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ABSTRACT 

Heart disease is a major cause of death throughout the world. It is difficult to predict 

by medical practitioners as it requires expertise and higher knowledge of prediction. 

The environment in healthcare sector is information rich but lacks knowledge. A lot 

of data is available in healthcare systems over the internet but there is a lack of 

effective analysis tool to discover hidden patterns in data. An automated system will 

enhance medical efficiency and reduce cost and time. This software intends to 

predict the occurrence of a disease based on the data which is gathered from kaggle. 

The objective is to extract the hidden patterns by applying data mining techniques 

on the dataset and to predict the presence value on a scale. The prediction of heart 

disease requires a huge size of data which is too massive and complex to process and 

analyse by conventional technique. Our aim is to find out an suitable technique that 

is efficient and accurate for prediction of cardiac disease.    

Keywords- prediction, heart disease, machine learning, algorithms, analysis 

 

 

 

 

 

 

 

 

 

 

 



 

 

                      1. INTRODUCTION 

1.1 General 

Among various life-threatening diseases, heart disease has garnered a great deal of 

attention in medical research. The diagnosis of heart disease is a challenging task, 

which can offer automated prediction about the heart condition of patient so that 

further treatment can be made effective. The diagnosis of heart disease is usually 

based on signs, symptoms and physical examination of the patient. There are several 

factors that increase the risk of heart disease, such as smoking habit, body cholesterol 

level, family history of heart disease, obesity, high blood pressure, and lack of 

physical exercise. 

A major challenge faced by health care organizations, such as hospitals and medical 

centers, is the provision of quality services at affordable costs.1 The quality service 

implies diagnosing patients properly and administering effective treatments. The 

available heart disease database consists of both numerical and categorical data. 

Before further processing, cleaning and filtering are applied on these records in order 

to filter the irrelevant data from the database.2 The proposed system can determine 

an exact hidden knowledge, ie, patterns and relationships associated with heart 

disease from a historical heart disease database. It can also answer the complex 

queries for diagnosing heart disease; therefore, it can be helpful to health care 

practitioners to make intelligent clinical decisions. Results showed that the proposed 

system has its unique potency in realizing the objectives of the defined machine 

learning goals. 

 

1.2  MACHINE LEARNING 

1.2.1 General 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863635/#b1-ijn-13-121
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863635/#b2-ijn-13-121


Machine Learning is the field of study that gives computers the capability to learn 

without being explicitly programmed. ML is one of the most exciting 

technologies that one would have ever come across. As it is evident from the 

name, it gives the computer that makes it more similar to humans: The ability to 

learn. Machine learning is actively being used today, perhaps in many more 

places than one would expect. 

                              

                                                 Fig 1. Machine Learning 

 

The term Machine Learning was coined by Arthur Samuel in 1959, an American 

pioneer in the field of computer gaming and artificial intelligence and stated that 

“it gives computers the ability to learn without being explicitly programmed”. 

And in 1997, Tom Mitchell gave a “well-posed” mathematical and relational 

definition that “A computer program is said to learn from experience E with 

respect to some task T and some performance measure P, if its performance on 

T, as measured by P, improves with experience E. 

Machine learning involves a computer to be trained using a given data set, and 

use this training to predict the properties of a given new data. For example, we 

can train a computer by feeding it 1000 images of cats and 1000 more images 

which are not of a cat, and tell each time to the computer whether a picture is cat 

or not. Then if we show the computer a new image, then from the above training, 

the computer should be able to tell whether this new image is a cat or not. 



     Let’s try to understand Machine Learning in layman terms. Consider you are 

trying to           

     toss a paper to a dustbin. 

     After first attempt, you realize that you have put too much force in it. After second      

attempt, you realize you are closer to target but you need to increase your throw 

angle. What is happening here is basically after every throw we are learning 

something and improving the end result. We are programmed to learn from our 

experience. 

This implies that the tasks in which machine learning is concerned offers a 

fundamentally operational definition rather than defining the field in cognitive 

terms. This follows Alan Turing’s proposal in his paper “Computing Machinery and 

Intelligence”, in which the question “Can machines think?” is replaced with the 

question “Can machines do what we (as thinking entities) can do?” 

Within the field of data analytics, machine learning is used to devise complex models 

and algorithms that lend themselves to prediction; in commercial use, this is known 

as predictive analytics. These analytical models allow researchers, data scientists, 

engineers, and analysts to “produce reliable, repeatable decisions and results” and 

uncover “hidden insights” through learning from historical relationships and trends 

in the data set(input). 

Suppose that you decide to check out that offer for a vacation . You browse through 

the travel agency website and search for a hotel. When you look at a specific hotel, 

just below the hotel description there is a section titled “You might also like these 

hotels”. This is a common use case of Machine Learning called “Recommendation 

Engine”. Again, many data points were used to train a model in order to predict what 

will be the best hotels to show you under that section, based on a lot of information 

they already know about you. 

So if you want your program to predict, for example, traffic patterns at a busy 

intersection (task T), you can run it through a machine learning algorithm with data 



about past traffic patterns (experience E) and, if it has successfully “learned”, it 

will then do better at predicting future traffic patterns (performance measure P). 

The highly complex nature of many real-world problems, though, often means that 

inventing specialized algorithms that will solve them perfectly every time is 

impractical, if not impossible. Examples of machine learning problems include, “Is 

this cancer?”, “Which of these people are good friends with each other?”, “Will 

this person like this movie?” such problems are excellent targets for Machine 

Learning, and in fact machine learning has been applied such problems with great 

success. 

