami Aragoto 9.301191389 90.7
16 114 Sakamichi no Apollon 15.31735581 84.68
17 115 Tonari no Totoro 7.83559425 92.16
18 116 Ghost in the Shell: Stand Alone Complex 3.979617834 96.02
19 117 Kaze no Tani no Nausicad 8.507239141 91.49
20 118 No Game No Life 10.0920945 89.91
21 119 Romeo no Aoi Sora 7.187729201 92.81
22 120 YuusrYuusrHakusho 14.2265015 85.77
23 121 Kino no Tabi: The Beautiful World 8.620577735 91.38
24 122 Kuroko no Basket 7.765301527 92.23
25 123 Nodame Cantabile 7.317839196 92.68
26 124 Ookami to Koushinryou Il 6.265889038 93.73
27 125 Shingeki no Kyojin: Kuinaki Sentaku 12.33976105 87.66
28 126 Steins;Gate: Oukoubakko no Poriomania 5.457539402 94.54

Tablel2 : Table showing sample results for similarity metric in item-based collaborative filtering

Recommendation system.
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A
1 |User_ID Percent Deviation from mean
2 140 5.166232572
3 141 10.72409135
4 142 14,44858884
5 143 11.83034008
6 144 12.73654976
7 146 7.599911401
8 147 6.490848825
9 148 4.069259022
10 149 5.962364795
11 150 9.248075107
12 152 9.171463457
13 153 6.992439609
14 154 7.133267699
15 600 11.56721805
16 601 11.34805241
17 602 8.237393507
18 603 7.798327686
19 604 9.342105263
20 605 8.304158306
21 606 7.524361663
22 607 8.976871815
23 608 8.746364251
24 609 14.03320497
25 705 15.63278177
26 706 10.76521739
27 707 5.262750469
28 708 11,55855296

C
similarity

94,83
89.28
85.55
88.17
87.26

92.4
03.51
95.93
94.04
90.75
90.83
93.01
92.87
88.43
88.65
91.76

92.2
90.66

91.7
92.48
91.02
91.25
85.97
84.37
89.23
94.74
88.44

Tablel3 : Table showing sample results for similarity metric in user-based collaborative filtering

Recommendation system.
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6. FUTURE WORK:
This aim of this study was to study three different types of recommendation systems and
evaluate their performances based on three performance metrics — accuracy, scope and similarity.
Based on the findings of this study the suggested future work includes studying the relationship
between accuracy of recommendations and similarity between recommended results. Other
suggested work includes:

I.  The effect that number of episodes or type of content have on these recommendations.

. Evaluation of more complex recommendation systems based on the similarity metric

proposed.
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Appendix 1: Sample code used for the project:

In K-NN Regressor Model:
# -*- coding: utf-8 -*-

Created on Tue Mar 31 13:10:02 2020

@author: anadi

# Importing the libraries
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

# Importing the dataset
anime_df=pd.read_csv('anime.csv’)
anime3_df=pd.read_csv(‘anime3.csv')

#filling tuples with unknown values
values={'genre"."Unknown’,'members".0,rating":.0}
anime_df.fillna(value=values,inplace=True)

#dropping nan values
anime_df.dropna(how="any',inplace=True )
anime3_df.dropna(how="any',inplace=True)

#resetting the indices
anime_df=anime_df[(anime_df = 0).all(1)]
anime_df=anime_df.reset_index()

anime_df=anime_df.iloc[:,1:]

#creating a list of top 15 most frequently occurring genres across the dataset
top_15 genre_list=anime3_df.value=anime3_df['genre’].value_counts().sort_values(ascending=
False).head(15).index

#create dummies for top 15 genre
for i in range(0,14):

anime_df{top_15 genre_list[i]]=0
#populating the dummies for top 15 genre
for i in range(0,14):
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for j in range(0,len(anime_df)):
anime_dfftop_15_ genre_list[i]][j]=np.where( top_15_genre_list[i] in anime_df['genre][j]
1170)

#seperation of independent and dependent variables
X=anime_df.iloc[:,6:20].values
y=anime_df.iloc[:,5].values

#train test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test =train_test_split(X, y, test_size = 0.2, random_state = 0)

# Feature Scaling

from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()

X_train = sc_X.fit_transform(X_train)

X_test = sc_X.transform(X_test)

#sc_y = StandardScaler()

#y_train = sc_y.fit_transform(y_train.reshape(-1,1))

#fitting classifier into training set

from sklearn.neighbors import KNeighborsRegressor
classifier=KNeighborsRegressor(n_neighbors=5,algorithm="auto’,
metric="minkowski',p=2,weights="uniform’)
classifier.fit(X_train,y_train)

