

PARAMETER EXPLOITATION IN WEB APPLICATIONS
 & ITS PREVENTION

 A Project Report of Capstone Project - 2

 Submitted by

 ANKIT KUMAR
 (1613101141 / 16SCSE101134)

 in partial fulfillment for the award of the degree
 Of
 Bachelor of Technology
 In
 Computer Science and Engineering With Specialization of
 Computer Networking and Cyber Security

 SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

 Under the supervision of
 Dr. Sanjeev Kumar Prasad
 Associate Professor
 School of Computing Science and Engineering

 MAY - 2020

1

 SCHOOL OF COMPUTING SCIENCE AND

ENGINEERING
 BONAFIDE CERTIFICATE

Certified that this project report “PARAMETER EXPLOITATION IN WEB
APPLICATIONS & ITS PREVENTION” is the bonafide work of “ANKIT
KUMAR (1613101141)” who carried out the project work under my
supervision.

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR
Dr. MUNISH SHABARWAL, Dr. Sanjeev Kumar Prasad
PhD (Management), PhD (CS) Associate Professor
Professor & Dean, Professor
School of Computing Science & School of Computing Science &
Engineering Engineering

2

 Abstract

A web application is a computer program that utilizes web browser and web technology
to perform tasks over the internet. In recent years, millions of businesses use the
internet as an effective communication channel which lets them exchange the
information worth their target market and makes fast, secure transactions. However,
there are many threats which are arising to gain this valuable information which is
mainly done by various kinds of attackers who use different kinds of techniques for data
thieves. So, the challenge is to provide security to various web applications and prevent
the attacker to gain root shell access and admin passwords As the Internet becomes
more and more complex, newly found vulnerabilities continue to develop and through
web-based applications, these vulnerabilities are exploited. One of the most common
styles of malicious attacks that come to mind is code injection.The unavailability and
high price of automated scanners for detecting vulnerabilities in web applications which
leads to defacement , hijacking , stealing data from servers creates a security problem
for all businesses as well as government people. So making an affordable scanner is
important.In this project we will develop a vulnerability scanner for finding vulnerabilities
in web applications and provide information about its remediation.Cross site scripting
(XSS), SQL Injection, File Inclusions are types of attacks on web pages and account as
the unsafe vulnerability existed in web applications. Once the vulnerability is oppressed,
an intruder advances intended access of the authenticated user’s web-browser and may
Perform session-hijacking, cookie-stealing, malicious redirection and
malware-spreading. As prevention against such attacks, it is essential to implement
security measures that certainly block the third party intrusion. Vulnerabilities of
websites are exploited over the network through web request using GET and POST
methods. In this project, we are focusing on injection, detection and information about
preventing these attacks. The unavailability and high price of automated scanners for
detecting vulnerabilities in web applications which leads to defacement, hijacking,
stealing data from servers creates a security problem for all businesses as well as
government people. So making an affordable scanner is important. In this project we will
develop a vulnerability scanner for finding vulnerabilities in web application and provide
information about its remediation.

3

 TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 Abstract 03

 List Of Table 05

 List Of Figures 06

 List Of Symbol 06

1. Introduction 07

1.1 Overall description 07

1.1.1 Cross site scripting 07

1.1.2 Local File Inclusion 08

1.1.3 Remote File Inclusion: 10

1.1.4 Sql Injection 10

1.2 Purpose 11

1.3 Motivations and scope 12

2. Literature Review 13

3. Research Methodology 13

4 Software Requirement Specification 14

4.1 Project Scope 14

4.2 User Classes And Characteristic 14

4.3 Assumptions and Dependencies 14

5 Functional Requirement 14

5.1 System Features 15

4

6 Communication Interfaces 15

6.1 Analysis Model 16

6.1.1 Requirement gathering and analysis 16

6.1.2 System Design 16

6.1.3 Implementation 16

6.1.4 Testing 16

6.1.5 Deployment of System 16

6.1.6 Maintenance 16

7. Architecture Diagrams 17

7.1 Time Chart 17

7.2 Sequence Diagram 18

7.3 Data Flow Diagram 19

7.4 Use Case Diagram 20

8. Conclusions & Future Work 22

9. References: 23

 LIST OF TABLE

Sr.No. Content Description Page No.