 

When do we need Machine Learning? 

When do we need machine learning rather than directly program our computers to 

carry out the task at hand? Two aspects of a given problem may call for the use of 

programs that learn and improve on the basis of their “experience”: the problem’s 

complexity and the need for adaptivity.  

Tasks That Are Too Complex to Program.  

• Tasks Performed by Animals/Humans: There are numerous tasks that we human 

beings perform routinely, yet our introspection concerning how we do them is not 

sufficiently elaborate to extract a well-defined program. Examples of such tasks 

include driving, speech recognition, and image understanding. In all of these tasks, 

state of the art machine learning programs, programs that “learn from their 

experience,” achieve quite satisfactory results, once exposed to sufficiently many 

training examples. 

 • Tasks beyond Human Capabilities: Another wide family of tasks that benefit from 

machine learning techniques are related to the analysis of very large and complex 

data sets: astronomical data, turning medical archives into medical knowledge, 

weather prediction, analysis of genomic data, Web search engines, and electronic 

commerce. With more and more available digitally recorded data, it becomes 

obvious that there are treasures of meaningful information buried in data archives 

that are way too large and too complex for humans to make sense of. Learning to 



detect meaningful patterns in large and complex data sets is a promising domain in 

which the combination of programs that learn with the almost unlimited memory 

capacity and ever increasing processing speed of computers opens up new horizons. 

Adaptivity. One limiting feature of programmed tools is their rigidity – once the 

program has been written down n and installed, it stays unchanged. However, many 

tasks change over time or from one user to another. Machine learning tools – 

programs whose behavior adapts to their input data – offer a solution to such issues; 

they are, by nature, adaptive to changes in the environment they interact with. 

Typical successful applications of machine learning to such problems include 

programs that decode handwritten text, where a fixed program can adapt to 

variations between the handwriting of different users; spam detection programs, 

adapting automatically to changes in the nature of spam e-mails; and speech 

recognition programs. 

Terminologies of Machine Learning 

● Model 

A model is a specific representation learned from data by applying some 

machine learning algorithm. A model is also called hypothesis. 

● Feature 

A feature is an individual measurable property of our data. A set of numeric 

features can be conveniently described by a feature vector. Feature vectors are 

fed as input to the model. For example, in order to predict a fruit, there may be 

features like color, smell, taste, etc. 

Note: Choosing informative, discriminating and independent features is a 

crucial step for effective algorithms. We generally employ a feature 

extractor to extract the relevant features from the raw data. 

● Target (Label) 

A target variable or label is the value to be predicted by our model. For the 

fruit example discussed in the features section, the label with each set of input 

would be the name of the fruit like apple, orange, banana, etc. 



● Training 

The idea is to give a set of inputs(features) and it’s expected outputs(labels), 

so after training, we will have a model (hypothesis) that will then map new 

data to one of the categories trained on. 

● Prediction 

Once our model is ready, it can be fed a set of inputs to which it will provide a 

predicted output(label). 

       The figure shown below clears the above concepts: 

                 

                                          Fig-2 Training and Prediction 

 

1.2.2 Machine Learning Types 

1.2.2.1 General 

Learning is, of course, a very wide domain. Consequently, the field of machine 

learning has branched into several subfields dealing with different types of 

learning tasks. We give a rough taxonomy of learning paradigms, aiming to 

provide some perspective of where the content sits within the wide field of 

machine learning. 

Terms frequently used are: 

● Labeled data: Data consisting of a set of training examples, where each 

example is a pair consisting of an input and a desired output value (also 

called the supervisory signal, labels, etc) 



● Classification: The goal is to predict discrete values, e.g. {1,0}, {True, 

False}, {spam, not spam}. 

● Regression: The goal is to predict continuous values, e.g. home prices. 

 

   There some variations of how to define the types of Machine Learning Algorithms 

but    commonly they can be divided into categories according to their purpose and 

the main categories are the following: 

● Supervised learning 

● Unsupervised Learning 

● Semi-supervised Learning 

● Reinforcement Learning 

 

1.2.2.2 Supervised Learning 

● I like to think of supervised learning with the concept of function 

approximation, where basically we train an algorithm and in the end of the 

process we pick the function that best describes the input  

data, the one that for a given X makes the best estimation of y (X -> y). Most 

of the time we are not able to figure out the true function that always make the 

correct predictions and other reason is that the algorithm rely upon an 

assumption made by humans about how the computer should learn and this 

assumptions introduce a bias. 

● Here the human experts act as the teacher where we feed the computer with 

training data containing the input/predictors and we show it the correct answers 

(output) and from the data the computer should be able to learn the patterns. 



● Supervised learning algorithms try to model relationships and dependencies 

between the target prediction output and the input features such that we can 

predict the output values for new data based on those relationships which it 

learned from the previous data sets. 

                              

                                             Fig 3: Supervised Learning 

Draft 

● Predictive Model 

● we have labelled data 

● The main types of supervised learning problems include regression and 

classification problems 

List of Common Algorithms 

● Nearest Neighbour 

● Naive Bayes 

● Decision Trees 

● Linear Regression 

● Support Vector Machines (SVM) 

● Neural Networks 



1.2.2.3 Unsupervised Learning 

● The computer is trained with unlabelled data. 