#making prediction of ratings for test values
y_pred=classifier.predict(X_test)

for train set
y_pred_entire=classifier.predict(X_train)
y_diff_entire=y pred_entire-y_train
MAEP=(y_diff_entire/y_train)*100
Avg_MAEP=sum(MAEP)/len(MAEP)"

""from sklearn.metrics import confusion_matrix
cm=confusion_matrix(y_test,y pred)

#sample object of FetchNeibours class for prediction and evaluations
new_pred=FetchNeighbors()

abc=new_pred.getNeighbors(10,y pred_entire[15],anime_df)
abc2=new_pred.getNeighbors(10,y_test[15],anime_df new)
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#absolute deviation across test set
y_diff=abs(y_pred-y_test)

"abc = filter(lambda x: x < 1.5, y_diff)
y_diff=list(abc)™

#MAE across test set
sum(y_diff)/len(y_diff)

#MAEP
MAEP=(y_diff/y_test)*100
Avg_MAEP=sum(MAEP)/len(MAEP)

#function for calculating squares and roots of lists
def square(list):

return [i ** 2 for i in list]
def square_root(list):

return [i ** 0.5 for i in list]

#comparison of results between KNN regressor model and Item based collaborative filtering
model

sample=anime_df['name’][800:900]

sample_knn=pd.merge(sample,anime_df,on="name")
sample_knn_X=sample_knn.iloc[:,7:21].values

sample_knn_y=sample_knn.iloc[:,6].values

#feature scaling

sample_knn_X=sc_X.transform(sample_knn_X)

sample_pred=classifier.predict(sample_knn_X)

#calculation of accuracy

difference_sample=abs(sample_knn_y-sample_pred)
MAE_sample=sum(difference_sample)/len(difference_sample)
MAEP_knn=(difference_sample/sample_knn_y)*100
Avg_MAEP_knn=sum(MAEP_knn)/len(MAEP_knn)

MAE_ list=pd.DataFrame(difference_sample)

MAEP_list=pd.DataFrame(MAEP_knn)

#merging dataframes for plotting
sample_results_knn=pd.merge(MAE_list, MAEP _list,left_index=True,right_index=True)



#FetchNeighbours class:

import pandas as pd
import numpy as np
class FetchNeighbors:

def ___init__(self, name):

self.name = name
#creating distance variable
from numpy import zeros
anime_df_new=pd.DataFrame(anime_df)
distance=zeros([len(anime_df)])
anime_df_new=pd.DataFrame(anime_df)
anime_df_new(['distance]=np.nan
values={'distance".0}
anime_df_new.fillna(value=values,inplace=True)

#getNeighbors function returns a list of content with least distance from predicted set
def getNeighbors(self,n,pred,anime_df_new):
neighbor_list=[]
for i in range(0,len(anime_df_new['distance)):
anime_df_new['distance’][i]=abs(pred-anime_df new['rating"][i])
neighbor_list=anime_df new.sort_values(ascending=True,by="distance’).head(n)
return neighbor_list

#to predict for any tuple
def predict_single(self,a,i):
a=X[i]
a=np.array(a)
a=np.expand_dims(a,0)
b=classifier.predict(a)
return b

In item based collaborative filtering model:

# Importing the libraries
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

# Importing the dataset
anime_df=pd.read_csv('anime.csv')
rating_df=pd.read_csv(‘rating.csv’)
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#sample set
#sample=anime_df{'name'][838:900]

#merge the dataframes
anime_rating_df=pd.merge(anime_df,rating_df, on="anime_id’)

#visualization of data
anime_rating_df.groupby(‘name’)['rating_x'].describe()

#mean and count dataframes
ratings_df_mean=anime_rating_df.groupby(‘name")['rating_y'].describe()['mean’]
ratings_df_count=anime_rating_df.groupby('name’)['rating_y'].describe()['count’]

ratings_mean_count_df=pd.concat([ratings_df _mean,ratings_df_count],axis=1)

#userid movieid matrix
userid_anime_matrix=anime_rating_df.pivot_table(index="user_id',columns="name’,values="ratin
9_y)

#recommendations for single user
ul=CollaborativeltemBased()
ul.accuracy(5,'Gintama’,userid_anime_matrix)
ul.getSimilarltems(5,'Gintama’,userid_anime_matrix)
getSimilarltems(5,'Gintama',userid_anime_matrix)

#importing the libraries
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

import scipy as sp

class CollaborativeltemBased:
def __init_ (self, name):
self.name = name
#getSimilarltems returns a list of recommended content
def getSimilarltems(n,item,matrix):
item_matrix=matrix
item_matrix_correlation=pd.DataFrame(userid_anime_matrix.corrwith(
matrix[item]),columns=['Correlations’)
item_matrix_correlation.dropna(inplace=True)
item_matrix_correlation=item_matrix_correlation.join(ratings_mean_count_df{'count’])
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recommended_content_list=

item_matrix_correlation[item_matrix_correlation['count’]>100].sort_values('Correlations',ascend

ing=False).head(n+1)
return recommended_content_list

#functions for calculating squares and roots of lists
def square(list):
return [i ** 2 for i in list]

def square_root(list):
return [i ** 0.5 for i in list]

