

A HYBRID APP USING FLUTTER FOR FARMER CROP

AND E-COMMERCE MANAGEMENT USING GOOGLE

CLOUD AND PROVIDING SECURITY TO CLOUD USING

DEFFIE HELLMAN IN AWS

A Project Report of Capstone Project -2

Submitted by

Syed Mohd Gulam Baquer

(1613101774 / 16SCSE101811)

in partial fulfilment for the award of the

degree of

Bachelor of Technology
IN

Computer Science and Engineering

SCHOOL OF COMPUTING SCIENCE AND ENGINEERING

Under the Supervision of

Mr. G Nagarajan, M.Tech.,

Assistant Professor

APRIL / MAY- 2020 

SCHOOL OF COMPUTING AND SCIENCE AND

ENGINEERING

BONAFIDE CERTIFICATE

Certified that this project report “A HYBRID APP USING FLUTTER FOR

FARMER CROP AND E-COMMERCE MANAGEMENT USING GOOGLE

CLOUD AND PROVIDING SECURITY TO CLOUD USING DEFFIE

HELLMAN IN AWS” is the bonafide work of “Syed Mohd Gulam Baquer

(1613101774)” who carried out the project work under my supervision

SIGNATURE OF HEAD SIGNATURE OF SUPERVISOR

DR. MUNISH SABARWAL Mr. G. NAGARAJAN

PhD(Management), PhD(CS) M.tech

Professor & Dean, Assistant Professor,

School of Computing Science & School of Computing Science &

Engineering Engineering

http://M.tech

ABSTRACT

India, is known as the land of Agriculture for many years. Most of the population of

our country is totally dependent on agriculture for their survival. In a period of the

last two decades technology is expanding in rural areas with an exponential rate,

although it is expanding many farmers are not aware of the advancements in

agriculture. Most of the farmers do not have any idea about the rates of their crops

and the market value of their crops and they sell their product in a very low rate than

that of the actual market value of the crops and sometimes the intervention of the

third party also leads to a low market value of the crops. In today's world, farmers get

news through the newspaper. Many farmers do not get the news about the nearest

market that is present in their region because of that they don't get any information

about the farming schemes. In the end, they have to sell their products at a very

nominal price. But with the advancement of technology and mobile computing and

recent technological advances in Cloud Computing technology give us the path for

developing and nurturing advanced services for remote area and monitoring in many

industry areas and the agriculture sector. So our idea is to make a hybrid Application,

which is a hybrid app that helps the farmers which particularly focusses on selling

and buying the crops without the intervention of any third party. Not only the farmer

can sell his crops but also he can be able to track the daily rates and news about the

crops from all over India.

Cloud Computing provided platform for better utilisation of the resource spread

across the world. Being a nascent field, it is crowded with many different problems

that the engineers and scientist are working assiduously to eliminate. One of the main

drawbacks with cloud is security. So, this project proposes a mechanism for secure

file storage cloud using encryption and Diffie Hellman. The algorithm involves

encrypting the file stored on the cloud and using Diffie Hellman for authenticating the

user to decrypt the required file on the web app using flask framework in python.

TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

 ABSTRACT iv

 LIST OF TABLES vii

 LIST OF FIGURES viii

 LIST OF SYMBOLS ix

1. INTRODUCTION 1

 Flutter

 Firebase

 Google Cloud

 AWS

 Diffie Hellman

 AES

 Prime Number

 Method

 Python Flask

 Proposed Model

2. LITERATURE REVIEW 57

 Architecture Diagram

 Output

 Future Enhancements

 References

 LIST OF TABLES

S. NO. TABLES .

 1 Google Cloud area instance
 2 Difference between different cloud service providers

LIST OF FIGURES

S. NO. FIGURES

 1 Flutter.

 2 Firebase

 3 Google Cloud

 4 AWS

 5 Diffie Hellman

 6 AES

 7 Implementation Diagram

 8 Home Page

 9 Chat

 10 Putty

 11 Terminal

LIST OF SYMBOLS

 SYMBOL NAME ABBREVIATION

 DH Diffie Hellman

 AWS Amazon web services

 GC Google Cloud Console

 W Widgets

 IaaS Infrastructure as a service

 PaaS Platform as a service

 SaaS Software as a service

 HTML Hypertext Markup Language

 BaaS Backend as a service

 AES Advanced Encryption Algo

CHAPTER 1

INTRODUCTION

India is the country of farmers and agriculture. About 70% of the population of India