● Here there’s no teacher at all, actually the computer might be able to teach you 

new things after it learns patterns in data, these algorithms a particularly useful 

in cases where the human expert doesn’t know what to look for in the data. 

● are the family of machine learning algorithms which are mainly used in pattern 

detection and descriptive modelling. However, there are no output categories 

or labels here based on which the algorithm can try to model relationships. 

These algorithms try to use techniques on the input data to mine for 

rules, detect patterns, and summarize and group the data points which help in 

deriving meaningful insights and describe the data better to the users. 

                                 

                                               Fig 4: Unsupervised Learning 

Draft 

● Descriptive Model 

● The main types of unsupervised learning algorithms include Clustering 

algorithms and Association rule learning algorithms. 

List of Common Algorithms 

● k-means clustering, Association Rules 

1.2.2.4 Semi-Supervised Learning 



In the previous two types, either there are no labels for all the observation in the 

dataset or labels are present for all the observations. Semi-supervised learning 

falls in between these two. In many practical situations, the cost to label is quite 

high, since it requires skilled human experts to do that. So, in the absence of 

labels in the majority of the observations but present in few, semi-supervised 

algorithms are the best candidates for the model building. These methods exploit 

the idea that even though the group memberships of the unlabeled data are 

unknown, this data carries important information about the group parameters. 

                                 

                                         Fig 5: Semi-Supervised Learning 

1.2.2.5 Reinforcement Learning 

        method aims at using observations gathered from the interaction with the            

environment to take actions that would maximize the reward or minimize the risk. 

Reinforcement learning algorithm (called the agent) continuously learns from the 

environment in an iterative fashion. In the process, the agent learns from its 

experiences of the environment until it explores the full range of possible states. 

Reinforcement Learning is a type of Machine Learning, and thereby also a branch 

of Artificial Intelligence. It allows machines and software agents to automatically 

determine the ideal behaviour within a specific context, in order to maximize its 

performance. Simple reward feedback is required for the agent to learn its 

behaviour; this is known as the reinforcement signal. 

 



         

                                              Fig 6: Reinforcement Learning 

There are many different algorithms that tackle this issue. As a matter of fact, 

Reinforcement Learning is defined by a specific type of problem, and all its 

solutions are classed as Reinforcement Learning algorithms. In the problem, an 

agent is supposed decide the best action to select based on his current state. When 

this step is repeated, the problem is known as a Markov Decision Process. 

In order to produce intelligent programs (also called agents), reinforcement 

learning goes through the following steps: 

1. Input state is observed by the agent. 

2. Decision making function is used to make the agent perform an action. 

3. After the action is performed, the agent receives reward or reinforcement from 

the environment. 

4. The state-action pair information about the reward is stored. 

List of Common Algorithms 

● Q-Learning 



● Temporal Difference (TD) 

● Deep Adversarial Networks 

Use cases: 

Some applications of the reinforcement learning algorithms are computer played 

board games (Chess, Go), robotic hands, and self-driving cars. 

 

 

 

1.3  DECISION TREE 

 

      

 

                                                 Fig 7:  Decide whether to go? 

 



A decision tree is a flowchart-like structure in which each internal node represents 

a test on a feature (e.g. whether a coin flip comes up heads or tails) , each leaf node 

represents a class label (decision taken after computing all features) and branches 

represent conjunctions of features that lead to those class labels. The paths from 

root to leaf represent classification rules. Below diagram illustrate the basic flow 

of decision tree for decision making with labels (Rain (Yes), No Rain (No)). 

Decision tree is one of the predictive modelling approaches used in statistics, data 

mining and machine learning. 

Decision trees are constructed via an algorithmic approach that identifies ways to 

split a data set based on different conditions. It is one of the most widely used and 

practical methods for supervised learning. Decision Trees are a non-

parametric supervised learning method used for 

both classification and regression tasks. 

Tree models where the target variable can take a discrete set of values are 

called classification trees. Decision trees where the target variable can take 

continuous values (typically real numbers) are called regression trees. Classification 

and Regression Tree (CART) is general term for this. 

Data Format 

Data comes in records of forms. 

(x,Y)=(x1,x2,x3,....,xk,Y) 

The dependent variable, Y, is the target variable that we are trying to understand, 

classify or generalize. The vector x is composed of the features, x1, x2, x3 etc., that 

are used for that task. 

 

Example 



                     training_data = [ 

                                    ['Green', 3, 'Apple'], 

                                    ['Yellow', 3, 'Apple'], 

                                    ['Red', 1, 'Grape'], 

                                    ['Red', 1, 'Grape'], 

                                    ['Yellow', 3, 'Lemon'], 

                                     ] 

                               # Header = ["Color", "diameter", "Label"] 

                               # The last column is the label. 

                               # The first two columns are features. 
 

In Decision Tree the major challenge is to identification of the attribute for the root 

node in each level. This process is known as attribute selection. We have two popular 

attribute selection measures: 

1. Information Gain 

2. Gini Index 

 

1. Information Gain 

When we use a node in a decision tree to partition the training instances into 

smaller subsets the entropy changes. Information gain is a measure of this change 

in entropy. 

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S 

with A = v, and Values (A) is the set of all possible values of A, then 

 

 

Entropy 

Entropy is the measure of uncertainty of a random variable, it characterizes the 

impurity of an arbitrary collection of examples. The higher the entropy more the 

information content. 