1 Literature Review 13

5

 List of Figures

Sr.No. Content Description Page No.

fig-1 Cross Site Scripting(xss) 08

fig-2 Local File Inclusion(LFI) 09

fig-3 Remote File Inclusion(RFI) 10

fig-4 SQL Injection(SQLI) 11

fig-5 Monthly Attack Graph(2020vs2019vs2018) 12

fig-6 Expensive Tool 12

fig-7 Waterfall SRS model 15

fig-8 Time Chart 17

fig-9 Sequence Diagram 18

fig-10 Data Flow Diagram 19

fig-11 Use case Diagram 20

fig-12 User Interface 21

fig-13 Crawler Result of Tool 22

 List of Symbols, Abbreviations and Nomenclature

ABBREVIAT
ION

ILLUSTRATION

XSS CROSS SITE SCRIPTING

LFI LOCAL FILE INCLUSION

RFI REMOTE FILE INCLUSION

SQLI SQL INJECTION

6

 Introduction

(i) Overall description
This project covers the following aspects of Web Application security i.e.Web Pentesting
some famous Critical Vulnerability analysis and Detection like cross site scripting,local
and remote file inclusion, os command injection and sql injection.

1.1. Cross site scripting:
Most websites today contain dynamic content which gives its viewers amore interactive
and enjoyable experience. Instead of having a classic static website, a dynamic website
is generated by two different types of interactivities: client-side scripting (used to change
interface behaviors within a specific webpage)and server-side scripting (used to change
the supplied page source between pages). In addition to creating a dynamic website,
you are making yourself susceptible to a popular and very powerful security vulnerability
that plain static websites are not. This threat is called cross-site scripting (XSS). XSS
has come about as a result of effectively constructed coding within web based
applications. Attackers direct their attention towards these vulnerabilities and insert
malicious content into the client-side browser without the user’s knowledge which allows
an attacker to gain access to the user’s personal information. Cross-site scripting (XSS)
attack is considered as one of the top 10 web application vulnerabilities of 2013 by the
Open Web Application Security Project (OWASP) . According to the Cenzic Application
Vulnerability Trends Report (2013) Cross Site Scripting represents 26% of the total
population respectively and is considered as the top most first attack. Two recent
incidents highlighted the severity of xss vulnerability are Apple Developer Site
(July18,2013) and Ubuntu Forums (July 14 and July 0, 2013) . Cross Site Scripting
attack carried out using HTML, JavaScript,VBScript, ActiveX, Flash, and other
client-side languages
->Account Hijacking for identity theft
->Cookie theft/poisoning to acquire sensitive information
-> Conduct phishing attacks
-> Gain free access to otherwise paid for content
->Spy on users web browsing habits
-> Change users settings
-> False advertising

7

-> Deface a website
-> Insertion of hostile content

 (fig-01)

 Reflected xss on ‘cat parameter’

1.2. Local File Inclusion:
It is the process of including files that are already locally present on the server through
the exploitation of vulnerable inclusion procedures implemented in the application. This
application occurs ,for example when a page receives as input the path to the file that
has to be included and this input is not properly sanitized, allowing directory traversal
characters to be injected Since LFI occurs when path passed to “include” statement are

8

not properly sanitized, in a blackbox testing approach we should look for scripts which
take filename as parameter.

http://vulnerable _host /preview.php?file = exp.html

This looks like a perfect place to try for LFI. If an Attacker is lucky enough and instead of
selecting the appropriate page from the array by its name, it is possible to include
arbitrary files on the server.Typical proof of concept would be to load password file-

http://vulnerable _host /preview.php?file = ../../../../etc/pwd
If the above mentioned conditions not an attacker would see something like the
following:-
Root:x:0:0:root:/bin/bash
Bin:x:1:1:bin: /bin : /sbin :/sbin /nologin

 (fig-2)

 Local File Inclusion on ‘File’ parameter

9

1.3. Remote File Inclusion (RFI):
RFI is an attack targeting vulnerabilities in web applications that dynamically reference
external scripts. The perpetrator’s goal is to exploit the referencing function in an
application to upload malware (eg. Backdoor shell) from remote URL located within a
different domain. In both cases, successful attack results in malware being uploaded to
the targeted server. However unlike RFI LFI result aim to exploit insecure local file
upload functions that fail to validate user supplies/controlled input.

 (fig-3)
 Remote FIle Inclusion On ‘u’ parameter

1.4. Sql Injection:
SQL Injection is one of the most common threats to a database system in which the
attacker adds SQL statements to an application form input box, to gain access the
resources or make changes to data stored into the database. Lack of input validation
in applications causes attackers to be successful. In an SQL Injection attack, the

10

attacker injects a string input through the application, which changes or manipulates
the SQL statement to the attacker‟s advantage. An SQL Injection attack can harm
the database in various ways, such as unauthorized manipulation of the database, or
retrieval of sensitive data. It can also be used to execute system level commands
that may cause the system to deny service to the application. This issue is very risky
because it can cause data loss or misuse of data by parties who are not authorized
and as result the functionality and confidentiality are destroyed.

 (fig-4)
 Sql injection on ‘cat’ parameter

1.2. Purpose:
The unavailability and high price of automated scanners for detecting vulnerabilities in
web applications which leads to defacement , hijacking , stealing data from servers
creates a security problem for all businesses as well as government people. So making
an affordable scanner is important.In this project we will develop vulnerability scanner
for finding vulnerabilities in web applications and provide information about its
remediation.

