

1

EVALUATING THE PERFORMANCE OF RECOMMENDATION SYSTEMS

USING ACCURACY, SCOPE AND SIMILARITY METRICS

A Report for the Evaluation 3 of Project 2

Submitted by

 ANADI MISHRA

(1613101122)

in partial fulfilment for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Mr. RAVINDRA KUMAR CHAHAR,

Assistant Professor, Galgotias University

APRIL / MAY- 2020

2

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “EVALUATING THE PERFORMANCE OF

RECOMMENDATION SYSTEMS USING ACCURACY, SCOPE AND

SIMILARITY METRICS” is the bona-fide work of “ANADI MISHRA

(1613101122)” who carried out the project work under my supervision.

SIGNATURE OF HEAD
School of Computing Science &

Engineering

SIGNATURE OF SUPERVISOR

School of Computing Science &

Engineering

3

ABSTRACT:

The application of recommendation systems in e-commerce and streaming services has piqued

the interest of many scholars, leading to an influx of research in this field in the past decade.

While the majority of prior research on this field has been done to improve recommendation

system’s performance based on accuracy as the sole performance metric, the roles of other

performance metrics like coverage and novelty have long been realized by researchers [1,2]. As a

result, other performance metrics are increasingly being used for current research.

The aim of this study is to implement three popular recommendation systems and evaluate their

performances using ‘accuracy’, ‘scope’ and ‘similarity’ as evaluation or performance metrics.

Furthermore, a secondary objective of this work is to observe and report any trends or

similarities between the performance metrics based on the results observed.

4

 TABLE OF CONTENTS

Abstract…………………………………………………………………………..3

(i)List of Tables………………………………………………………………….5

(ii)List of Figures………………………………………………………………...6

(iii)List of abbreviations, symbols and nomenclature…………………………...9

a) List of abbreviations……………………………………………………………………………….9

b) List of Symbols………………………………………………………………………………………..9

c) List of nomenclature……………………………………………………………………………..10

1.Introduction……………………………………………………………………11

2.Literature Review…………………………………………………………….. 13

3.Methodology Used…………………………………………………………….14

3.1 Data collection and datasets used……………………………………...14

3.2 Models Used…………………………………………………………...16

3.2.1 KNN regression-based recommendation system…………….16

3.2.2 Item-Based collaborative filtering system……………………17

3.2.3 User-Based collaborative filtering system…………………...18

 3.3 Methodology for Evaluation………………………………………….20

 3.3.1 Accuracy……………………………………………………..20

 3.3.1 Scope…………………………………………………………21

 3.3.2 Similarity…………………………………………………….21

4.Experiment…………………………………………………………………….23

 4.1 Implementation of Models……………………………………………23

 4.1.1 KNN regression-based recommendation system……………23

 4.1.2 Item-Based collaborative filtering system…………………..28

 4.1.3 User-Based collaborative filtering system………………….31

 4.2 Evaluation Metrics Used…………………………………………….39

 4.2.1 Accuracy……………………………………………………39

 4.2.2 Scope………………………………………………………..41

 4.2.3Similarity…………………………………………………….42

5.Results and discussion………………………………………………………..47

6.Future work…………………………………………………………………..59

7.References ……………………………………………………………………60

 Appendix 1…………………………………………………………………….61

5

List of Tables:
i. Table showing the values of MAEP and Accuracy for each model.

ii. Table comparing the values of MAEP and Accuracy between both item-based

recommendation system models

iii. Table showing the values of MAEP and Accuracy for user-based recommendation

system model.

iv. Table showing the values of similarity percentage for each model.

v. overall performance of all systems under all the metrics.

vi. Table showing sample results for accuracy metric in KNN Regressor based

Recommendation system.

vii. Table showing sample results for accuracy metric in item-based collaborative filtering

Recommendation system.

viii. Table showing sample results for accuracy metric in user-based collaborative filtering

Recommendation system.

ix. Table showing sample results for similarity metric in KNN Regressor based

Recommendation system.

x. Table showing sample results for similarity metric in item-based collaborative filtering

Recommendation system.

xi. Table showing sample results for similarity metric in user-based collaborative filtering

Recommendation system.

6

List of Figures:

i. A sample of Anime Dataset

ii. A sample of User Ratings Dataset

iii. Figure showing the dataset anime_df before data cleaning

iv. Figure showing the dataset anime_df after cleaning

v. Figure showing the top-15 most frequent genres

vi. Figure showing the independent variable set X.

vii. Figure showing the dependent variable set y

viii. Figure showing the X_train DataFrame after feature scaling

ix. Figure showing the predicted and actual values of y.

x. Figure(a) showing the anime for which recommendations are made.

Figure(b) shows set of recommended shows.

Figure(c) shows the set of recommended content for n=10.

xi. Figure showing the pivot table

xii. (a) shows the anime for which recommendations are made,

(b) shows set of recommended shows.

(c) shows set of recommended shows for n=5.

xiii. Description of each user’s ratings, containing number of ratings, mean of ratings,

percentile ratings etc.

xiv. Figure(a) showing ratings_df_mean dataframe Figure(b) showing ratings_df_count

dataframe Figure(c) showing ratings_df_mean_count dataframe

xv. Figure showing ten similar users for user id=10

xvi. Recommendation list in User-Based Recommendation System

xvii. figure showing the list of recommended anime for user with user id=10, based on its top

10 most similar users.

xviii. figure showing the list of 15 recommended anime for user with user id=100, based on its

top 10 most similar users.

7

xix. Figure showing top-10 recommendations for user with user_id=100, based on his/her 10

most similar users, we call the following function

xx. figure showing sample MAE and MAEP values for item-based recommendation systems.

xxi. figure showing sample MAE and MAEP values for user-based recommendation systems.

xxii. figure showing similarity dataset. Here similarity column is labelled as 0.

xxiii. List of average mean deviation in similarity metric

xxiv. Figure (a) aid_list for item-based collaborative filtering system

Figure(b) avg_list for item-based collaborative filtering system

xxv. Figure showing avg_list for user-based system

xxvi. Graph(a) showing the comparative frequency distribution of accuracy% for KNN

regressor based and Item Based Collaborative filtering system.

xxvii. Graph(b) shows frequency distribution of accuracy% for user based collaborative

filtering model.

8

List of Abbreviations, Symbols and Nomenclature:

List of Abbreviations:

i. MAE-Mean Absolute Error

ii. MAEP- Mean Absolute Error Percentage

iii. Cov- Covariance

iv. KNN- K-Nearest Neighbours

v. PCC- Pearson’s Correlation Coefficient

vi. Avg- Average

vii. S.D.- Standard Deviation

viii. IEEE- Institute of Electrical and Electronics Engineers

 List of symbols:

i. µ: Mean

ii. ∩: Intersection of two sets.

iii. ρx : standard deviation of x

iv. ρ X,Y: coefficient of correlation between X and Y

v. Σ: summation of elements

vi. ∈: belongs to

vii. = : equals to

viii. { } : represents a set

ix. |a| : absolute value of a

x. + :sum

xi. - : difference

xii. * : product

xiii. / : division

xiv. ∀: Universal Quantifier

xv. == : is equal to (condition)

xvi. != : not equal to (condition)

9

 List of Nomenclature:

i. anime_id- unique id provided to each anime

ii. user_id- unique id provided to each user

iii. X_train-training set of independent variables

iv. X_test- test set for independent variables

v. y_train- training set of dependent variables

vi. y_test- test set for dependent variables

vii. y_pred- set of predicted values

viii. getNeighbors: function to produce recommended results for KNN model

ix. anime_user_matrix- a pivot table which contains ratings provided by the users to the

anime.

x. getSimilarItems: function to produce recommendations of items similar to a given

item in item-based collaborative filtering model.

xi. getSimilarUsers: function to produce a list of users similar to a given user in user-

based system

xii. recommendAnime: function to generate a list of recommended items for a user in

user-based system

xiii. similarity_df- dataset containing similarity values.

10

1. INTRODUCTION:

Recommendation systems have emerged as one of the more popular tools with growing

popularity of internet marketplace and content streaming services. Large internet companies like

Amazon, Google and Netflix all use their highly sophisticated recommendation systems to

improve user experience and ensure higher visibility of certain products. A recommendation

system can be defined as a model that constantly trains itself and provides a set of

recommendations to users based on their previous interactions with the system [3]. One of the

most popular techniques used in design of recommendation systems is collaborative filtering.

Collaborative filtering technique makes recommendations based on similarities between users’

interests from the ratings provided by the users to items [4]. Collaborative filtering models can

be user-based, item-based or hybrid in nature. This has been discussed further under experiment

section.