Definition: Suppose S is a set of instances, A is an attribute, Sv is the subset of S 

with A = v, and Values (A) is the set of all possible values of A, then 

 



2. Gini Index 

● Gini Index is a metric to measure how often a randomly chosen element 

would be incorrectly identified. 

● It means an attribute with lower Gini index should be preferred. 

● Sklearn supports “Gini” criteria for Gini Index and by default, it takes “gini” 

value. 

● The Formula for the calculation of the of the Gini Index is given below. 

             

 

The most notable types of decision tree algorithms are: - 

1. Iterative Dichotomiser 3 (ID3): This algorithm uses Information Gain to decide 

which attribute is to be used classify the current subset of the data. For each level 

of the tree, information gain is calculated for the remaining data recursively. 

2. C4.5: This algorithm is the successor of the ID3 algorithm. This algorithm uses 

either Information gain or Gain ratio to decide upon the classifying attribute. It is a 

direct improvement from the ID3 algorithm as it can handle both continuous and 

missing attribute values. 

3. Classification and Regression Tree(CART): It is a dynamic learning algorithm 

which can produce a regression tree as well as a classification tree depending upon 

the dependent variable. 

Steps for Making decision tree 

● Get list of rows (dataset) which are taken into consideration for making decision 

tree (recursively at each nodes). 

● Calculate uncertainty of our dataset or Gini impurity or how much our data is 

mixed up etc. 



● Generate list of all question which needs to be asked at that node. 

● Partition rows into True rows and False rows based on each question asked. 

● Calculate information gain based on Gini impurity and partition of data from 

previous step. 

● Update highest information gain based on each question asked. 

● Update best question based on information gain (higher information gain). 

● Divide the node on best question. Repeat again from step 1 again until we get 

pure node (leaf nodes). 

Building Decision Tree 

Let’s build decision tree based on training data. 

                      training_data = [ 

                                                ['Green', 3, 'Apple'], 

                                                ['Yellow', 3, 'Apple'], 

                                                ['Red', 1, 'Grape'], 

                                                ['Red', 1, 'Grape'], 

                                                ['Yellow', 3, 'Lemon'], 

                                                ] 

                                        # Header = ["Color", "diameter", "Label"] 

                                        # The last column is the label. 

                                        # The first two columns are features. 

   

                                      my_tree = build_tree(training_data) 

   

                                     print_tree(my_tree) 

Output 

                                     Is diameter >= 3? 

                                      --> True: 

                                     Is color == Yellow? 



                                      --> True: 

                                     Predict {'Lemon': 1, 'Apple': 1} 

                                     --> False: 

                                     Predict {'Apple': 1} 

                                     --> False: 

                                     Predict {'Grape': 2} 

From above output we can see that at each steps data is divided 

into True and False rows. This process keeps repeated until we reach leaf node 

where information gain is 0 and further split of data is not possible as nodes are Pure. 

How to avoid overfitting the Decision tree model 

Overfitting is one of the major problems for every model in machine learning. If 

model is overfitted it will poorly be generalized to new samples. To avoid decision 

tree from overfitting we remove the branches that make use of features having low 

importance. This method is called as Pruning or post-pruning. This way we will 

reduce the complexity of tree, and hence improves predictive accuracy by the 

reduction of overfitting. 

Pruning should reduce the size of a learning tree without reducing predictive 

accuracy as measured by cross-validation set. There are 2 major Pruning techniques. 

● Minimum Error: The tree is pruned back to the point where the cross-validated 

error is a minimum. 

● Smallest Tree: The tree is pruned back slightly further than the minimum error. 

Technically the pruning creates a decision tree with cross-validation error within 

1 standard error of the minimum error. 

Early Stop or Pre-pruning 



An alternative method to prevent overfitting is to try and stop the tree-building 

process early, before it produces leaves with very small samples. This heuristic is 

known as early stopping but is also sometimes known as pre-pruning decision trees. 

At each stage of splitting the tree, we check the cross-validation error. If the error 

does not decrease significantly enough then we stop. Early stopping may underfit by 

stopping too early. The current split may be of little benefit, but having made it, 

subsequent splits more significantly reduce the error. 

Early stopping and pruning can be used together, separately, or not at all. Post 

pruning decision trees is more mathematically rigorous, finding a tree at least as 

good as early stopping. Early stopping is a quick fix heuristic. If used together with 

pruning, early stopping may save time. After all, why build a tree only to prune it 

back again? 

Important Terminology related to Decision Trees 
  

1. Root Node: It represents the entire population or sample and this further gets 

divided into two or more homogeneous sets. 

2. Splitting: It is a process of dividing a node into two or more sub-nodes. 

3. Decision Node: When a sub-node splits into further sub-nodes, then it is called 

the decision node. 

4. Leaf / Terminal Node: Nodes do not split is called Leaf or Terminal node. 

5. Pruning: When we remove sub-nodes of a decision node, this process is called 

pruning. You can say the opposite process of splitting. 

6. Branch / Sub-Tree: A subsection of the entire tree is called branch or sub-tree. 

7. Parent and Child Node: A node, which is divided into sub-nodes is called a 

parent node of sub-nodes whereas sub-nodes are the child of a parent node. 



 

                                     Fig 8: Decision Tree Terminlogy Representation 

Decision trees classify the examples by sorting them down the tree from the root to 

some leaf/terminal node, with the leaf/terminal node providing the classification of 

the example. 