11

1.3.Motivations and scope:
Developers, product owners, AppSec, and security engineers can use this information
to better understand application security threats, adjust security controls, and improve
their security posture. Through reading this report on a monthly cadence, AppSec
teams can gain a better understanding of the possible types and origins of attacks and
attackers.

 (fig-5)

 (Fig -6)
 highly expensive price of tools

12

 LITERATURE SURVEY

There are a number of researches done on various web vulnerabilities which come
under Semantic URL, Cross-Site scripting, Cross-Site Request forgery, etc. In this our
project comes under Semantic URL means such attacks involve a user modifying the
URL discovery mode to perform various actions which are not originally planned to be
handled by a server. We studied various vulnerabilities such as RFI, LFI, SQLi,
Cross-Site Scripting.

The web application users enter tags in the input field along with other data
for formatting purposes. The attackers can misuse it to enter malicious content like
viruses, Trojans and worms. There are two possible solutions for prevention from XSS
which includes Filtering and Validation of user inputs:
• Negative security model which filters inputs that match with the blacklist.
• Positive security model that specifies the expected inputs from the user

3. Research Methodology:

Sr.No. Traditional Research Methodology 5-P-Model

1 Research Design Proof Of Concept

2 Hypothesis Formulation Point Of View

3 Method of Data Collection Proof Of Concept

4 Scope Of Study Point Of View

5 Testing Of Hypothesis Pilot

 Table Literature Review

● Point Of View/Analysis: In the first stage of prototype development functionality
of the subject was defined and the hierarchy of steps to be followed was outline.

13

● Proof of Concept/Design: This was the second stage of prototype building and
once the foundation was laid by the function matrix, a functional architecture was
built on that foundation to define active flow.

● Prototype/Develop: With the function Matrix and functional architecture in place
a prototype was developed in this stage.

● Pilot/Testing: This stage was marked by the testing of the prototype and refining,
to produce a more scalable software solution.

● Package/Release: Release of the software to the market with a predefined
business model and earnin of the revenue from the same

4. Software Requirement Specification:

4.1 PROJECT SCOPE:
• The software will scan the full web application.
• The main focus will be on finding vulnerabilities on parameter based URLs.
• It will show information about vulnerable URL and its vulnerability and
 gives the solution to fix it.

4.2 USER CLASSES AND CHARACTERISTICS:
●Users have websites URL, RAM, and have software installed.
●Users have power to start scan and stop scan.
●Users have different priorities so they have been given different options to scan.

4.3 Assumptions and Dependencies:
●User must require the computer system
●User has to install the application on his system.
●Users must require high speed internet connection.
●Software automatically scans all the webpages.

5 FUNCTIONAL REQUIREMENT
5.1 SYSTEM FEATURE:
❖Continuous Crawling:
 Continuous crawling improves the performance for faster discovery of web pages.

❖ Scanning options:
 canning options help users to scan a website for a particular
 vulnerability or he can use a full scan option to scan for all types of vulnerabilities.

14

❖ Logs:
 Logs help users to find out which payloads where tested and which
 URLs are tested. Vulnerable URLs appear in different colors.

6. ANALYSIS MODELS:
We are using a waterfall model for our project.

 (fig-7)
 Waterfall SRS model

6.1. Requirement gathering and analysis:
In this step of waterfall we identify what are various requirements are need for our
projects such as software and hardware required, database, and interfaces.

15

6.2. System Design:
In this system design phase we design the system which is easily understood for end
user i.e. user friendly. We design some UML diagrams and data flow diagrams to
understand the system flow and system module and sequence of execution.

6.3. Implementation:
In the implementation phase of our project we have implemented various module
required of successfully getting expected outcomes at the different module levels. With
inputs from system design, the system is first developed in small programs called units,
which are integrated in the next phase. Each unit is developed and tested for its
functionality which is referred to as Unit Testing.

6.4. Testing:
The different test cases are performed to test whether the project modules are giving
expected outcomes in assumed time. All the units developed in the implementation
phases are integrated into a system after testing each unit. Post integration the entire
the system is tested for any faults and failures.

6.5. Deployment of System:
Once the functional and non-functional testing is done, the product is deployed in the
customer environment or released into the market.

6.6. Maintenance:
There are some issues which come up in the client environment. To fix those issues
patches are released. Also to enhance the product some better versions are released.
Maintenance is done to deliver these changes in the customer environment. All these
phases are cascaded to each other in which progress is seen as flowing steadily
downwards like a waterfall through the phases. The next phase is started only after the
defined set of goals are achieved for previous phase and i

16

7 Architecture Diagrams:

7.1. Time Chart:
 A time chart is a statistical display used to examine trends in data over time . Time
charts show time on the x-axis (for example, by month, year, or day) and the values of
the variable being measured on the y-axis (like time to first iteration, total unit testing, or
population size). Each point on the time chart summarizes all the data collected at that
particular time.