is depends on agriculture. One-third of our National income comes from the

agriculture sector. The development in agriculture has a grate impact and much to do

with the economy of our country. In the upcoming years, the agriculture sector will

undergo very dramatic changes. The vast majority of Indian farmers, which includes

small-scale producers are often unable to access the information and the correct

pricing of their crops and this leads to low income and intervention of the third party

in selling their own crops, not only those they are unaware of the news and other

commodities of the agriculture which leads to unhealthy crops production and

sometimes all their crops gets destroyed. These are the problems that lead to

exponential suicide rates of Indian farmers from the last ten years.

The data regarding farming are available from many sources like printed media,

audio and visual aids, newspapers, television internet, mobile, etc. but the formats

and structures of data are not similar. In today's world, farmers get news through

newspapers and television. But not every farmer has time to read a newspaper or they

don't watch television as they don't have much time to sit and watch a television for

some time. So because of that, they don't get any idea about the current values about

the farming schemes, in the end, they have to sell their products at very low cost.

And because they get very little money, they end up taking a loan from the bank or

any other person on interest.

With the advancement of mobile computing and smartphones and due to the lower

price of smartphones, every home is having at least one single smartphone.

So our idea is to make an application for the farmers which helps him to sell his crops

and can directly interact with the client without the intervention of any third party, not

only this the farmer has been able to track the daily price of the crops and vegetables

and news about the crops, fertilisers and the weather.

For doing all these things we are taking the help of the Google Firebase and Google

Cloud, using Google Firebase API, all the information, data, and authentication of the

farmer gets stored on Google Cloud and It’s providing security by default so we don’t

need to worry about the security concerns. For fetching the daily pricing and daily

updates about the crops we are taking the help of the Government of India (GOI)

Farmer API.

Cloud security is one of the main concerns in the cloud computing domain. Storing

personal and sensitive information on a third-party storage medium poses serious

risks of data theft and data misuse by any person with malicious intent. The threat is

so humongous that it has dissuaded governments and many other big organisations

from migrating their operations on a cloud platform. The traditional methods of

securing files and information are superfluous in the scenario of cloud. Extensive

research and study is undergoing in this field to make cloud more secure and reliable.

Among this behemoth instances of research, some of the methods that stand out

include AES encryption and Diffie Hellman Key Exchange. The latter method is so

powerful that it may take millions of years for even the most powerful computers of

current times to crack the code and reads the file. Our approach proposes a method

that involves encrypting the file using any standard encryption technique and using

Diffie Hellman for user authentication. In this way the files can be saved in a public

domain securely without the threat of being used by any unauthorised person.

Diffie–Hellman key exchange (DH) is a method of securely exchanging

cryptographic keys over a public channel and was one of the first public-key

protocols named after Whitfield Diffie and Martin Hellman. DH is one of the earliest

practical examples of public key exchange implemented within the field of

cryptography.

In public key crypto system, enciphering and deciphering are governed by distinct

keys, E and D, such that computing D from E is computationally infeasible (e.g.,

requiring more than 10100 instructions). The enciphering key E can thus be publicly

disclosed without compromising the deciphering key D. This was the main ideology

behind Diffie-Hellman Key Exchange Protocol. Each user of the network can,

therefore, place his enciphering key in a public directory. This enables any user of the

system to send a message to any other user enciphered in such a way that only the

intended receiver can decipher it. As such, a public key crypto system is a multiple

access cipher. A private conversation can therefore be held between any two

individuals regardless of whether they have ever communicated before. Each one

sends messages to the other enciphered in the receiver’s public enciphering key and

deciphers the messages he receives using his own secret deciphering key. Diffie–

Hellman key exchange establishes a shared secret between two parties that can be

used for secret communication for exchanging data over a public network. The above

conceptual diagram illustrates the general idea of the key exchange by using colours

instead of very large numbers.  