Each node in the tree acts as a test case for some attribute, and each edge 

descending from the node corresponds to the possible answers to the test case. This 

process is recursive in nature and is repeated for every subtree rooted at the new 

node. 

Optimizing the Decision Tree Classifier 

● criterion: optional (default=”gini”) or Choose attribute selection measure: 

This parameter allows us to use the different-different attribute selection 

measure. Supported criteria are “gini” for the Gini index and “entropy” for 

the information gain. 

● splitter: string, optional (default=”best”) or Split Strategy: This parameter 

allows us to choose the split strategy. Supported strategies are “best” to 

choose the best split and “random” to choose the best random split. 

● max_depth: int or None, optional (default=None) or Maximum Depth of a 

Tree: The maximum depth of the tree. If None, then nodes are expanded 

until all the leaves contain less than min_samples_split samples. The higher 

value of maximum depth causes overfitting, and a lower value causes 

underfitting (Source). 



In Scikit-learn, optimization of decision tree classifier performed by only pre-

pruning. The maximum depth of the tree can be used as a control variable for pre-

pruning. 

# Create Decision Tree classifer object 

classifier = DecisionTreeClassifier (criterion="entropy", max_depth=3) 

# Train Decision Tree Classifer 

classifier = classifier.fit(X_train,y_train) 

#Predict the response for test dataset 

y_pred = classifier.predict(X_test) 

# Model Accuracy, how often is the classifier correct? 

print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 

Advantage of Decision Tree 

● Easy to use and understand. 

● Can handle both categorical and numerical data. 

● Resistant to outliers, hence require little data pre-processing. 

Disadvantage of Decision Tree 

● Prone to overfitting. 

● Require some kind of measurement as to how well they are doing. 

● Need to be careful with parameter tuning. 

● Can create biased learned trees if some classes dominate. 

Naïve Bayes 



Bayes’ Theorem is stated as: 

P(h|d) = (P(d|h) * P(h)) / P(d)  P(h|d) is the probability of hypothesis h given 

the data d. This is called the posterior   probability.  P(d|h) is the probability of 

data d given that the hypothesis h was true.  P(h) is the probability of 

hypothesis h being true (regardless of the data). This is called the prior 

probability of h.  P(d) is the probability of the data (regardless of the 

hypothesis).we are interested in calculating the posterior probability of P(h|d) 

from the prior probability p(h) with P(D) and P(d|h). After calculating the 

posterior probability for a number of different hypotheses, we will select the 

hypothesis with the highest probability. This is the maximum probable 

hypothesis and may formally be called the (MAP) hypothesis. This can be 

written as:  MAP(h) = max(P(h|d)) or  

MAP(h) = max((P(d|h) * P(h)) / P(d)) 

Or 

 MAP(h) = max(P(d|h) * P(h)) 

    The P(d) is a normalizing term which allows us to calculate the probability. We 

can drop it when we are interested in the most probable hypothesis as it is constant 

and only used to normalize. Back to classification, if we have an even number of 

instances in each class in our training data, then the probability of each class (e.g. 

P(h)) will be equal. Again, this would be a constant term in our equation, and we 

could drop it so that we end up with: MAP(h) = max(P(d|h)) Naive Bayes is a 

classification algorithm for binary (two-class) and multi-class classification 

problems. The technique is easiest to understand when described using binary or 

categorical  input values. It is called naive Bayes or idiot Bayes because the 

calculation of the probabilities for each hypothesis are simplified to make their 

calculation tractable. Rather than attempting to calculate the values of each attribute 

value P (d1, d2, d3|h), they are assumed to be conditionally independent given the 



target value and calculated as P(d1|h) * P(d2|H) and so on. This is a very strong 

assumption that is most unlikely in real data, i.e. that the attributes do not interact. 

Nevertheless, the approach performs surprisingly well on data where this assumption 

does not hold.  

     MAP(h) = max(P(d|h) * P(h)) 

Gaussian Naïve Bayes  

mean(x) = 1/n * sum(x) 

Where n is the number of instances and x are the values for an input variable in 

your training data. We can calculate the standard deviation using the following 

equation: 

standard deviation(x) = sqrt (1/n * sum(xi-mean(x)^2)) 

This is the square root of the average squared difference of each value of x from 

the mean value of x, where n is the number of instances, sqrt() is the square root 

function, sum() is the sum function, xi is a specific value of the x variable for 

the i’th instance and mean(x) is described above, and ^2 is the square. Gaussian 

PDF with a new input for the variable, and in return the Gaussian PDF will 

provide an estimate of the probability of that new input value for that class. 

pdf (x, mean, sd) = (1 / (sqrt (2 * PI) * sd)) * exp (-((x-mean^2)/(2*sd^2))) 

Where pdf(x) is the Gaussian Probability Density Function (PDF), sqrt () is the 

square root, mean and sd are the mean and standard deviation calculated above, 

Pi is the numerical constant, exp () is the numerical constant e or Euler’s number 

raised to power. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. LITERATURE SURVEY 

2.1 General 

Monika Gandhi et.al, [1] used Naïve Bayes, Decision tree and neural network 

algorithms and analysed the medical dataset. There are an enormous number of 

features involved. So, there's a requirement to scale back the amount of features. this 

will be done by feature selection. On doing this, they assert that point is reduced. 

They made use of decision tree and neural networks. 

J Thomas, R Theresa Princy [2] made use of K nearest neighbour algorithm, neural 

network, naïve Bayes and decision tree for heart condition prediction. They made 

use of knowledge mining techniques to detect the guts disease risk rate. 