 (fig-8)

17

7.2 Sequence Diagrams:
 A sequence diagram simply depicts interaction between objects in a sequential order
i.e. the order in which these interactions take place. We can also use the terms event
diagrams or event scenarios to refer to a sequence diagram. Sequence diagrams
describe how and in what order the objects in a system function

18

 (fig-9)

7.3 Data Flow Diagram:
 A data flow diagram (DFD) maps out the flow of information for any process or
system. It uses defined symbols like rectangles, circles and arrows, plus short text
labels, to show data inputs, outputs, storage points and the routes between each
destination.

 (fig-10)

19

7.4 Use Case Diagram:
 A use case diagram at its simplest is a representation of a user's interaction with the
system that shows the relationship between the user and the different use case in
which the user is involved. A use case diagram can identify the different types of users
of a system and the different use cases and will often be accompanied by other types of
diagrams as well. The use cases are represented by either circles or ellipses.

 (fig-11)

20

 OUTPUT:

USER INTERFACE OF TOOL:

 (fig-12)

21

Crawler Result Of Tool:

 (fig-13)

 CONCLUSION AND FUTURE WORK:
 This report discussed web application security principles and fundamental information
that can help us to prevent web exploits in our system. Web applications are considered
the most exposed and least protected, thereafter vulnerable because the standards
somehow are not focused on security but more on the server's needed functionality.
Security threats are more common than before because the internet has become
today's economy the most valuable tool for everyone. So there is indeed a need to
protect our resources, data and user privacy information. As technology moves forward
and brings new strategies, tools, models and methods to increase security levels,
hackers will be part of this never end game.
The proposed system is developed to detect the vulnerabilities like SQLi, XSS, LFI in
web applications and it will also provide information about remediation of vulnerable
URLs and its vulnerability. Our formalization goes at the heart of the problem and
captures seemingly different types of above mentioned vulnerabilities. The simple and
effective strategy is meant to be cost effective and is openly targeted toward large
commercial applications. The results of the proposed systems are satisfactory.

22

 References

● The Open Web Application Security Project, “OWASP Top ten project”
 https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

● A. S. Christensen, A. Mǿller and M. I. Schwartzbach, “Precise analysis of string
 expression”, In proceedings of the 10th international static analysis symposium,
 LNCS, Springer-Verlag, vol. 2694, pp. 1-18.

● Afasana Begum and Md. Maruf Hasan,”RFI and SQLi based Local File Inclusion
 Vulnerabilities in Web Applications”,International Workshop on
 Computational Intelligence(IWCI),12-13 Dec2016.

● MirSamanTajbakhsh and JamshidBagherzadeh,”A sound framework for Dynamic
 prevention of Local File Inclusion ”, 7 th International Conference on
 Information and Knowledge Technology,2015.

● Shahriar, H.; Zulkernine, M., "S2XS2: A Server Side Approach to Automatically
 Detect XSS Attacks," IEEE Ninth International Conference on Dependable,
 Autonomic and Secure Computing (DASC), 2011, pp.7-14, Dec. 2011

● https://www.owasp.org/images/1/19/OTGv4.pdf
 ● Karl D'silva,J.Vanajakshi,KNManjunath,SrikanthPrabhu"An Effective
 Method for Preventing SQL Injection Attack and Session Hijacking"Electronic
 ISBN: 9781-5090-3704-9
 ● Chen Ping"A second-order SQL injection detection method"Electronic ISBN:
 9781-5090-6414-4
 ● Anastasios Stasinopoulos, Christoforos Ntantogian, Christos Xenakis “Commix :
 Detecting and Exploiting Command Injection Flaws” Department of Digital
 Systems,University of Piraeus
 ● P. Bisht and V. N. Venkatakrishnan, “XSS-GUARD: Precise dynamic prevention
 of Cross-Site Scripting Attacks,” In Proceeding of 5th Conference on Detection of
 Intrusions and Malware & Vulnerability Assessment, LNCS, vol. 5137, (2008), pp.
 ● Mir Saman Tajbakhsh; Jamshid Bagherzadeh“A sound framework for dynamic
 prevention of Local File Inclusion” ISNB: 978-1-4673-7485-9
 ● P.S.Sadaphule, Priyanka Kamble,Sanika Mehre,Utkarsha Dhande,Rashmi
Savant ”Prevention of Website Attack Based on Remote File Inclusion-A survey”
InternationalJournal of Advanced Engineering and Research Development”
e-ISSN : 2348-4470.

23

24