The process begins by having the two parties, Alice and Bob, agree on an arbitrary

starting colour that does not need to be kept secret in this example the colour is

yellow. Each of them selects a secret colour that they keep to themselves – in this

case, orange and blue-green. The crucial part of the process is that Alice and Bob

each mix their own secret colour together with their mutually shared colour, resulting

in orange-tan and light-blue mixtures respectively, and then publicly exchange the

two mixed colours. Finally, each of the two mixes the colour he or she received from

the partner with his or her own private colour. The result is a final colour mixture

(yellow-brown in this case) that is identical to the partner's final colour mixture. If a

third party listened to the exchange, it would be computationally difficult for this

party to determine the secret colours. In fact, when using large numbers rather than

colours, this action is computationally expensive for modern supercomputers to do in

a reasonable amount of time. Cloud security is one of the main concerns in the cloud

computing domain. Storing personal and sensitive information on a third-party

storage medium poses serious risks of data theft and data misuse by any person with

malicious intent. The threat is so humongous that it has dissuaded governments and

many other big organizations from migrating their operations on a cloud platform.

The traditional methods of securing files and information are superfluous in the

scenario of cloud. Extensive research and study is undergoing in this field to make

cloud more secure and reliable. Among this behemoth instances of research, some of

the methods that stand out include AES encryption and Diffie Hellman Key

Exchange. The latter method is so powerful that it may take millions of years for even

the most powerful computers of current times to crack the code and reads the file.

Our approach proposes a method that involves encrypting the file using any standard

encryption technique and using Diffie Hellman for user authentication. In this way

the files can be saved in a public domain securely without the threat of being used by

any unauthorised person.

CHAPTER 1.1

FLUTTER

Flutter is an open-source UI software development kit created by Google. It is used

to develop applications for Android, iOS, Windows, Mac, Linux, Google Fuchsia and

the web.

The first version of Flutter was known as codename "Sky" and ran on

the Android operating system. It was unveiled at the 2015 Dart developer summit,

with the stated intent of being able to render consistently at 120 frames per second.

During the keynote of Google Developer Days in Shanghai, Google announced

Flutter Release Preview 2 which is the last big release before Flutter 1.0. On

December 4, 2018, Flutter 1.0 was released at the Flutter Live event, denoting the

first "stable" version of the Framework. On December 11, 2019, Flutter 1.12 was

released at the Flutter Interactive event.

The major components of Flutter include:

• Dart platform

• Flutter engine

• Foundation library

• Design-specific widgets

Dart platform

Flutter apps are written in the Dart language and make use of many of the language's

more advanced features.

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Dart_(programming_language)

On Windows, macOS and Linux via the semi-official Flutter Desktop

Embedding project, Flutter runs in the Dart virtual machine which features a just-in-

time execution engine. While writing and debugging an app, Flutter uses Just In Time

compilation, allowing for "hot reload", with which modifications to source files can

be injected into a running application. Flutter extends this with support

for stateful hot reload, where in most cases changes to source code can be reflected

immediately in the running app without requiring a restart or any loss of state.This

feature as implemented in Flutter has received widespread praise.

Release versions of Flutter apps are compiled with ahead-of-time (AOT)

compilation on both Android and iOS, making Flutter's high performance on mobile

devices possible.

Flutter engine

Flutter's engine, written primarily in C++, provides low-level rendering support using

Google's Skia graphics library. Additionally, it interfaces with platform-

specific SDKs such as those provided by Android and iOS.The Flutter Engine is a

portable runtime for hosting Flutter applications. It implements Flutter's core

libraries, including animation and graphics, file and network I/O, accessibility

support, plugin architecture, and a Dart runtime and compile toolchain. Most

developers will interact with Flutter via the Flutter Framework, which provides a

modern, reactive framework, and a rich set of platform, layout and foundation

widgets.

Foundation library

https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Stateful
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Rendering_(computer_graphics)

The Foundation library, written in Dart, provides basic classes and functions which

are used to construct applications using Flutter, such as APIs to communicate with the

engine.

Widgets

UI design in Flutter involves using composition to assemble / create "Widgets" from

other Widgets. The trick to understanding this is to realise that any tree of

components (Widgets) that is assembled under a single build() method is also referred

to as a single Widget. This is because those smaller Widgets are also made up of even

smaller Widgets, and each has a build() method of its own. This is how Flutter makes

use of Composition.

The docs say: " A widget is an immutable description of part of a user interface." A

human being will tell you it's a Blueprint, which is a much easier way to think about

it. However, one also needs to keep in mind there are many types of Widgets in

Flutter, and you cannot see or touch all of them. Text is a Widget, but so is it’s

TextStyle, which defines things like size, colour, font family and weight. There are

Widgets that represent things, ones that represent characteristics (like TextStyle) and

even others that do things, like FutureBuilder and StreamBuilder.