In order to evaluate recommendation systems implemented by different methodologies, three

different systems have been implemented. First model is an item-based K-Nearest Neighbours

model that has been implemented using machine learning technique, the second model is an

item-based collaborative filtering model and the third model is a user-based collaborative

filtering model. Both collaborative models are memory-based systems.

The evaluation metrics used in this study are accuracy, scope and similarity. Accuracy and scope

are commonly used evaluation metrics for recommendation systems and ideas of similarity

between recommended items has been proposed in earlier studies [1,2]. However, this study

proposes a different method for calculation of degree of similarity between recommended items.

The proposed similarity metric uses attributes like type of content- TV show, movie etc., number

of episodes and number of ratings to provide a similarity score to all items in the dataset.

The datasets used for this work have been collected from www.myanimelist.net, one of the most

popular anime aggregator websites, by user CooperUnion and have been made publicly available

on Kaggle under CCO: public domain license. The reason behind the selection of these datasets

is that despite the increasing popularity of anime in current popular culture, not much work has

been done on anime recommender systems. Two datasets have been used for the study- an anime

dataset and a user ratings dataset. The anime dataset contains data about 12,294 anime shows and

11

movies based on the following attributes: “name”, “anime_id”, “genre”, “episodes”, “type”,

“rating” and “members”. Similarly, the user ratings dataset contains the user ratings provided by

over 73000 users for anime in the previous set. It contains the following attributes: “user id”,

“anime id” and “rating”. The detailed description of both datasets has been given under the

experiments section.

According to Wikipedia, “Anime is a hand-drawn and computer animation originating from

Japan. The word anime is the Japanese term for animation, which means all forms of animated

media. Owing to rapid growth of distribution platforms like Crunchyroll, Daisuki, Netflix,

Amazon, among others, Japanese anime has found remarkable number of new takers. The live

entertainment and internet streaming of such content has led to a substantial rise in international

distribution of Japanese anime. Thus, internet distribution has become the most reliable and

lucrative route for its distribution across the globe.

The recommendation systems implemented in this project are content recommendation systems,

that recommend content to users based on their interests, or in case of user-based

recommendation systems based on interests of similar users. From here on the terms item anime

and content have been used interchangeably, due to the former being the formal term for research

in recommendation systems and the later being the type of item being recommended.

The experiment section of this paper discusses the recommendation models, evaluation metrics

and datasets in detail. The implementation of each recommendation system has been discussed

under the models subsection in the experiment section, the evaluation metrics and the

methodology of calculations of these metrics have been discussed under evaluation metrics and

methods subsection under the experiment section.

The results and discussion section contains observed results from the study in form of graphs and

tables and discusses the conclusions derived from these results in details.

The future work section provides suggestions for future studies based on the results and

conclusions derived from this study.

12

2. Literature Review:

[1.] “Improving Recommendation Lists Through Topic Diversification” by Ziegler et. al.

The study is based on the premise that the use of accuracy as a sole metric for evaluation of

performances of recommendation systems is not very effective and masks some inherent flaws of

recommendation systems such as recommendations not being completely based on user interests.

This research focuses on the concept of diversification in evaluating recommendation systems

using metrics like novelty and coverage in addition to the more popular accuracy metric, the

paper also presents intra-list similarity as a new metric for evaluation for recommendation

systems. After using the proposed metrics to assess user-based as well as item-based

recommendation systems it was concluded that though the results of diversification were not

very effective on user-based systems, the performance of item-based systems could be improved

significantly, and suggested finding the right trade-off between accuracy and diversification.

[2] “ Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems” by Saúl

Vargas and Pablo Castells

The study builds upon the work done above study and others and aims to establish a clear

common methodological and conceptual ground between various metrics for evaluation of

recommendation systems. It proposes ‘discovery’, ‘choice’ and ‘relevance’ as three factors in

relationship between users and items, and discusses item discovery and diversity.

[3] “Toward the next generation of recommender systems: a survey of the state-of-the-art and

possible extensions” by Adomavicius G. and Tuzhilin A., IEEE Transactions on Knowledge and

Data Engineering, vol. 17, no. 6, pp. 734-749, June 2005.

This paper discusses various state-of-the-art recommendation systems, their developments,

discusses limitations of each of these systems and suggests measures to improve their

performances.

13

3.Methodology Adopted:

This study was conducted to compare the performances of three animated show recommendation

system models on basis of three metrics- accuracy, scope and similarity. The metrics can be

defined as:

i. Accuracy- the degree of precision in recommending content based on item attributes or

user interests.

ii. Scope- the percentage of content recommended from entire dataset.

iii. Similarity- the degree of similitude or likeness between various items within the

recommended content.

The three recommendation system models used for the study are:

i. An item-based recommendation system based on K-nearest-neighbours regression

algorithm.

ii. An item-based collaborative filtering model.

iii. A user-based collaborative filtering model.

Collaborative filtering technique makes recommendations based on similarities between users’

interests from the ratings provided by the users to items. Item-based collaborative filtering

recommends items to users based on the similarity between these items and the items that user

has interacted with or rated in the past. User based collaborative filtering finds similar users

based on their mutual likes or dislikes and recommend items to a particular user based on items

liked by similar users. All three recommendation systems used in the study are top-n

recommendation systems. These models have been discussed in below.

3.1 Data Collection and Dataset Used:

The datasets used for the study have been collected from anime aggregator Myanimelist.net by

user CooperUnion and have been made publicly available on Kaggle under CCO: public domain

license. Two datasets have been used for the study- an anime dataset and a user ratings dataset.

The anime dataset contains data about 12,294 anime shows and movies based on the following

attributes:

(a)anime_id- a unique id for each anime.

14

(b)name- title of the anime.

(c)genre- genre of the anime, an anime can have multiple genres.

(d)type-type of anime such as TV, OVA, special, musical or movie.

 (e)rating-average rating out of 10 for the anime

(f)members- number of community members in an anime’s group.

(g)episodes-the number of episodes in the anime.

Similarly, the user ratings dataset contains the user ratings provided by over 73000 users for

anime in the previous set. It contains the following attributes:

(a) user_id – a unique user id for each user.

 (b) anime_id- the anime that the user has rated and,

 (c)rating- user rating from 1 to 10 and -1 if user has seen the anime but not assigned the rating.

Due to restrictions in hardware capability here we have used data for 10000 users containing

over a million ratings.

Figure 1. A sample of Anime Dataset

 Figure 2. A sample of User Ratings Dataset

15

3.2 Models Used:

3.2.1 KNN regression-based recommendation system:

Upon analyzing the anime dataset, it can be assumed that out of all attributes for each anime

‘genre’ and ‘members’ attributes have a significant impact on an anime’s average rating whereas

the attributes ‘type’ and ‘episodes’ do not have a direct relation with the average rating of an

anime. This assumption can be explained based on the empirical evidence that anime that

contained ‘action’ as their major genre had an average rating of 6.7 whereas anime that had

‘kids’ as their primary genre scored only 5.5 on average. The attribute ‘members’ relates to the

popularity of an anime, therefore, it can be assumed that anime with more members will tend to

have a higher average rating, whereas the attributes ‘type’ do not directly impact the average

ratings as both movies and show can have high as well as low ratings, and movies can only have

1 episode despite being rated highly.

KNN regression-based recommendation system model is an item-based, machine learning model

that uses k-nearest neighbors regression algorithm to predict the likely rating of an anime. Based

on the predicted average rating for an anime, the model produces top-n recommendations having

average ratings in the neighborhood of predicted ratings.

The anime dataset contains content from 44 genres. Therefore, implementing a model based on

genre as a factor requires 43 dummy variables for genres. This can lead to high dimensionality of

data which affects the robustness and accuracy of the model. In order to counter this, we use a

method proposed by the BellKor team during the Netflix prize competition [5,6]. It was proposed

that only the top-n most frequently occurring genre are used. In this study, top 15 most

frequently occurring genres were considered.

The independent variable set X contains ‘members’ attribute and 15 dummy variables for the

top-15 genres and the dependent variable set y consisted of the ‘rating’ attribute. Here n variables

have been used instead of n-1, as the value of a variable cannot be predicted based on set of n-1

values.