Sana Bharti, Shailendra Narayan Singh [3] made use of Particle Swarm 

Optimization, Artificial neural network, Genetic algorithm for prediction. 

Associative classification may be a new and efficient technique which integrates 



association rule mining and classification to a model for prediction and achieved 

good accuracy. 

Purushottam et.al, [4] proposed “An automated system in diagnosis would enhance 

medical aid and it also can reduce costs. during this study, we've designed a system 

which will efficiently discover the principles to predict the danger level of patients 

supported the given parameter about their health. the principles are often prioritized 

supported the user's requirement. The performance of the system is evaluated in 

terms of classification accuracy and therefore the results shows that the system has 

great potential in predicting the guts disease risk level more accurately”. 

Sellappan Palaniyappan, Rafiah Awang [5] made use of decision tree Naïve Bayes, 

Decision tree, Artificial Neural Networks to create Intelligent heart condition 

Prediction Systems (IHDPS).To enhance visualization and simple interpretation, it 

displays the results both in tabular and graphical forms. By providing effective 

treatments, it also helps to scale back treatment costs. Discovery of hidden patterns 

and relationships often has gone unexploited. Advanced data processing techniques 

helped remedy this example. 

Himanshu Sharma,M A Rizvi [6] made use of Decision tree, support vector machine, 

deep learning, K nearest neighbour algorithms. Since the datasets contain noise, they 

tried to scale back the noise by cleaning and pre-processing the dataset and also tried 

to scale back the dimensionality of the dataset. They found that good accuracy are 

often achieved with neural networks. 

Animesh Hazra et.al, [7] discussed intimately the disorder and different symptoms 

of attack. the various sorts of classification and clustering algorithms and tools were 

used. 

V.Krishnaiah, G.Narsimha, N.Subhash Chandra [8] presented an analysis using data 

processing. The analysis showed that using different techniques and taking different 

number of attributes gives different accuracies for predicting heart diseases. 

Ramandeep Kaur, Er.Prabhsharn Kaur [9] have showed that the guts disease data 

contains unnecessary, duplicate information. This has got to be pre processed. Also, 

they assert that feature selection has got to be done on the dataset for achieving better 



results. 

J.Vijayashree and N.Ch.SrimanNarayanaIyengar [10] used data processing. an 

enormous amount of knowledge is produced on a day to day. As such, it can't be 

interpreted manually. data processing are often effectively wont to predict diseases 

from these datasets. during this paper, different data processing techniques are 

analysed on heart condition database. last, this paper analyses and compares how 

different classification algorithms work on a heart condition database. 

Benjamin EJ et.al [11] says that there are seven key factors for heart condition like 

smoking, physical inactivity, nutrition, obesity, cholesterol, diabetes and high vital 

sign. They also discussed the statistics of heart condition including stroke and cardio 

vascular disease. 

Abhay Kishore et.al [12] on their experimentation showed that recurrent neural 

network gives good accuracy in comparison to other algorithms like CNN, Naïve 

Bayes and SVM. Hence, neural networks perform well in heart condition prediction. 

They also achieved a system that would predict silent heart attacks and inform the 

user as earliest possible. 

M.Nikhil Kumar et.al [13] used various algorithms – Decision tree, random forest, 

Naïve Bayes, KNN, Support vector machine, logistic model tree algorithm. Naïve 

Bayes algorithm gave good results in comparison to other algorithms. They made 

use of UCI repository of heart condition dataset. Also, J48 algorithm took less time 

to create and gave good results. 

Amandeep Kaur et.al [14] compared various algorithms like artificial neural 

network, K – nearest neighbour, Naïve Bayes, Support vector machine on heart 

condition prediction. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

3. IMPLEMENTATION OF MODEL 

 

3.1 EXISTING SYSTEM 

 

Heart disease can be managed effectively with a combination of lifestyle changes, 

medicine and in some cases, surgery. With the right treatment, the symptoms of heart 

disease can be reduced and the functioning of the heart improved. The predicted 

results can be used to prevent and thus reduce cost for surgical treatment and other 

expensive. 

The overall objective of my work will be to predict accurately with few tests and 

attributes the presence of heart disease. Attributes considered form the primary basis 

for tests and give accurate results more or less. Many more input attributes can be 

taken but our goal is to predictwith few attributes and faster efficiency the risk of 

having heart disease. Decisions are often made based on doctors’ intuition and 

experience rather than on the knowledge rich data hidden in the data set and 

databases. This practice leads to unwanted biases, errors and excessive medical costs 

which affects the quality of service provided to patients. 

 

       The health care environment is still „information rich‟ but „knowledge poor‟ 

Their is a wealth of data available within the healthcare systems. However, there is 

a lack of effective analysis tools to discover hidden relationships and trends in the 

data for African . 



3.2 PROPOSED SYSTEM 

In this paper, comparison of various machine learning methods is done for predicting 

the 10 year risk of coronary heart disease of the patients from their medical data. The 

following is the flowchart for proposed methodology: 

                                                    

                                                                                                      

The heart disease data set is taken as input. It is then pre-processed by replacing non-

available  values with column means. Four different methods were used in this paper. 

The different methods used are depicted in the output is the accuracy metrics of the 

machine learning models. The model can then be used in prediction 

K-Nearest Neighbours (KNN) 

KNN is a non-parametric machine learning algorithm. The KNN algorithm is a 

supervised learning method. This means that all the data is labelled and the algorithm 

learns to predict the output from  the input data. It performs well even if the training 

data is large and contains noisy values. The data is divided into training and test sets. 