Complex widgets can be created by combining many simpler ones, and an app is

actually just the largest Widget of them all (often called "MyApp"). The MyApp

Widget contains all the other Widgets, which can contain even smaller Widgets, and

together they make up your app.

https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Application_programming_interface

However, the use of widgets is not strictly required to build Flutter apps. An

alternative option, usually only used by people who like to control every pixel drawn

to the canvas, is to use the Foundation library's methods directly. These methods can

be used to draw shapes, text, and imagery directly to the canvas. This ability of

Flutter has been utilised in a few frameworks, such as the open-source Flame game

engine.

Design-specific widgets

The Flutter framework contains two sets of widgets which conform to specific design

languages. Material Design widgets implement Google's design language of the same

name, and Cupertino widgets implement Apple's iOS Human interface guidelines.

https://en.wikipedia.org/wiki/Human_interface_guidelines

CHAPTER 1.2

 GOOGLE FIREBASE

Firebase is a mobile and web application development platform developed by

Firebase, Inc. in 2011, then acquired by Google in 2014. As of March 2020, the

Firebase platform has 19 products, which are used by more than 1.5 million apps.

Firebase evolved from Envolve, a prior startup founded by James Tamplin and

Andrew Lee in 2011. Envolve provided developers an API that enables the

integration of online chat functionality into their websites. After releasing the chat

service, Tamplin and Lee found that it was being used to pass application data that

were not chat messages. Developers were using Envolve to sync application data

such as game state in real time across their users. Tamplin and Lee decided to

separate the chat system and the real-time architecture that powered it. They founded

Firebase as a separate company in September 2011 and it launched to the public in

April 2012.

Firebase's first product was the Firebase Real-time Database, an API that

synchronizes application data across iOS, Android, and Web devices, and stores it on

Firebase's cloud. The product assists software developers in building real-time,

collaborative applications.

In May 2012, a month after the beta launch, Firebase raised $1.1 million in seed

funding from venture capitalists Flybridge Capital Partners, Greylock Partners,

Founder Collective, and New Enterprise Associates. In June 2013, the company

https://en.wikipedia.org/wiki/New_Enterprise_Associates

further raised $5.6 million in Series A funding from Union Square

Ventures and Flybridge Capital Partners.

In 2014, Firebase launched two products. Firebase Hosting and Firebase

Authentication. This positioned the company as a mobile backend as a service.

In October 2014, Firebase was acquired by Google. A year later, in October 2015,

Google acquired Divshot, an HTML5 web-hosting platform, to merge it with the

Firebase team.

In May 2016, at Google I/O, the company's annual developer conference, Firebase

introduced Firebase Analytics and announced that it was expanding its services to

become a unified backend-as-a-service (BaaS) platform for mobile developers.

Firebase now integrates with various other Google services, including Google Cloud

Platform, AdMob, and Google Ads to offer broader products and scale for

developers. Google Cloud Messaging, the Google service to send push

notifications to Android devices, was superseded by a Firebase product, Firebase

Cloud Messaging, which added the functionality to deliver push notifications to both

iOS and web devices . In January 2017, Google acquired Fabric

and Crashlytics from Twitter to add those services to Firebase.

In October 2017, Firebase has launched Cloud Firestore, a real-time document

database as the successor product to the original Firebase Realtime Database.

Services

Google Analytics

Google Analytics is a cost-free app measurement solution that provides insights on

app usage and user engagement.

Develop

Firebase Cloud Messaging

Formerly known as Google Cloud Messaging (GCM), Firebase Cloud

Messaging (FCM) is a cross-platform solution for messages and notifications

for Android, iOS, and web applications, which as of 2016 can be used at no cost.

Firebase Authentication

Firebase Authentication is a service that can authenticate users using only client-side

code. It supports social login providers Facebook, GitHub, Twitter and Google as

well as other service providers like Google Play Games, Apple, Yahoo, and

Microsoft. Additionally, it includes a user management system whereby developers

can enable user authentication with email and password login stored with Firebase.