X= {‘members’, ‘Comedy’, ‘Action’, ‘Adventure’, ‘Drama’, ‘Mature’, ‘Fantasy’, ‘Kids’,

‘Music’, ‘Dementia’, ‘Historical’, ‘Mecha’, ‘Slice of life’, ‘Romance’, ‘Demons’, ‘Sci-fi’}

Y={‘ratings’}

16

After separation of independent and dependent variables, the dataset is split into training and

testing sets. A ratio of 80:20 for training and testing set has been used for this study. The

resultant variable sets are X_train, X_test, y_train and y_test. Upon the separation of training

and testing sets, feature scaling is performed on the independent variable-sets X_train and

X_test, so all the values are scaled between -1 to 1. Finally, the regressor is trained on training

data and the model is ready. The vector y_pred is used for storing predicted ratings on the test

data.

This recommendation system is a top-n recommendation system. The recommendations for an

item c, produced by this system, are based on the distance between the predicted rating for c and

actual values of ratings for other items in the dataset.

For evaluation of this model- accuracy, scope and similarity metrics have been applied to the

model. The results of evaluation are discussed in the results section.

3.2.2 Item-Based Collaborative Filtering Model:

The Item-based collaborative filtering model is memory-based recommendation system model

that uses collaborative filtering technique to recommend items from item set C related to an item

ci, such that the top-n items having highest correlation with ci are recommended. For calculation

of correlation between items Pearson’s correlation coefficient (ρ) has been used. The formula for

PCC for a pair of random variables X and Y is given by

𝜌𝑋, 𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜌𝑋 𝜌𝑌

Where:

Cov (X, Y) = covariance ρx is standard deviation of X

ρy is standard deviation of Y

For data cleaning, all unused tuples where the user has not watched and rated any content and all

columns representing items that have not been rated by any users are removed. This removes

most of the runtime errors as correlation on an empty matrix consisting only of nan values cannot

be calculated. This model makes use of the anime dataset as well as the user ratings dataset to

create a user-item matrix Mui: Mui = [U * C], where U is the set of all the users and C is the set of

17

all the items. This matrix stores the value of the rating provided by a user u, to an item c for all u

in U and all c in C.

Mui[i][j] = rating provided by the user ui to the item cj

To generate recommendations from item-set C for a particular item, say ci, a correlation vector

Ri is created which stores the correlation of ci with all the other items in item-set C. This can be

written as:

𝑅𝑖[𝑗] = 𝜌 𝑐𝑖, 𝑐𝑗, ∀𝑐𝑗 ∈ 𝐶

After generating the correlation vector R, the top n items having highest correlation with item ci

can be produced. This may lead to the system recommending some content that has high

correlation with item ci, but is not rated by many users. This may affect the accuracy of the

system. Therefore, a final filter is applied where the system filters out the content which has not

been rated by more than n users. In this study this n is taken as 100.

This model is evaluated on the basis of accuracy, scope and similarity. The results of these

evaluations have been discussed under the results section.

3.2.3 User-Based Collaborative Filtering Model:

Similar to the previous model, the user-based collaborative filtering model is a memory-based

recommendation system and is more computationally intensive than the K-NN regressor based

model. The model uses collaborative filtering technique to find the users in user-set U, having

similar interests as a particular user ui. Again, similar to the previous model Pearson’s

Correlation Coefficient is used for calculating the correlation. The formula for PCC is discussed

in the previous system.

In data pre-processing, all unused tuples for items that have not been rated by any user and all

columns representing users that have not rated any movie are removed. This reduces dimensions

of user-item matrix to be formed and provides better accuracy.

Like the item-based recommendation model, this model also uses both the anime and user ratings

datasets. This model creates an item-user matrix Miu: Miu = [C * U] where C is the set of all the

items and U is the set of all the users. This matrix stores the values of the ratings provided to an

item c by a user u for all u in U and for all c in C.

𝑀𝑖𝑢 [𝑖][𝑗] = 𝑟𝑎𝑡𝑖𝑛𝑔 𝑟 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚 𝑐𝑖 𝑏𝑦 𝑢𝑠𝑒𝑟 𝑢𝑗

18

To generate recommendations from user set U for a particular user ui, a correlation vector Rui is

created which stores the correlation of user ui with all other users in user-set U. This is denoted

as:

𝑅𝑢𝑖[𝑗] = 𝜌 𝑢𝑖, 𝑢𝑗 ∀𝑢𝑗 ∈ 𝑈

Upon generating the correlation vector Ru, a set Usim of top-n users with highest correlation

coefficient values when correlated with user ui can be obtained. Merging this set with user ratings

dataset on ‘user_id’ the dataset ‘Usim-item dataset’ of all items rated by the top n similar users

(denoted by usim) is obtained. A question that arises now is in regards to the process that should

be used to recommend top-m content based on interests of top-n similar users. The solution

proposed here is using a recommendation score metric. The recommendation score for each tuple

in Usim-item dataset is given by multiplication of rating provided by user usim to an item ci and the

correlation between the users ui and usim. This metric is not an indicator of the quality of an item

ci, but provides a ranking order for top-m items. An item chigh having a high value of this metric

indicates that it has been highly rated by a user usim-high who is also highly correlated with user ui.

After this the average recommendation score for each item in Usim-Item dataset is calculated, as

some items may have been ranked by multiple users usim. The number of times an item appears

in Usim-item dataset is also counted; this is another important metric that indicates the number of

similar users who have watched the item/content. An item with high frequency in Usim-item

dataset indicates that high number of people have watched the content and therefore, if its

recommendation score is high, it is likely to be recommended.

To recommend a list of top-m items based on top-n users, the top m*n contents having highest

frequencies in Usim-item dataset were filtered out first. From this list, another list containing top-

m items with highest recommendation scores is produced.

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒(𝑐𝑖,𝑢𝑠𝑖𝑚𝑗) = 𝑅𝑎𝑡𝑖𝑛𝑔(𝑐𝑖,𝑢𝑠𝑖𝑚𝑗) ∗ 𝜌 𝑢𝑖 , 𝑢𝑠𝑖𝑚𝑗

This recommendation system is evaluated on basis of accuracy, scope and similarity. The results

of these evaluations have been discussed under the results section.

19

3.3 Evaluation Metrics Used:

Like any other study, evaluation of the models helps not only in determining the consistency,

robustness and precision of the models, but also the inaccuracies and scope for future

development. Therefore, it becomes necessary that the models are evaluated using multiple and

meaningful metrics. Accuracy is the most widely used evaluation metric on recommendation

systems but it presents an incomplete picture upon which the models should be evaluated. For

example, accuracy does not take into account the diversity or similarity of items recommended

by a system or what fraction of items out of all the items are ever recommended. This may lead

to an inefficiency where the recommendations are not up to the user’s interests. Therefore, we

use two additional metrics- scope and similarity.

(a)Scope- the percentage of shows in a sample set that are recommended by a recommendation

system.

(b)Similarity-the degree of similarity between the recommended items.

Since the study uses two item-based recommendation systems and one user-based

recommendation system, same sample cannot be used to compare all the models on all metrics.

However, in order to maintain consistency in the experiments both item-based recommender

systems have been evaluated on same item samples and a different user sample has been used for

user-based recommendation system.

Moreover, the K-NN regressor model is a machine learning model, capable of high throughput,

whereas, the collaborative filtering models are memory-based models and take some time in

making each recommendation. During the data pre-processing phase, a lot of users and items

having sparse or empty vectors have been cleaned out to increase efficiency. To avoid

unexpected results and runtime errors, evaluation has not been performed on entire dataset in

case of both collaborative filtering models. However, results for entire dataset are provided for

KNN based model along with its sample results.

3.3.1 Accuracy:

Accuracy measures the precision in recommending an item based on an item attribute or user

interests. Accuracy is given by:

20

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
𝑀𝐴𝐸𝑃

100
) ∗ 100

Where:

MEAP- Mean Absolute Error Percentage

For a set of n operations:

𝑀𝐴𝐸𝑃 =
1

𝑛
[∑

|(𝑣𝑎𝑙𝑢𝑒𝑎𝑐𝑡𝑢𝑎𝑙− 𝑣𝑎𝑙𝑢𝑒𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)|

𝑣𝑎𝑙𝑢𝑒𝑎𝑐𝑡𝑢𝑎𝑙
] ∗ 100

𝑛

𝑖=1

In KNN regressor system MAEP is calculated for each item ci using the mean of ratings of top 5

recommendations as observed value and average rating of ci as actual value.

In Item-based collaborative filtering model MAEP for each item ci is calculated using mean

rating of recommended contents as observed value and average rating of ci as actual value. In

user based collaborative filtering model MAEP for each user is calculated using mean

recommendation score for each item ci as observed value and rating of item ci as actual value.

The size of sample set of items used for comparison of item-based recommendation systems is

100. Similarly, the size of sample set of users used for comparison of user-based

recommendation systems is 100.