#Calculation of MAE for evaluation

def meanAbsoluteError(n,item,matrix):
rec_content_list=getSimilarltems(n,item,matrix)
accuracy_list=pd.merge(anime_df,rec_content_list,on="name")
item_rating=anime_df[anime_df.name==item]['rating']
avg_rating=sum(accuracy_list['rating'])/len(accuracy_list['rating’])
accuracy_score_mae=abs(item_rating-avg_rating).tolist()
accuracy_score_mae=accuracy_score_mae[0]
return accuracy_score_mae

#Calculation of MAE for evaluation

def meanAbsoluteErrorPercentage(n,item,matrix):
rec_content_list=getSimilarltems(n,item,matrix)
accuracy_list=pd.merge(anime_df,rec_content_list,on="name")
item_rating=anime_df[anime_df.name==item]['rating’]
avg_rating=sum(accuracy_list['rating'])/len(accuracy_list['rating’])
accuracy_score_mae=abs(item_rating-avg_rating)
accuracy_score_maep=((accuracy_score_mae/item_rating)*100).tolist()
accuracy_score_maep=accuracy_score_maep[0]
return accuracy_score_maep

#evaluation of model

def getAccuracyL.ist(n,item,matrix):
rec_content_list=getSimilarltems(n,item,matrix)
accuracy_list=pd.merge(anime_df,rec_content_list,on="name")
accuracy_list.dropna(item)
return accuracy_list
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def getError(start_index,sample_size):
accuracy_score_list=[]
while sample_size!=0:

accuracy_score_list.append(accuracy(6,anime_df.index[start_index],userid_anime_matrix))
start_index+=1
sample_size-=1
return accuracy_score_list

def sampling(i,list1,list2,list3):
list1.append(meanAbsoluteError(5,i,userid_anime_matrix))
list2.append(meanAbsoluteErrorPercentage(5,i,userid_anime_matrix))
list3.append(i)

test1=[]
test2=[]
index1=[]

xyz=meanAbsoluteError(5,'Gintama’,userid_anime_matrix)
sampling(‘Gintama’,test1,test2,index1)

index1.pop(5)
testl.pop(5)
test2.pop(5)

#comparison of results
#meanAbsoluteErrorPercentage(5,'Gintama’,userid_anime_matrix)
MAE _list_collaborative_item=[]
MAEP_list_collaborative_item=[]

Name_list=[]

sample=sample.tolist()
for i in sample:
MAE _list_collaborative _item.append(meanAbsoluteError(5,i,userid_anime_matrix))
MAEP _list_collaborative _item.append(
meanAbsoluteErrorPercentage(5,i,userid_anime_matrix))
Name_list.append(i)

MAE _list_collaborative_item=pd.DataFrame( MAE_list_collaborative_item)
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MAEP_list_collaborative_item=pd.DataFrame(MAEP_list_collaborative_item)
Name_list=pd.DataFrame(Name_list)

sample_result_collaborative_item=pd.merge(Name_list, MAE _list_collaborative_item,left_index
=True,right_index=True)

sample_result_collaborative_item=pd.merge(
sample_result_collaborative_item,MAEP_list_collaborative_item,left_index=True,right_index=
True)

newl= meanAbsoluteError(5,'Persona 3 the Movie 1: Spring of Birth',userid_anime_matrix)
new2= meanAbsoluteErrorPercentage(5, Persona 3 the Movie 1: Spring of
Birth',userid_anime_matrix)

For user-based collaborative filtering model:

# Importing the libraries
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

import scipy as sp

# Importing the dataset
anime_df=pd.read_csv(‘anime.csv')
rating_df=pd.read_csv('rating.csv')

#merge the dataframes
anime_rating_df=pd.merge(anime_df,rating_df, on="anime_id")

anime_rating_df.groupby(‘user_id")['rating_y'].describe()

#mean and count dataframes
ratings_df _mean=anime_rating_df.groupby(‘user_id")['rating_y'].describe()['mean’]
ratings_df count=anime_rating_df.groupby('user_id")['rating_y"].describe()['‘count’]

#merging mean and count dataframes
ratings_mean_count_df=pd.concat([ratings_df mean,ratings_df count],axis=1)
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#userid movieid matrix
userid_anime_matrix=anime_rating_df.pivot_table(index="name',columns="user_id',values="ratin
9y) _ o _
#userid_anime_matrix=userid_anime_matrix.transpose()