Firebase Realtime Database

Firebase provides a real-time database and back-end as a service. The service

provides application developers an API that allows application data to be

synchronized across clients and stored on Firebase's cloud. The company provides

client libraries that enable integration with Android, iOS, JavaScript, Java, Objective-

C, Swift and Node.js applications. The database is also accessible through a REST

A P I a n d b i n d i n g s f o r s e v e r a l J a v a S c r i p t f r a m e w o r k s s u c h

as AngularJS, React, Ember.js and Backbone.js. The REST API uses the Server-Sent

https://en.wikipedia.org/wiki/Backbone.js

Events protocol, which is an API for creating HTTP connections for receiving push

notifications from a server. Developers using the realtime database can secure their

data by using the company's server-side-enforced security rules.

Cloud Firestore

On January 31, 2019, Cloud Firestore was officially brought out of beta, making it an

official product of the Firebase lineup. It is the successor to Firebase's original

databasing system, Real-time Database, and allows for nested documents and fields

rather than the tree-view provided in the Real-time Database.

Firebase Storage

Firebase Storage provides secure file uploads and downloads for Firebase apps,

regardless of network quality, to be used for storing images, audio, video, or other

user-generated content. It is backed by Google Cloud Storage.

Firebase Hosting

Firebase Hosting is a static and dynamic web hosting service that launched on May

13, 2014. It supports hosting static files such as CSS, HTML, JavaScript and other

files, as well as support through Cloud Functions. The service delivers files over

a content delivery network (CDN) through HTTP Secure (HTTPS) and Secure

Sockets Layer encryption (SSL). Firebase partners with Fastly, a CDN, to provide the

CDN backing Firebase Hosting. The company states that Firebase Hosting grew out

of customer requests; developers were using Firebase for its real-time database but

needed a place to host their content.

ML Kit

ML Kit is a mobile machine learning system for developers launched on May 8,

2018, in beta during the Google I/O 2018. ML Kit APIs feature a variety of features

including optical character recognition, detecting faces, scanning barcodes, labelling

i m a g e s a n d r e c o g n i s i n g l a n d m a r k s . I t i s c u r r e n t l y a v a i l a b l e

for iOS or Android developers. You may also import your own TensorFlow Lite

models, if the given APIs are not enough.The APIs can be used on-device or on-

cloud.

Stability

Crashlytics

Crash Reporting creates detailed reports of the errors in the app. Errors are grouped

into clusters of similar stack traces and triaged by the severity of impact on app users.

In addition to automatic reports, the developer can log custom events to help capture

the steps leading up to a crash. Before acquiring Crashlytics, Firebase was using its

own Firebase Crash Reporting.

Performance

Firebase Performance provides insights into an app's performance and the latencies

the app's users experience.

Firebase Test Lab

Firebase Test Lab provides cloud-based infrastructure for testing Android and iOS

apps in one operation. Developers can test their apps across a wide variety of devices

and device configurations. Test results—including logs, videos, and screenshots—are

made available in the Firebase console. Even if a developer hasn't written any test

code for their app, Test Lab can exercise the app automatically, looking for crashes.

Test Lab for iOS is currently in beta.

Admob

Admob is a Google product that integrates with Firebase audience.

Grow

Firebase Dynamic Links

Dynamic Firebase links are smart URLs that dynamically change their behaviour to

provide "the best available experience" across multiple platforms, including desktop

web browsers, iOS, and Android, and in-depth links to mobile apps. Dynamic Links

work in all app installs: if the user opens Dynamic Link on iOS or Android and the

application is not installed, the user will be prompted to install the app first. Once

installed, the application will start running and can access the link.

 Fig:2 Google Firebase

CHAPTER 1.3

GOOGLE CLOUD

Google Cloud Platform (GCP), offered by Google, is a suite of cloud

computing services that runs on the same infrastructure that Google uses internally

for its end-user products, such as Google Search, Gmail and YouTube.Alongside a set

of management tools, it provides a series of modular cloud services including

computing, data storage, data analytics and machine learning.Registration requires

a credit card or bank account details.

Google Cloud Platform provides infrastructure as a service, platform as a service,

and serverless computing environments.

In April 2008, Google announced App Engine, a platform for developing and hosting

web applications in Google-managed data centers, which was the first cloud

computing service from the company. The service became generally available in

November 2011. Since the announcement of the App Engine, Google added multiple

cloud services to the platform.