3.3.2 Scope:

Scope metric indicates the ability of a recommendation system to make diverse predictions.

Scope is the percentage of items in the scope set that have been recommended at least once while

producing recommendations for items in test set. For a top-n recommendation system if the test

set size is x, then size of scope set should ideally be n*x. This study takes the value of n as n=5,

test set size = 100 and scope set size=500.

3.3.3 Similarity:

Similarity metric indicates likeness between items in the set of recommended items. Having a

very high similarity value between the recommended items means the recommended items are

alike in nature. For calculation of similarity between recommended items, ‘similarity score’

metric is introduced. Earlier it has been discussed how some attributes in the anime dataset, like

‘type’ and ‘episodes’, do not impact average ratings of items/content. However, these attributes

21

can be used to determine similarity between recommended items. For calculation of similarity

scores across anime dataset, another KNN regressor model is created. This model takes

‘members’, ‘episodes’ and a dummy variable set containing five variables for ‘type’, as its

independent variables. Average ratings are taken as dependent variable. After obtaining

similarity scores calculations are performed as follows:

Assume a sample set S of m users/items (ui /ci). For each user/item a set of recommended items

Srec is generated containing top-n recommended items denoted as crec. Now, similarity scores for

each recommended item are obtained by the intersection, Srec ∩ anime dataset on ‘user id. Now

mean value of similarity in Srec, denoted by µrec, is calculated. Absolute deviation from mean µrec

for each item crec is calculated in recommended set Srec as | µrec- crec|, for all crec in Srec. Now

percentage mean deviation is calculated for each item as:

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑒𝑎𝑛 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
| µrec − 𝑐𝑟𝑒𝑐|

 µrec
) ∗ 100

Average of percent mean deviation for all items in a sample set is calculated. Similarity% is

given as:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 % = 100 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚𝑒𝑎𝑛 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

Now average similarity% is calculated for Set S.

22

4. Experiment:

In this section major steps in the implementation of each recommendation system have been

discussed in detail, along with relevant figures and tables. The models have been implemented in

python, using spyder IDE. This section uses various python modules such as NumPy. Pandas,

Matplotlib, Scikit-learn and Seaborn. The section also shows the methods used for collection of

results to evaluate each Recommendation System.

4.1 Implementation of Models:

4.1.1. The KNN Regressor based recommendation system:

The first step for implementing KNN Regressor based system is to import the relevant libraries.

NumPy, Pandas and Matplotlib libraries have been used in this model. After implementing the

libraries, the anime dataset is imported as anime_df. Now pre-processing and cleaning of data is

performed using the fillna() and dropna() methods of pandas module. In the data cleaning step,

we remove the anime where average ratings, genre are not available, as these attributes are

crucial in this model.

 Figure-3: Figure showing the dataset anime_df before data cleaning

23

Figure-4 showing the dataset anime_df after cleaning

After data cleaning re-indexing is performed using the reset index() method. One of the attributes

that has a direct impact on average ratings is “genre”. The anime dataset contains content from

44 genres. Therefore, implementing a model based on genre as a factor requires 44 dummy

variables for genres(usually n-1 dummy variables are taken, but in this case the last attribute is

not dependent on other attributes as multiple genres can exist for one item). This can lead to high

dimensionality of data which affects the robustness and accuracy of the model. In order to

counter this, we use a method proposed by the Bellor team during the Netflix prize competition

[5,6]. It was proposed that only the top-n most frequently occurring genre are used. In this study,

top 15 most frequently occurring genres were considered.

 Figure-5:Figure showing the top-15 most frequent genres.

24

The next step consists of populating these dummy variables.

The independent variable set X contains ‘members’ attribute and 15 dummy variables for the

top-15 genres and the dependent variable set y consisted of the ‘rating’ attribute. Here n variables

have been used instead of n-1, as the value of a variable cannot be predicted based on set of n-1

values.

X= {‘members’, ‘Comedy’, ‘Action’, ‘Adventure’, ‘Drama’, ‘Mature’, ‘Fantasy’, ‘Kids’,

‘Music’, ‘Dementia’, ‘Historical’, ‘Mecha’, ‘Slice of life’, ‘Romance’, ‘Demons’, ‘Sci-fi’}

Y={‘ratings’}

Figure-6:Figure showing the independent variable set X.

Figure-7:figure showing the dependent variable set y

25

After this we split the data set into training and testing sets using train_test_split() method of

scikit-learn’s model-selection library.

A ratio of 80:20 for training and testing set has been used for this study. The resultant variable

sets are X_train, X_test, y_train and y_test. Upon the separation of training and testing sets,

feature scaling is performed on the independent variable-sets X_train and X_test, so all the

values are scaled between -1 to 1.

Figure-8: Figure showing the X_train DataFrame after feature scaling

Finally, the KNN regressor model is fit into the training set using KNeighborsRegressor()

method of scikit-learn. Here we use algorithm= ‘auto’, leaf size=30, and metric= ‘minkowski’.

Now rating values for the test set are predicted using predict() method.

Figure-9:Figure showing the predicted and actual values of y.

26

For recommending content distance attribute is introduced, for each item the set of recommended

content will have the least value of distance from the predicted value of the said item.

The getNeighbors() function has been implemented to produce recommended results for any

given item. It takes the following attributes:

n= number of required recommendations, item= the items for which recommendations are

produced. Matrix- the dataset used for recommendations.

For the anime ‘Nano Invaders’, recommendations produced are:

Value of y_pred[21] =7.35

Figure 10(a) showing the anime for which recommendations are made, figure10(b) shows set of

recommended shows.

Here we can observe that since this recommendation system finds the top-n shows with closest

ratings to the predicted rating of anime, all 5 recommendations have the rating of 7.35.

Similarly, we can make more than 5 predictions by increasing the value of n.

For n=10, the same anime gives following recommendations:

27

Figure10(c) shows the set of recommended content for n=10.

In the next section we will discuss about the item-based recommendation system.

4.1.2 Item-Based Recommendation System using Collaborative Filtering:

In this section, we will implement our second recommendation system model which is based on

item-based collaborative filtering technique. In item-based collaborative filtering, the ratings data

for multiple items are combined to find the items that were similarly rated by some users, once

we find a set of similar items these items can be recommended to users who have not used both

items.

The first step for building a recommendation system is to import the libraries. For this system,

NumPy, Pandas and Matplotlib libraries have been used. The next step is to import both the

anime and user_ratings datasets as anime_df and ratings_df. Now these two datasets are cleaned

to remove any users who have not rated any content or any content which has not been rated yet.

Since, this model is memory based, we now create an anime_user_matrix which contains ratings

provided by the users to the anime. This is done using the pivot_table() method.

28

Figure 11: the pivot table is a sparse matrix containing all users ratings for all shows, here nan

means the show has not been rated by the user and -1 means the show has been seen, but no

rating has been provided.

The Item-based collaborative filtering model is memory-based recommendation system model

that uses collaborative filtering technique to recommend items from item set C related to an item

ci, such that the top-n items having highest correlation with ci are recommended. For calculation

of correlation between items Pearson’s correlation coefficient (ρ) has been used. The formula for

PCC for a pair of random variables X and Y is given by

𝜌𝑋, 𝑌 =
𝐶𝑜𝑣(𝑋, 𝑌)

𝜌𝑋 𝜌𝑌

Where:

Cov (X, Y) = covariance ρx is standard deviation of X

ρy is standard deviation of Y

29

In order to produce recommendations of items similar to a given item getSimilarItems() method

has been implemented. This method takes the following parameters:

n= number of recommendations to be produced

item- the item for which recommendations have to be made

matrix- the matrix userid_anime_matrix.

For example, if top 10 recommendations for the show “Stiens; Gate” have to be produced, the

function call is:

 getSimilarItems(10,'Gintama', userid_anime_matrix)

The list of recommended items is:

Figure 12(a) showing the anime for which recommendations are made, figure12(b) shows set of

recommended shows.

30

Similarly, if we require 5 recommendations for the same anime we call:

getSimilarItems(5,'Gintama', userid_anime_matrix)

Figure12(c) for n=5

4.1.3 User Based Collaborative Filtering Model:

In this section, we will implement our third recommendation system model which is based on

user-based collaborative filtering technique. Similar to the previous model, the user-based

collaborative filtering model is a memory-based recommendation system and is more

computationally intensive than the K-NN regressor based model. The model uses collaborative

filtering technique to find the users in user-set U, having similar interests as a particular user ui.

Again, similar to the previous model Pearson’s Correlation Coefficient is used for calculating the

correlation. The formula for PCC is discussed in the previous system.