Created on Thu Apr 9 03:25:04 2020

@author: anadi

#importing the libraries
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

import scipy as sp

class Collaborative:
def ___init__(self, name):
self.name = name
#getSimilarUsers returns a list of n users from matrix which have similar interests to the user
def getSimilarUsers(n,user,matrix):
user_matrix=matrix
user_matrix_correlation=pd.DataFrame(user_matrix.corrwith(
user),columns=['Correlations)
user_matrix_correlation.dropna(inplace=True)
user_matrix_correlation=user_matrix_correlation.join(ratings_mean_count_df{'count’)
neighbor_list=
user_matrix_correlation[user_matrix_correlation['count]>200].sort_values('Correlations',ascendi
ng=False).head(n)
return neighbor_list

#getSimilarUsers(100,userid_anime_matrix[44],userid_anime_matrix)

def recommendAnime(number_recommended,n,user, matrix):
neighbor_list=getSimilarUsers(n,user,matrix)
#rec_list=anime_rating_df=pd.merge(rating_df,neighbor_list, on="user_id")
rec_lis=pd.merge(rating_df,neighbor_list, on="user_id")
rec_list['rec_score=rec_list['rating]*rec_list['Correlations']

recommended_anime=rec_list.sort_values(by="rec_score',ascending=False).head(number_recom
mended)

recommended_anime_name=pd.merge(
recommended_anime,anime_df,on="anime_id").drop(axis=1,columns=['episodes','user_id','type’,’
Correlations','members','genre'])
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return recommended_anime_name
#functions for calculating squares and roots of lists
def square(list):
return [i ** 2 for i in list]
def square_root(list):
return [i ** 0.5 for i in list]
#recommendAnime returns a list containing recommended content based on recommendation
score
def recommendAnime(number_recommended,n,user,matrix):
neighbor_list=getSimilarUsers(n,user,matrix)
rec_list=pd.merge(rating_df,neighbor_list, on="user_id")
rec_list['rec_score]=rec_list['rating’]*rec_list['Correlations']
rec_list_count=rec_list.groupby(‘anime_id")['rec_score'].describe()['count’]
rec_list_mean=rec_list.groupby('anime_id")['rec_score’].describe()['mean’]
rec_list_mean_count=pd.merge(rec_list_count,rec_list_mean,on="anime_id").dropna()

recommend_anime=rec_list_mean_count.sort_values(by="count',ascending=False).head(100)

recommend_anime_final=recommend_anime.sort_values(by="mean’,ascending=False).head(n)
recommended_anime_name=pd.merge(
recommend_anime_final,anime_df,on="anime_id").drop(axis=1,columns=['episodes’, type’,'memb
ers','genre’])
return recommended_anime_name

#similar to recommendAnime but ruturns list of anime id

def recommendAnimeList(number_recommended,n,user,matrix):
neighbor_list=getSimilarUsers(n,user,matrix)
rec_list=pd.merge(rating_df,neighbor_list, on="user_id")
rec_list['rec_score=rec_list['rating’]*rec_list['Correlations']
rec_list_count=rec_list.groupby(‘anime_id")['rec_score'].describe()['count’]
rec_list_mean=rec_list.groupby('anime_id")['rec_score’].describe()['mean’]
rec_list_mean_count=pd.merge(rec_list_count,rec_list_mean,on="anime_id").dropna()

recommend_anime=rec_list_mean_count.sort_values(by="count',ascending=False).head(100)

recommend_anime_final=recommend_anime.sort_values(by="mean’,ascending=False).head(n)
return recommend_anime_final

#calculation of MAE for evaluation

def meanAbsoluteError(number_recommended,n,user,matrix):
acc_list=recommendAnimeL.ist(number_recommended,n,user,matrix)
sim=pd.merge(acc_list,anime_df,on="anime_id")
deviation_mean_rating=abs(sim['mean’]-sim['rating’])
mean_absolute_error=sum( deviation_mean_rating)/len( deviation_mean_rating)
return mean_absolute_error
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#calculation of MAEP for evaluation

def meanAbsoluteErrorPercentage(number_recommended,n,user,matrix):
acc_list=recommendAnimeL.ist(number_recommended,n,user,matrix)
sim=pd.merge(acc_list,anime_df,on="anime_id")
deviation_mean_rating=abs(sim['mean’]-sim['rating'])
mean_absolute_error=sum(deviation_mean_rating)/len(deviation_mean_rating)
mean_absolute_error_percentage_list=(deviation_mean_rating/sim['mean'])*100

mean_absolute_error_percentage=sum(mean_absolute_error_percentage_list)/len(mean_absolute

_error_percentage_list)
return mean_absolute_error_percentage

#sampling for observations
def sampling(i,list1,list2,list3):
listl.append(meanAbsoluteError(10,10,userid_anime_matrix[i],userid_anime_matrix))
list2.append(meanAbsoluteErrorPercentage(10,10,userid_anime_matrix[i],userid_anime_matrix)

list3.append(i)
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