Google Cloud Platform is a part of Google Cloud, which includes the Google Cloud

Platform public cloud infrastructure, as well as G Suite, enterprise versions

of Android and Chrome OS, and application programming interfaces

(APIs) for machine learning and enterprise mapping services.

Products

Google lists over 90 products under the Google Cloud brand. Some of the key

services are listed below.

Compute

• A p p E n g i n e - P l a t f o r m a s a S e r v i c e t o

deploy Java, PHP, Node.js, Python, C#, .Net, Ruby and Go applications.

• Compute Engine - Infrastructure as a Service to run Microsoft

Windows and Linux virtual machines.

• Kubernetes Engine (GKE) or GKE on-prem offered as part of Anthos platform-

Containers as a Service based on Kubernetes.

• Cloud Functions - Functions as a Service to run event-driven code written in

Node.js, Python or Go.

• Cloud Run - Compute execution environment based on Knative. Offered as

Cloud Run (fully managed) or as Cloud Run for Anthos.

Storage & Databases

• Cloud Storage - Object storage with integrated edge caching to

store unstructured data.

• Cloud SQL - Database as a Service based on MySQL and PostgreSQL.

• Cloud Bigtable - Managed NoSQL database service.

• Cloud Spanner - Horizontally scalable, strongly consistent, relational database

service.

• Cloud Datastore - NoSQL database for web and mobile applications.

• Persistent Disk - Block storage for Compute Engine virtual machines.

• Cloud MemoryStore - Managed in-memory data store based on Redis.

https://en.wikipedia.org/wiki/Linux

• Local SSD: High performance, transient, local block storage.

• Filestore: High performance file storage for Google Cloud users.

Networking

• VPC - Virtual Private Cloud for managing the software defined network of

cloud resources.

• Cloud Load Balancing - Software-defined, managed service for load

balancing the traffic.

• Cloud Armor - Web application firewall to protect workloads

from DDoS attacks.

• Cloud CDN - Content Delivery Network based on Google's globally

distributed edge points of presence.

• Cloud Interconnect - Service to connect a data center with Google Cloud

Platform

• Cloud DNS - Managed, authoritative DNS service running on the same

infrastructure as Google.

• Network Service Tiers - Option to choose Premium vs Standard network tier

for higher-performing network.

Big Data

• BigQuery - Scalable, managed enterprise data warehouse for analytics.

• Cloud Dataflow - Managed service based on Apache Beam for stream and

batch data processing.

• Cloud Dataproc - Big data platform for running Apache Hadoop and Apache

Spark jobs.

• Cloud Composer - Managed workflow orchestration service built on Apache

Airflow.

• Cloud Datalab - Tool for data exploration, analysis, visualization and machine

learning. This is a fully managed Jupyter Notebook service.

• Cloud Dataprep - Data service based on Trifacta to visually explore, clean, and

prepare data for analysis.

• Cloud Pub/Sub - Scalable event ingestion service based on message queues.

• Cloud Data Studio - Business intelligence tool to visualize data through

dashboards and reports.

Cloud AI

• Cloud AutoML - Service to train and deploy custom machine, learning models.

As of September 2018, the service is in Beta.

• Cloud TPU - Accelerators used by Google to train machine learning models.

• Cloud Machine Learning Engine - Managed service for training and building

machine learning models based on mainstream frameworks.

• Cloud Job Discovery - Service based on Google's search and machine learning

capabilities for the recruiting ecosystem.

• Dialogflow Enterprise - Development environment based on Google's

machine learning for building conversational interfaces.

• Cloud Natural Language - Text analysis service based on Google Deep

Learning models.

• Cloud Speech-to-Text - Speech to text conversion service based on machine

learning.

https://en.wikipedia.org/wiki/Tensor_processing_unit

• Cloud Text-to-Speech - Text to speech conversion service based on machine

learning.

• Cloud Translation API - Service to dynamically translate between thousands of

available language pairs

• Cloud Vision API - Image analysis service based on machine learning

• Cloud Video Intelligence - Video analysis service based on machine learning

Management Tools

• Stackdriver - Monitoring, logging, and diagnostics for applications on Google

Cloud Platform and AWS.

• Cloud Deployment Manager - Tool to deploy Google Cloud Platform

resources defined in templates created in YAML, Python or Jinja2.