The first step for building a recommendation system is to import the libraries. For this system,

NumPy, Pandas and Matplotlib libraries have been used. The next step is to import both the

anime and user_ratings datasets as anime_df and ratings_df. Now these two datasets are cleaned

to remove any users who have not rated any content or any content which has not been rated yet.

Since, this model is memory based, we now create an anime_user_matrix which contains each

user’s ratings for the anime he/she has rated. This is done using the pivot_table() method.

31

Figure13: Description of each user’s ratings, containing number of ratings, mean of ratings,

percentile ratings etc.

Now average rating provided by each user and the number of ratings provided by each user are

stored as ratings_df_mean and ratings_df_count respectively. These dataframes are now

combined to form ratings_df_mean_count dataframe.

32

Figures14(a) showing ratings_df_mean dataframe, 14(b) showing ratings_df_count dataframe

and 14(c) showing ratings_df_mean_count dataframe

In order to produce a list of users similar to a given user getSimilarUsers() method has been

implemented. This method takes the following parameters:

n= number of similar users to be found

user- the user for which similar users have to be found

matrix- the matrix userid_anime_matrix.

33

Figure15: Figure showing ten similar users for user id=10

 Here it is possible to find many users with perfect correlation as user 10 has only rated three

items, so anyone among the 10000 users rating same items as user 10 and giving them the same

ratings can achieve perfect correlation.

To generate recommendations from user set U for a particular user ui, a correlation vector Rui is

created which stores the correlation of user ui with all other users in user-set U. This is denoted

as:

𝑅𝑢𝑖[𝑗] = 𝜌 𝑢𝑖, 𝑢𝑗 ∀𝑢𝑗 ∈ 𝑈

Upon generating the correlation vector Ru, a set Usim of top-n users with highest correlation

coefficient values when correlated with user ui can be obtained. Merging this set with user ratings

dataset on ‘user_id’ the dataset ‘Usim-item dataset’ of all items rated by the top n similar users

(denoted by usim) is obtained. A question that arises now is in regards to the process that should

be used to recommend top-m content based on interests of top-n similar users. The solution

proposed here is using a recommendation score metric. The recommendation score for each tuple

34

in Usim-item dataset is given by multiplication of rating provided by user usim to an item ci and the

correlation between the users ui and usim.

The function recommend_Anime_list() is used to generate a list of recommended items for a

user. It takes the following parameters:

number_recommended = number of similar users to be found

n= number of anime to be recommended

user- the user for which recommendations have to be produced.

matrix- the matrix userid_anime_matrix.

For user 10 on userid_anime_matrix to get a list of 10 recommended anime using 10 most

similar users we call:

recommended_anime_list1=recommendAnimeList(10,10,userid_anime_matrix[10],userid_anim

e_matrix)

Figure-16:Recommendation list in User-Based Recommendation System

But this does not show the names of recommended anime, therefore we map the following list

with anime_df on anime_id to get the names of the anime:

For this purpose a new function recommendAnime() is created, it takes the following parameters:

number_recommended = number of similar users to be found

n= number of anime to be recommended

user- the user for which recommendations have to be produced.

35

matrix- the matrix userid_anime_matrix.

Using the recommendAnime() function on the same user with same parameters we get:

Figure17:figure showing the list of recommended anime for user with user id=10, based on its

top 10 most similar users.

Similarly if we want to recommend top-15 shows to user with user_id=100, based on top 10

neighbours we call the function:

recommendAnimeList(10,15,userid_anime_matrix[100],userid_anime_matrix)

36

Figure 18: figure showing the list of 15 recommended anime for user with user id=100, based on

its top 10 most similar users.

Similarly, to increase the number of similar users to a number we have to change the value of

number_recommended to that number:

Example: To get the top-10 recommendations for user with user_id=100, based on his/her 10

most similar users, we call the following function:

recommendAnimeList(15,10,userid_anime_matrix[100],userid_anime_matrix)

37

Figure 19: Figure showing top-10 recommendations for user with user_id=100, based on his/her

10 most similar users, we call the following function:

The next section discusses the evaluation of these recommendation systems based on accuracy,

scope and similarity.

38

4.2 Evaluation Metrics Used:

4.2.1 Accuracy:

Accuracy measures the precision in recommending an item based on an item attribute or user

interests. Accuracy is given by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (1 −
𝑀𝐴𝐸𝑃

100
) ∗ 100

For the KNN regressor system MAEP is calculated for each item ci using the mean of ratings of

top 5 recommendations as observed value and average rating of ci as actual value.

In Item-based collaborative filtering model MAEP for each item ci is calculated using mean

rating of recommended contents as observed value and average rating of ci as actual value. In

user based collaborative filtering model MAEP for each user is calculated using mean

recommendation score for each item ci as observed value and rating of item ci as actual value.

The size of sample set of items used for comparison of item-based recommendation systems is

100. Similarly, the size of sample set of users used for comparison of user-based

recommendation systems is 100.

In case of KNN regressor system we calculate the values of MAE simply by finding the absolute

value of difference between y_pred and y_test. After this MAEP is calculated simply by dividing

obtained MEA value by original y_test value and multiplying the resultant by 100.

For example, for an anime its predicted value is 6.07 and actual value is 6.35

MAE= |6.35-6.07|= 0.28

MAEP = (MAE/actual_value)*100 -> (0.28/6.35)*100= 4.4%

Similarly, we calculate MAEP for all test items and value of accuracy% is:

 Accuracy%=100-MAEP

In case of item-based recommendation system we define the functions meanAbsoluteError() and

meanAbsoluteErrorPercentage() to calculate MAE and MAEP respectively. These functions take

the following parameters:

n= number of recommendations to be produced

item- the item for which recommendations have to be made

matrix- the matrix userid_anime_matrix.

39

For example, to calculate MAE for an anime ‘Persona 3 the Movie 1: Spring of birth’

Figure 20: figure showing sample MAE and MAEP values for item-based recommendation

systems.

Here, MAE=0.66 and MAEP=8.47%, therefore

Accuracy%=100-MAEP=91.53%

In case of user-based recommendation system, we define the functions meanAbsoluteError() and

meanAbsoluteErrorPercentage() to calculate MAE and MAEP respectively. These functions take

the following parameters:

number_recommended = number of similar users to be found

n= number of anime to be recommended

user- the user for which recommendations have to be produced.

matrix- the matrix userid_anime_matrix.

For example, if we want to calculate MEA and MEAP for a user with user_id=85

We call the functions as:

meanAbsoluteError(10,10,userid_anime_matrix[85],userid_anime_matrix)

meanAbsoluteErrorPercentage(10,10,userid_anime_matrix[85],userid_anime_matrix)

40

Figure 21: figure showing sample MAE and MAEP values for user-based recommendation

systems.

Here MAE=0.704 and MAEP=7.53%

Therefore accuracy% =100-7.53=92.47%

4.2.2 Scope:

Scope metric indicates the ability of a recommendation system to make diverse predictions.

Scope is the percentage of items in the scope set that have been recommended at least once while

producing recommendations for items in test set. For a top-n recommendation system if the test

set size is x, then size of scope set should ideally be n*x. This study takes the value of n as n=5,

test set size = 100 and scope set size=500.

No specific functions were defined for calculation of scope but it was simply calculated by

taking all the recommendations from experiment set and matching them from sample set, then

percentages of matching items were calculated from total number of items in the matching set.

41

4.2.3 Similarity:

Similarity metric indicates likeness between items in the set of recommended items. Having a

very high similarity value between the recommended items means the recommended items are

alike in nature. For calculation of similarity we use a new metric similarity using a different

KNN regressor model that takes ‘episode’, ‘members’ and ‘type’ as the set of independent

variables and ‘rating’ as the dependent variable.

Assume a sample set S of m users/items (ui /ci). For each user/item a set of recommended items

Srec is generated containing top-n recommended items denoted as crec. Now, similarity scores for

each recommended item are obtained by the intersection, Srec ∩ anime dataset on ‘user id. Now

mean value of similarity in Srec, denoted by µrec, is calculated. Absolute deviation from mean µrec

for each item crec is calculated in recommended set Srec as | µrec- crec|, for all crec in Srec. Now

percentage mean deviation is calculated for each item as:

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑒𝑎𝑛 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
| µrec − 𝑐𝑟𝑒𝑐|

 µrec
) ∗ 100

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 % = 100 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑚𝑒𝑎𝑛 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

To calculate similarity, we first define a similarity dataset similarity_df, this is just the anime_df

dataset with an added predicted similarity column.

42

Figure22: figure showing similarity dataset. Here similarity column is labelled as 0.