The train set is used for model building and training. A k- value is decided which is 

often the square root of the number of observations. Now the test data is predicted 

on the model built. There are different distance measures. For continuous variables, 

Euclidean distance, Manhattan distance and Minkowski distance measures can be 

used. However, the commonly used measure is Euclidean distance. The formula for 

Euclidean distance is as follows: 



k 

d = √∑ (xi - yi)
2 

i =1 

Naive Bayes algorithm (NB) 

This is a classification algorithm which is used when the dimensionality of the input 

is very high. A Naive Bayes classifier assumes that the presence of a particular 

feature in a class is unrelated to the presence of any other feature. It is based on 

Bayes theorem. The Bayes theorem is as follows: 

                                P(Y/X) = P(X/Y) P(X) 

This calculates the probability of Y given X where X is the prior event and Y is the 

dependence event. It needs less training data. It can be used for binary classification 

problems and is very simple. 

Decision trees 

Decision trees is one of the ways to display an algorithm. It is a classic machine 

learning algorithm. In heart disease, there are several factors such as cigarette, BP, 

Hypertension, age etc. The challenge of the decision tree lies in the selection of the 

root node. This factor used in root  node must clearly classify the data. We make use 

of age as the root node.  The decision tree is easy to interpret. They are non-

parametric and they implicitly do feature selection. 

 

 

 

                                              

3.2.1 DATA SET: 

Datasets are gathered from Kaggle. Data set is now provided to Machine learning 

models on the basis of this facts this version is trained.  



               

 

                                      

3.3 IMPLEMENTATION OF MODEL 



                                      

                                       Fig 11: Diagram of  Prediction Model 

 

3.3.1 Exploratory Data Analysis (EDA) 

(1 is who have Heart Disease and 0 is who don’t have Heart Disease) 

 



                  

No. of Heart Disease patients is 165. No. of patients who don’t have 

a heart disease is 138. [Which is a good balance of target data.] 

 

 

  

 

Decision Tree: 

Decision Tree is a greedy algorithm it searches the entire space of possible decision 



trees. so, we need to find an optimum parameter(s) or criteria for stopping the 

decision tree at some point. We use the hyperparameters to prune the decision tree. 

Decision tree algorithm used in model: 

We have built a classification model which learn decision rules gathered from data 

features will make predictions and will generate a tree structure with the help of 

decision nodes corresponding to input variables. Following processes are followed 

to classify the data: 

1)For selection of attribute we will be using splitting criterion Gini index. The best 

score of the attribute will be chosen as deciding node. 

2)Root split node is created with other subsets and then first process is repeated until 

the next best attribute is selected as deciding node. 

3)Process 2 is continued until reaching a leaf node. 

 

4)In the last step, pruning is applied to avoid the overfitting by removing that 

sections of tree which has little classification power and determine the optimum size 

of tree. 

                                            

3.3.2 Generated Decision Tree for Model 

 



                                                            Fig 19: Decision tree for the model   

 Visualization of decision tree is with the help of graphviz package. 

 

 

 

 

 

 

 

 

 

3.3.3 Source Code 

# coding: utf-8 

 

# In[2]: 

 

 

from numpy import genfromtxt 

import numpy as np 

from numpy import * 

import matplotlib 

#matplotlib.use('TKAgg') # matplotlib renderer for windows 

 

import matplotlib.pyplot as plt 

 

 

from sklearn.svm import LinearSVC 

from sklearn.decomposition import PCA 

import pylab as pl 



from itertools import cycle 

from sklearn import cross_validation 

from sklearn.svm import SVC 

 

# After imorting all the necessary packages now 

#Loading the data and pruning it 

dataset = genfromtxt('Desktop/Heart/data.csv',delimiter=',') 

 

#Printing the datasetd 

X = dataset[:,0:12] #Feature set 

Y = dataset[:,13]    #label Set 

 

#Replacing 1-4 by label 1  tesko arthaat   # Item with 0 value is already indexed as 

0 , so rest are indexed as 1 

for index, item in enumerate(Y):   # Last row gives 4 diff types of output , so 

convert them to 0  or 1  

 if not (item == 0.0):       # that is either Yes or No 

  Y[index] = 1 

print(Y) 

target_names = ['0','1'] 

 

 

# PLOTTING part starts 

 

#Method to plot the graph for reduced Dimensions 

def plot_2D(data,target,target_names): 

 colors = cycle('rgbcmykw') 

 target_ids = range(len(target_names)) 

 plt.figure() 

 for i,c, label in zip(target_ids, colors, target_names): 



  plt.scatter(data[target == i, 0], data[target == i, 1], c=c, 

label=label) 

 plt.legend() 

 plt.savefig('Problem 2 Graph') 

 

# TIME FOR SVM 

# Classifying the data using a linear SVM and perdicting the probabilities of 

disease belonging to a particular classs 

 

modelSVM = LinearSVC(C=0.1) 

pca = PCA(n_components=2, whiten=True).fit(X)   # n denotes number of 

components to keep after Dimensionality Reduction 

X_new = pca.transform(X) 

 

#Calling the above defined function plot_2D 

plot_2D(X_new, Y, target_names) 

 