• Cloud Console - Web interface to manage Google Cloud Platform resources.

• Cloud Shell - Browser-based shell command-line access to manage Google

Cloud Platform resources.

• Cloud Console Mobile App - Android and iOS application to manage Google

Cloud Platform resources.

• Cloud APIs - APIs to programmatically access Google Cloud Platform

resources

Identity & Security

• Cloud Identity - Single sign-on (SSO) service based on SAML

2.0 and OpenID.

• Cloud IAM - Identity & Access Management (IAM) service for defining

policies based on role-based access control.

• Cloud Identity-Aware Proxy - Service to control access to cloud applications

running on Google Cloud Platform without using a VPN.

• Cloud Data Loss Prevention API - Service to automatically discover, classify,

and redact sensitive data.

• Security Key Enforcement - Two-step verification service based on a security

key.

• Cloud Key Management Service - Cloud-hosted key management service

integrated with IAM and audit logging.

• Cloud Resource Manager - Service to manage resources by project, folder, and

organization based on the hierarchy.

• Cloud Security Command Center - Security and data risk platform for data and

services running in Google Cloud Platform.

• Cloud Security Scanner - Automated vulnerability scanning service for

applications deployed in App Engine.

• Access Transparency - Near real-time audit logs providing visibility to Google

Cloud Platform administrators.

• VPC Service Controls - Service to manage security perimeters for sensitive

data in Google Cloud Platform services.

IoT

• Cloud IoT Core - Secure device connection and management service

for Internet of Things.

• Edge TPU - Purpose-built ASIC designed to run inference at the edge. As of

September 2018, this product is in private beta.

• Cloud IoT Edge - Brings AI to the edge computing layer.

API Platform

• Maps Platform - APIs for maps, routes, and places based on Google Maps.

• Apigee API Platform - Lifecycle management platform to design, secure,

deploy, monitor, and scale APIs.

• API Monetization - Tool for API providers to create revenue models,

reports, payment gateways, and developer portal integrations.

• Developer Portal - Self-service platform for developers to publish and manage

APIs.

• API Analytics - Service to analyze API-driven programs through monitoring,

measuring, and managing APIs.

• Apigee Sense - Enables API security by identifying and alerting administrators

to suspicious API behaviors.

• Cloud Endpoints - An NGINX-based proxy to deploy and manage APIs.

• Service Infrastructure - A set of foundational services for building Google

Cloud products.

Regions and zones

As of Q1 2020, Google Cloud Platform is available in 22 regions and 61 zones. A

region is a specific geographical location where users can deploy cloud resources.

Each region is an independent geographic area that consists of zones. A zone is a

deployment area for Google Cloud Platform resources within a region. Zones should

be considered a single failure domain within a region. Most of the regions have three

or more zones. As of Q1 2020, Google Cloud Platform is available in the following

regions and zones:

GCP Regions & Zones

Region Name Launc
h Date Location Zones

us-west1 Q3,
2016

The Dalles, Oregon,
USA

• us-west1-a
• us-west1-b
• us-west1-c

us-west2 Q3,
2018

Los Angeles,
California, USA

• us-west2-a
• us-west2-b
• us-west2-c

us-west3 Q1,
2020

Salt Lake City, Utah,
USA

• us-west3-a
• us-west3-b
• us-west3-c

us-central1 Council Bluffs, Iowa,
USA

• us-central1-a
• us-central1-b
• us-central1-c
• us-central1-f

us-east1 Q4,
2015

Moncks Corner, South
Carolina, USA

• us-east1-b
• us-east1-c
• us-east1-d

us-east4 Q2,
2017

Ashburn, Virginia,
USA

• us-east4-a
• us-east4-b
• us-east4-c

northamerica-
northeast1

Q1,
2018 Montréal, Canada

• northamerica-
northeast1-a

• northamerica-
northeast1-b

• northamerica-
northeast1-c

southamerica-
east1

Q3,
2017 São Paulo, Brazil

• southamerica-
east1-a

• southamerica-
east1-b

• southamerica-
east1-c

europe-west2 Q2,
2017 London, U.K.