 In each case of calculation of similarity, we maintain an average list to find the average mean

deviation of each recommended item from the mean similarity in the recommendation set. Now

we take the average of this list to give us average of average mean deviation. This value is then

subtracted from 100 to give us the similarity percentage:

Merged_set in each case is the dataframe formed by merging the recommendation list with

similarity_df to get similarity values for all items in the recommended list.

For example, in case of KNN system if we take values between 100 to 109 in a loop to calculate

similarity, the average list contains 10 values of average mean deviation in similarity metric.

43

 Figure23: List of average mean deviation in similarity metric

Taking the average of values in this list we get:

Percentage mean deviation= 7.61%

Therefore Similarity= 100- Percentage mean deviation= 92.39%

Similarly, in case of item-based recommendation system using collaborative filtering for a list of

10 anime in anime_df defined by aid_list(figure a) the average list is given by(figure b):

44

Figure 24(a) aid_list and 24(b) avg_list for item-based collaborative filtering system

Taking the average of values in this list we get:

Percentage mean deviation= 11.33%

Therefore Similarity= 100- Percentage mean deviation= 88.67%

45

in case of user-based recommendation system using collaborative filtering for a list of 5 users

with user_ids from 17 to 21 the average list is given by:

Figure 25: avg_list for user-based system

Taking the average of values in this list we get:

Percentage mean deviation= 10.09%

Therefore Similarity= 100- Percentage mean deviation= 89.91%

This concludes our experiment section, results and discussions for these experiments are given in

the next section.

46

5.Results and Discussion:

Accuracy:

Accuracy for item-based recommendation systems were taken using a common continuous

sample consisting of 100 items and calculating MAEP for each item. The observed results were

as follows: - (a)The value of MAEP for KNN regressor model was found to be 5.37% and its

accuracy was found to be 94.63%. (b.) The value of MAEP for item-based collaborative filtering

model was found to be 5.03% and hence its accuracy was calculated as 94.97%. For User-based

collaborative filtering model a sample of 100 users was taken for calculation of MAEP and

accuracy. The results observed were: - (a)The value of MAEP for user-based collaborative

filtering model was found to be 8.53%, hence its accuracy was calculated as 91.47%.

Serial No. Model Name MAEP Accuracy

 1. KNN regressor based model 5.37% 94.63%

 2. Item-based collaborative

filtering model

 5.03% 94.97%

 3. User-based collaborative

filtering model

 8.53% 91.47%

 TABLE 3- Table showing the values of MAEP and Accuracy for each model.

47

 Serial No.

 KNN regression model Item-Based Collaborative

Filtering Model

 MAEP Accuracy MAEP Accuracy

 802 6.41% 93.59% 8.47% 91.53%

 803 2.17% 97.83% 0.87% 99.13%

 804 3.04% 96.96% 5.13% 94.87%

 805 2.32% 97.68% 6.9% 93.1%

 806 6.49% 93.51% 6.53% 93.47%

TABLE-4 Table comparing the values of MAEP and Accuracy between both item-based

recommendation system models. Only 5 comparisons are shown here.

TABLE 5- showing the values of MAEP and Accuracy for user-based recommendation

system model.

 User Id User-Based Collaborative Filtering Model

 MAEP Accuracy

 140 4.92% 95.08%

 141 7.61% 92.39%

 142 5.24% 94.76%

 143 6.52% 93.48%

 144 12.13% 87.87%

48

49

Figure 26:Graph (a) showing the comparative frequency distribution of accuracy% for KNN

regressor based and Item Based Collaborative filtering system. Figure27:Graph (b) shows

frequency distribution of accuracy% for user based collaborative filtering model.

Upon calculating the accuracy for the entire test set in KNN regressor based system, the accuracy

was found to be 90.27%.

From the above results following conclusions can be made:

(1) All the recommendation systems performed well on this metric, as accuracy was found to

be greater than 90% in all cases.

(2) Out of KNN regressor system and Item-Based collaborative filtering model, the

collaborative filtering model performed slightly better, with the difference in accuracy

percent being 0.34% between the two of them.

(3) 3 out of 100 samples gave accuracy less than 75% for user based collaborative filtering

model, this could be the result of cold-start problem, where it becomes difficult to

recommend items to the new user due to the data on the user being sparse. This results in

loss of accuracy.

Scope:

Upon using the same scope sample set and experiment set for all three recommendation systems,

the following results were observed: (a)54 out of 500 items in scope sample set were

recommended by KNN regressor based model. (b)15 out of 500 items in scope sample set were

recommended by item based collaborative filtering system. And (c) 7 out of 500 items in scope

sample set were recommended by user based collaborative filtering system. From this result it

can be concluded that:

(1) The low values of scope can be due to the systems being top-N recommendation system

and hence neglecting majority of items that have low average ratings.

Similarity:

For calculation of similarity a sample set of items of size =100 for KNN regressor and Item-

based collaborative filtering model is used. Another sample set of 100 users is used for user-

based collaborative filtering model. Upon application of similarity score metric and calculation

50

of average similarity percentage, the results observed were: (a)The value of Average similarity

percentage for KNN regressor based model was found to be 90.31%, whereas, average similarity

percentage for item-based collaborative filtering model was found to be 91.25%. (b) the value

average similarity percentage for user-based collaborative filtering model was observed to be

90.01%.

Serial No. Model Name Similarity

 1. KNN regressor based model 90.31%

 2. Item-based collaborative

filtering model

 91.25%

 3. User-based collaborative

filtering model

 90.01%

 TABLE 6- Table showing the values of similarity percentage for each model.

Following Conclusions can be made from the above results:

(1) All three recommendation systems achieve high values of similarity, which indicates

strong likeness between recommended items in a set.

(2) However, having high values of similarity can make recommendations systems

monotonous and affect their ability to make unique recommendations.

51

Finally, the results in this section can be summarized as:

Serial

No.

 Model Name

Accuracy

 Scope

Similarity

 1. KNN regressor based

model

 94.63% 10.8% 90.31%

 2. Item-based collaborative

filtering model

94.97% 3% 91.25%

 3. User-based collaborative

filtering model

91.47% 1.4% 90.01%

 Table 7: overall performance of all systems under all the metrics.

From the above study, it can therefore, be concluded that:

(1) There seems to be some degree of correlation between the accuracy and similarity values,

based on the results of this study, the item-based collaborative filtering model had the higher

values of accuracy and similarity percentages than KNN regressor based model for the same

samples, while the user-based recommendation system should not be compared with the

other systems due to the use of different samples, it is worth noting that it had the lowest

values of accuracy and similarity for any recommendation system model.

(2) None of the three recommendation system models performed well in case of scope metric.

The possible reasons for this could be: - (a) lack of observations performed. (b)poor

definition of metric.

(3) The recommendation systems performed well in case of accuracy metric. The content

recommended by these systems had less difference with ratings of the content based on

which they were recommended, or in case of user-based recommendation systems the

recommendation scores for items had low difference compared to actual rating of items.

52

Additional Tables, Figures and Graphs:

Table 8: Table showing sample results for accuracy metric in KNN Regressor based

Recommendation system.

53

Table 9 : Table showing sample results for accuracy metric in item-based collaborative

filtering Recommendation system.

54

Table10 : Table showing sample results for accuracy metric in user-based collaborative

filtering Recommendation system.

55

Table11: Table showing sample results for similarity metric in KNN Regressor based

Recommendation system.

56

Table12 : Table showing sample results for similarity metric in item-based collaborative filtering

Recommendation system.

57

Table13 : Table showing sample results for similarity metric in user-based collaborative filtering

Recommendation system.

58

6. FUTURE WORK:

This aim of this study was to study three different types of recommendation systems and

evaluate their performances based on three performance metrics – accuracy, scope and similarity.

Based on the findings of this study the suggested future work includes studying the relationship

between accuracy of recommendations and similarity between recommended results. Other

suggested work includes:

I. The effect that number of episodes or type of content have on these recommendations.

II. Evaluation of more complex recommendation systems based on the similarity metric

proposed.

59

REFERENCES:

[1.] “Improving Recommendation Lists Through Topic Diversification” c, Ziegler CN et. al.

[2.] “Rank and Relevance in Novelty and Diversity Metrics for Recommender Systems”, Vargas

S. and Castells P., Universidad Autónoma de Madrid Escuela Politécnica Superior,

Departamento de Ingeniería Informática.

[3.]"Toward the next generation of recommender systems: a survey of the state-of-the-art and

possible extensions," Adomavicius G. and Tuzhilin A., IEEE Transactions on Knowledge and

Data Engineering, vol. 17, no. 6, pp. 734-749, June 2005.