# Applying cross validation on the training and test set for validating our linear 

SVM model 

X_train,X_test,Y_train,Y_test = cross_validation.train_test_split(X_new, Y, 

test_size = 0.2, train_size=0.8, random_state=0) 

modelSVM = modelSVM.fit(X_train,Y_train) 

print("Linear SVC values with Split") 

print(modelSVM.score(X_test, Y_test)) 

 

 

 

modelSVMRaw = LinearSVC(C = 0.1) 

modelSVMRaw = modelSVMRaw.fit(X_new, Y) 

cnt = 0 



for i in modelSVMRaw.predict(X_new): 

 if(i == Y[1]): 

  cnt = cnt+1 

print("Linear SVC score without split") 

print(float(cnt)/101) 

 

# Applying the PCA on the data features 

modelSVM2 = SVC(C = 0.1,kernel='rbf') 

 

# Applying the cross validation on training and the test set for validating our linear 

SVM model 

X_train1,X_test1,Y_train1,Y_test1 = cross_validation.train_test_split(X_new, Y, 

test_size = 0.2, train_size=0.1, random_state=0) 

modelSVM2 = modelSVM2.fit(X_train1,Y_train1) 

print("RBF score with split") 

print(modelSVM2.score(X_test1,Y_test1)) 

 

 

modelSVMRaw2 = SVC(C=0.1, kernel='rbf') 

modelSVMRaw2 = modelSVMRaw2.fit(X_new,Y) 

cnt1 = 0 

for i in modelSVMRaw2.predict(X_new): 

 if i == Y[1]: 

  cnt1 = cnt1 + 1 

print("RBF score without split") 

print(float(cnt1)/298) 

 

 

 

# Only perform 2 algorithms 



 

# creating the mest plots 

X_min, X_max = X_new[:,0].min() - 1, X_new[:,0].max() + 1 

Y_min, Y_max = X_new[:,1].min() - 1, X_new[:,1].max() + 1 

xx, yy = np.meshgrid(np.arange(X_min, X_max,0.2), 

                  np.arange(Y_min, Y_max,0.2)) 

 

#Titles for the plot 

titles = "SVC ( RBF kernel) - Plotting highest varied 2 PCA values" 

 

# PLot the decision boundary . For that we'l; assign a color to each 

# point in the mesh 

plt .subplot(2,2, i + 1) 

plt.subplots_adjust(wspace = 0.4, hspace=0.4) 

Z = modelSVM2.predict(np.c_[xx.ravel(), yy.ravel()]) 

 

 

#Put the result into a color plot 

Z = Z.reshape(xx.shape) 

plt.contourf(xx,yy,Z,cmap=plt.cm.Paired, alpha=0.1) 

 

#plot also the color points 

plt.scatter(X_new[:,0], X_new[:,1], c=Y, cmap = plt.cm.Paired) 

plt.xlabel("PCA1") 

plt.ylabel("PCA2") 

plt.xlim(xx.min(),xx.max()) 

plt.ylim(yy.min(),yy.max()) 

plt.xticks(()) 

plt.yticks(()) 

plt.title(titles) 



plt.show() 

 

 

 

 

 

 

 

 

 

 

 

 

    4. RESULTS 

  The dataset used is Framingham taken from Kaggle [17]. 

There were 16 attributes were as follows: Male – gender 0 for female and 1 for male, 

Age – age of the patient, Education – values 1-5, education of the patient. Current 

smoker – 1 if current smoker and 0 otherwise, Cigarette per day – if current smoker 

then number of cigarette per day, BP Meds – vital sign, Prevalent BP – prevalent 

vital sign, Prevalent Hyp – prevalent hyper tension, Diabetes – 1 if diabetes 0 

otherwise, Total cholesterol – cholesterol level, Sys BP – systolic vital sign, Dia BP 

– diastolic vital sign, BMI – body mass index, pulse – pulse or pulse of the patient, 

Glucose – glucose level, Ten Year CHD – has chronic heart condition or not.  

The machine learning models is evaluated using the AUC-ROC metric. This will be 

used to understand the model performance. 

The ROC curve of the algorithms is as follows: 

                   



                  FIGURE 3: ROC CURVE FOR DECISION TREE 

 

                          

 

 

 

                                             FIGURE 4: ROC CURVE FOR KNN 

 

                                                

 

 

 

                                                                       5. Conclusion 

This  discusses the various machine learning algorithm,  decision tree and k- nearest 

neighbour which were applied to the data set. It utilizes the data such as blood 

pressure, cholesterol, diabetes and then tries to predict the possible coronary heart 

disease patient in next 10 years. 



Family history of heart disease can also be a reason for developing a heart disease 

as mentioned earlier. So, this data of the patient can also be included for further 

increasing the accuracy of the model. 

This work will be useful in identifying the possible patients who may suffer from 

heart disease in the next 10 years. This may help in taking preventive measures and 

hence try to avoid the possibility of heart disease for the patient. So when a patient 

is predicted as positive for heart disease, then the medical data for the patient can be 

closely analysed by the doctors. An example would be - suppose the patient has 

diabetes which may be the cause for heart disease in future and then the patient can 

be given treatment to have diabetes in control which in turn may prevent the heart 

disease. 

The heart disease prediction can be done using other machine learning 

algorithms. Logistic regression can also perform well in case of binary classification 

problems such as heart disease prediction. Random forests can perform well than 

decision trees. Also, the ensemble methods and artificial neural networks can be 

applied to the data set. The results can be compared and improvised. 
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