[4.] "Collaborative Filtering Recommender Systems", Ekstrand M.D., Riedl J.T. and Konstan J.

A. (2011), Foundations and Trends® in Human–Computer Interaction: Vol. 4: No. 2, pp 81-173

[5.] “The BellKor Solution to the Netflix Grand Prize”, Koren Y., August 2009

[6.] “Application of Dimensionality Reduction in Recommender System -- A Case Study”,

Sarwar B.M. et. al., GroupLens Research Group / Army HPC Research Center Department of

Computer Science and Engineering University of Minnesota.

60

Appendix 1: Sample code used for the project:

In K-NN Regressor Model:
-*- coding: utf-8 -*-

"""

Created on Tue Mar 31 13:10:02 2020

@author: anadi

"""

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

Importing the dataset

anime_df=pd.read_csv('anime.csv')

anime3_df=pd.read_csv('anime3.csv')

#filling tuples with unknown values

values={'genre':'Unknown','members':0,'rating':0}

anime_df.fillna(value=values,inplace=True)

#dropping nan values

anime_df.dropna(how='any',inplace=True)

anime3_df.dropna(how='any',inplace=True)

#resetting the indices

anime_df=anime_df[(anime_df != 0).all(1)]

anime_df=anime_df.reset_index()

anime_df=anime_df.iloc[:,1:]

#creating a list of top 15 most frequently occurring genres across the dataset

top_15_genre_list=anime3_df.value=anime3_df['genre'].value_counts().sort_values(ascending=

False).head(15).index

#create dummies for top 15 genre

for i in range(0,14):

 anime_df[top_15_genre_list[i]]=0

#populating the dummies for top 15 genre

for i in range(0,14):

61

 for j in range(0,len(anime_df)):

 anime_df[top_15_genre_list[i]][j]=np.where(top_15_genre_list[i] in anime_df['genre'][j]

,1,0)

#seperation of independent and dependent variables

X=anime_df.iloc[:,6:20].values

y=anime_df.iloc[:,5].values

#train test split

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

Feature Scaling

from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()

X_train = sc_X.fit_transform(X_train)

X_test = sc_X.transform(X_test)

#sc_y = StandardScaler()

#y_train = sc_y.fit_transform(y_train.reshape(-1,1))

#fitting classifier into training set

from sklearn.neighbors import KNeighborsRegressor

classifier=KNeighborsRegressor(n_neighbors=5,algorithm='auto',

metric='minkowski',p=2,weights='uniform')

classifier.fit(X_train,y_train)

#making prediction of ratings for test values

y_pred=classifier.predict(X_test)

'''for train set

y_pred_entire=classifier.predict(X_train)

y_diff_entire=y_pred_entire-y_train

MAEP=(y_diff_entire/y_train)*100

Avg_MAEP=sum(MAEP)/len(MAEP)'''

"""from sklearn.metrics import confusion_matrix

cm=confusion_matrix(y_test,y_pred)

"""

#sample object of FetchNeibours class for prediction and evaluations

new_pred=FetchNeighbors()

abc=new_pred.getNeighbors(10,y_pred_entire[15],anime_df)

abc2=new_pred.getNeighbors(10,y_test[15],anime_df_new)

62

#absolute deviation across test set

y_diff=abs(y_pred-y_test)

'''abc = filter(lambda x: x < 1.5, y_diff)

y_diff=list(abc)'''

#MAE across test set

sum(y_diff)/len(y_diff)

#MAEP

MAEP=(y_diff/y_test)*100

Avg_MAEP=sum(MAEP)/len(MAEP)

#function for calculating squares and roots of lists

def square(list):

 return [i ** 2 for i in list]

def square_root(list):

 return [i ** 0.5 for i in list]

#comparison of results between KNN regressor model and Item based collaborative filtering

model

sample=anime_df['name'][800:900]

sample_knn=pd.merge(sample,anime_df,on='name')

sample_knn_X=sample_knn.iloc[:,7:21].values

sample_knn_y=sample_knn.iloc[:,6].values

#feature scaling

sample_knn_X=sc_X.transform(sample_knn_X)

sample_pred=classifier.predict(sample_knn_X)

#calculation of accuracy

difference_sample=abs(sample_knn_y-sample_pred)

MAE_sample=sum(difference_sample)/len(difference_sample)

MAEP_knn=(difference_sample/sample_knn_y)*100

Avg_MAEP_knn=sum(MAEP_knn)/len(MAEP_knn)

MAE_list=pd.DataFrame(difference_sample)

MAEP_list=pd.DataFrame(MAEP_knn)

#merging dataframes for plotting

sample_results_knn=pd.merge(MAE_list,MAEP_list,left_index=True,right_index=True)

63

#FetchNeighbours class:

import pandas as pd

import numpy as np

class FetchNeighbors:

 def ___init__(self, name):

 self.name = name

 #creating distance variable

 from numpy import zeros

 anime_df_new=pd.DataFrame(anime_df)

 distance=zeros([len(anime_df)])

 anime_df_new=pd.DataFrame(anime_df)

 anime_df_new['distance']=np.nan

 values={'distance':0}

 anime_df_new.fillna(value=values,inplace=True)

 #getNeighbors function returns a list of content with least distance from predicted set

 def getNeighbors(self,n,pred,anime_df_new):

 neighbor_list=[]

 for i in range(0,len(anime_df_new['distance'])):

 anime_df_new['distance'][i]=abs(pred-anime_df_new['rating'][i])

 neighbor_list=anime_df_new.sort_values(ascending=True,by='distance').head(n)

 return neighbor_list

 #to predict for any tuple

 def predict_single(self,a,i):

 a=X[i]

 a=np.array(a)

 a=np.expand_dims(a,0)

 b=classifier.predict(a)

 return b

 In item based collaborative filtering model:

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

Importing the dataset

anime_df=pd.read_csv('anime.csv')

rating_df=pd.read_csv('rating.csv')

64

#sample set

#sample=anime_df['name'][838:900]

#merge the dataframes

anime_rating_df=pd.merge(anime_df,rating_df, on='anime_id')

#visualization of data

anime_rating_df.groupby('name')['rating_x'].describe()

#mean and count dataframes

ratings_df_mean=anime_rating_df.groupby('name')['rating_y'].describe()['mean']

ratings_df_count=anime_rating_df.groupby('name')['rating_y'].describe()['count']

ratings_mean_count_df=pd.concat([ratings_df_mean,ratings_df_count],axis=1)

#userid movieid matrix

userid_anime_matrix=anime_rating_df.pivot_table(index='user_id',columns='name',values='ratin

g_y')

#recommendations for single user

u1=CollaborativeItemBased()

u1.accuracy(5,'Gintama',userid_anime_matrix)

u1.getSimilarItems(5,'Gintama',userid_anime_matrix)

getSimilarItems(5,'Gintama',userid_anime_matrix)

#importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import scipy as sp

class CollaborativeItemBased:

 def ___init__(self, name):

 self.name = name

 #getSimilarItems returns a list of recommended content

 def getSimilarItems(n,item,matrix):

 item_matrix=matrix

 item_matrix_correlation=pd.DataFrame(userid_anime_matrix.corrwith(

matrix[item]),columns=['Correlations'])

 item_matrix_correlation.dropna(inplace=True)

 item_matrix_correlation=item_matrix_correlation.join(ratings_mean_count_df['count'])

65

 recommended_content_list=

item_matrix_correlation[item_matrix_correlation['count']>100].sort_values('Correlations',ascend

ing=False).head(n+1)

 return recommended_content_list

 #functions for calculating squares and roots of lists

 def square(list):

 return [i ** 2 for i in list]

 def square_root(list):

 return [i ** 0.5 for i in list]

 #Calculation of MAE for evaluation

 def meanAbsoluteError(n,item,matrix):

 rec_content_list=getSimilarItems(n,item,matrix)

 accuracy_list=pd.merge(anime_df,rec_content_list,on='name')

 item_rating=anime_df[anime_df.name==item]['rating']

 avg_rating=sum(accuracy_list['rating'])/len(accuracy_list['rating'])

 accuracy_score_mae=abs(item_rating-avg_rating).tolist()

 accuracy_score_mae=accuracy_score_mae[0]

 return accuracy_score_mae

 #Calculation of MAE for evaluation

 def meanAbsoluteErrorPercentage(n,item,matrix):

 rec_content_list=getSimilarItems(n,item,matrix)

 accuracy_list=pd.merge(anime_df,rec_content_list,on='name')

 item_rating=anime_df[anime_df.name==item]['rating']

 avg_rating=sum(accuracy_list['rating'])/len(accuracy_list['rating'])

 accuracy_score_mae=abs(item_rating-avg_rating)

 accuracy_score_maep=((accuracy_score_mae/item_rating)*100).tolist()

 accuracy_score_maep=accuracy_score_maep[0]

 return accuracy_score_maep

 #evaluation of model

 def getAccuracyList(n,item,matrix):

 rec_content_list=getSimilarItems(n,item,matrix)

 accuracy_list=pd.merge(anime_df,rec_content_list,on='name')

 accuracy_list.dropna(item)

 return accuracy_list

66

 def getError(start_index,sample_size):

 accuracy_score_list=[]

 while sample_size!=0:

accuracy_score_list.append(accuracy(6,anime_df.index[start_index],userid_anime_matrix))

 start_index+=1

 sample_size-=1

 return accuracy_score_list

 def sampling(i,list1,list2,list3):

 list1.append(meanAbsoluteError(5,i,userid_anime_matrix))

 list2.append(meanAbsoluteErrorPercentage(5,i,userid_anime_matrix))

 list3.append(i)

 test1=[]

 test2=[]

 index1=[]

 xyz=meanAbsoluteError(5,'Gintama',userid_anime_matrix)

 sampling('Gintama',test1,test2,index1)

 index1.pop(5)

 test1.pop(5)

 test2.pop(5)

 #comparison of results

 #meanAbsoluteErrorPercentage(5,'Gintama',userid_anime_matrix)

 MAE_list_collaborative_item=[]

 MAEP_list_collaborative_item=[]

 Name_list=[]

 sample=sample.tolist()

 for i in sample:

 MAE_list_collaborative_item.append(meanAbsoluteError(5,i,userid_anime_matrix))

 MAEP_list_collaborative_item.append(

meanAbsoluteErrorPercentage(5,i,userid_anime_matrix))

 Name_list.append(i)

 MAE_list_collaborative_item=pd.DataFrame(MAE_list_collaborative_item)

67

 MAEP_list_collaborative_item=pd.DataFrame(MAEP_list_collaborative_item)

 Name_list=pd.DataFrame(Name_list)

sample_result_collaborative_item=pd.merge(Name_list,MAE_list_collaborative_item,left_index

=True,right_index=True)

 sample_result_collaborative_item=pd.merge(

sample_result_collaborative_item,MAEP_list_collaborative_item,left_index=True,right_index=

True)

 new1= meanAbsoluteError(5,'Persona 3 the Movie 1: Spring of Birth',userid_anime_matrix)

 new2= meanAbsoluteErrorPercentage(5,'Persona 3 the Movie 1: Spring of

Birth',userid_anime_matrix)

For user-based collaborative filtering model:

Importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import scipy as sp

Importing the dataset

anime_df=pd.read_csv('anime.csv')

rating_df=pd.read_csv('rating.csv')

#merge the dataframes

anime_rating_df=pd.merge(anime_df,rating_df, on='anime_id')

anime_rating_df.groupby('user_id')['rating_y'].describe()

#mean and count dataframes

ratings_df_mean=anime_rating_df.groupby('user_id')['rating_y'].describe()['mean']

ratings_df_count=anime_rating_df.groupby('user_id')['rating_y'].describe()['count']

#merging mean and count dataframes

ratings_mean_count_df=pd.concat([ratings_df_mean,ratings_df_count],axis=1)

68

#userid movieid matrix

userid_anime_matrix=anime_rating_df.pivot_table(index='name',columns='user_id',values='ratin

g_y')

#userid_anime_matrix=userid_anime_matrix.transpose()

"""

Created on Thu Apr 9 03:25:04 2020

@author: anadi

"""

#importing the libraries

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import scipy as sp

class Collaborative:

 def ___init__(self, name):

 self.name = name

 #getSimilarUsers returns a list of n users from matrix which have similar interests to the user

 def getSimilarUsers(n,user,matrix):

 user_matrix=matrix

 user_matrix_correlation=pd.DataFrame(user_matrix.corrwith(

user),columns=['Correlations'])

 user_matrix_correlation.dropna(inplace=True)

 user_matrix_correlation=user_matrix_correlation.join(ratings_mean_count_df['count'])

 neighbor_list=

user_matrix_correlation[user_matrix_correlation['count']>200].sort_values('Correlations',ascendi

ng=False).head(n)

 return neighbor_list

 #getSimilarUsers(100,userid_anime_matrix[44],userid_anime_matrix)

 '''def recommendAnime(number_recommended,n,user,matrix):

 neighbor_list=getSimilarUsers(n,user,matrix)

 #rec_list=anime_rating_df=pd.merge(rating_df,neighbor_list, on='user_id')

 rec_lis=pd.merge(rating_df,neighbor_list, on='user_id')

 rec_list['rec_score']=rec_list['rating']*rec_list['Correlations']

recommended_anime=rec_list.sort_values(by='rec_score',ascending=False).head(number_recom

mended)

 recommended_anime_name=pd.merge(

recommended_anime,anime_df,on='anime_id').drop(axis=1,columns=['episodes','user_id','type','

Correlations','members','genre'])

69

 return recommended_anime_name

 '''

 #functions for calculating squares and roots of lists

 def square(list):

 return [i ** 2 for i in list]

 def square_root(list):

 return [i ** 0.5 for i in list]

 #recommendAnime returns a list containing recommended content based on recommendation

score

 def recommendAnime(number_recommended,n,user,matrix):

 neighbor_list=getSimilarUsers(n,user,matrix)

 rec_list=pd.merge(rating_df,neighbor_list, on='user_id')

 rec_list['rec_score']=rec_list['rating']*rec_list['Correlations']

 rec_list_count=rec_list.groupby('anime_id')['rec_score'].describe()['count']

 rec_list_mean=rec_list.groupby('anime_id')['rec_score'].describe()['mean']

 rec_list_mean_count=pd.merge(rec_list_count,rec_list_mean,on='anime_id').dropna()

recommend_anime=rec_list_mean_count.sort_values(by='count',ascending=False).head(100)

recommend_anime_final=recommend_anime.sort_values(by='mean',ascending=False).head(n)

 recommended_anime_name=pd.merge(

recommend_anime_final,anime_df,on='anime_id').drop(axis=1,columns=['episodes','type','memb

ers','genre'])

 return recommended_anime_name

 #similar to recommendAnime but ruturns list of anime id

 def recommendAnimeList(number_recommended,n,user,matrix):

 neighbor_list=getSimilarUsers(n,user,matrix)

 rec_list=pd.merge(rating_df,neighbor_list, on='user_id')

 rec_list['rec_score']=rec_list['rating']*rec_list['Correlations']

 rec_list_count=rec_list.groupby('anime_id')['rec_score'].describe()['count']

 rec_list_mean=rec_list.groupby('anime_id')['rec_score'].describe()['mean']

 rec_list_mean_count=pd.merge(rec_list_count,rec_list_mean,on='anime_id').dropna()

recommend_anime=rec_list_mean_count.sort_values(by='count',ascending=False).head(100)

recommend_anime_final=recommend_anime.sort_values(by='mean',ascending=False).head(n)

 return recommend_anime_final

 #calculation of MAE for evaluation

 def meanAbsoluteError(number_recommended,n,user,matrix):

 acc_list=recommendAnimeList(number_recommended,n,user,matrix)

 sim=pd.merge(acc_list,anime_df,on='anime_id')

 deviation_mean_rating=abs(sim['mean']-sim['rating'])

 mean_absolute_error=sum(deviation_mean_rating)/len(deviation_mean_rating)

 return mean_absolute_error

70

 #calculation of MAEP for evaluation

 def meanAbsoluteErrorPercentage(number_recommended,n,user,matrix):

 acc_list=recommendAnimeList(number_recommended,n,user,matrix)

 sim=pd.merge(acc_list,anime_df,on='anime_id')

 deviation_mean_rating=abs(sim['mean']-sim['rating'])

 mean_absolute_error=sum(deviation_mean_rating)/len(deviation_mean_rating)

 mean_absolute_error_percentage_list=(deviation_mean_rating/sim['mean'])*100

mean_absolute_error_percentage=sum(mean_absolute_error_percentage_list)/len(mean_absolute

_error_percentage_list)

 return mean_absolute_error_percentage

 #sampling for observations

 def sampling(i,list1,list2,list3):

 list1.append(meanAbsoluteError(10,10,userid_anime_matrix[i],userid_anime_matrix))

list2.append(meanAbsoluteErrorPercentage(10,10,userid_anime_matrix[i],userid_anime_matrix)

)

 list3.append(i)