• europe-west2-a
• europe-west2-b
• europe-west2-c

europe-west1 St. Ghislain, Belgium
• europe-west1-b
• europe-west1-c
• europe-west1-d

europe-west4 Q1,
2018

Eemshaven,
Netherlands

• europe-west4-a
• europe-west4-b
• europe-west4-c

europe-west6 Q1,
2019 Zurich, Switzerland

• europe-west6-a
• europe-west6-b
• europe-west6-c

europe-west3 Q3,
2017 Frankfurt, Germany

• europe-west3-a
• europe-west3-b
• europe-west3-c

europe-north1 Q2,
2018 Hamina, Finland

• europe-north1-a
• europe-north1-b
• europe-north1-c

asia-south1 Q4,
2017 Mumbai, India

• asia-south1-a
• asia-south1-b
• asia-south1-c

asia-
southeast1

Q2,
2017

Jurong West,
Singapore

• asia-
southeast1-a

• asia-
southeast1-b

• asia-
southeast1-c

asia-east2 Q3,
2018 Hong Kong

• asia-east2-a
• asia-east2-b
• asia-east2-c

Similarity to services by other cloud service providers
For those familiar with other notable cloud service providers, a comparison of similar

services may be helpful in understanding Google Cloud Platform's offerings.

asia-east1 Changhua County,
Taiwan

• asia-east1-a
• asia-east1-b
• asia-east1-c

asia-
northeast1

Q4,
2016 Tokyo, Japan

• asia-northeast1-
a

• asia-northeast1-
b

• asia-northeast1-
c

asia-
northeast2

Q2,
2019 Osaka, Japan

• asia-northeast2-
a

• asia-northeast2-
b

• asia-northeast2-
c

asia-
northeast3

Q1,
2020 Seoul, Korea

• asia-northeast3-
a

• asia-northeast3-
b

• asia-northeast3-
c

australia-
southeast1

Q3,
2017 Sydney, Australia

• australia-
southeast1-a

• australia-
southeast1-b

• australia-
southeast1-c

Google Cloud
Platform

Amazon Web
Services Microsoft Azure Oracle Cloud

Google
Compute
Engine

Amazon EC2 Azure Virtual
Machines

Oracle Cloud Infra
OCI

Google App
Engine

AWS Elastic
Beanstalk

Azure App
Services

Oracle Application
Container

Google
Kubernetes
Engine

Amazon Elastic
Container Service
for Kubernetes

Azure Kubernetes
Service

Oracle Kubernetes
Service

Google Cloud
Bigtable

Amazon
DynamoDB Azure Cosmos DB Oracle NoSQL

Database
Google
BigQuery Amazon Redshift Microsoft Azure

DataWarehouse
Oracle Autonomous
DataWarehouse

Google Cloud
Functions AWS Lambda Azure Functions Oracle Cloud Fn

Google Cloud
Datastore

Amazon
DynamoDB Cosmos DB Oracle NoSQL

Database
Google Cloud
Storage Amazon S3 Azure Blob

Storage
Oracle Cloud Storage
OCI

CHAPTER 1.4
AMAZON WEB SERVICES(AWS)

Amazon Web Services (AWS) is a subsidiary of Amazon that provides on-

demand cloud computing platforms and APIs to individuals, companies, and

governments, on a metered pay-as-you-go basis. In aggregate, these cloud

computing web services provide a set of primitive abstract technical infrastructure

and distributed computing building blocks and tools. One of these services is Amazon

Elastic Compute Cloud, which allows users to have at their disposal a virtual cluster

of computers, available all the time, through the Internet. AWS's version of virtual

computers emulate most of the attributes of a real computer, including

hardware central processing units (CPUs) and graphics processing units (GPUs) for

processing; local/RAM memory; hard-disk/SSD storage; a choice of operating

https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Computing_platform
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Web_services
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Solid-state_drive

systems; networking; and pre-loaded application software such as web

servers, databases, and customer relationship management (CRM).

The AWS technology is implemented at server farms throughout the world, and

maintained by the Amazon subsidiary. Fees are based on a combination of usage

(known as a "Pay-as-you-go" model), the hardware/OS/software/networking features

chosen by the subscriber, required availability, redundancy, security, and service

options. Subscribers can pay for a single virtual AWS computer, a dedicated physical

computer, or clusters of either. As part of the subscription agreement, Amazon

provides security for subscribers' systems. AWS operates from many global

geographical regions including 6 in North America.

I n 2 0 2 0 , A W S c o m p r i s e d m o r e t h a n 2 1 2 s e r v i c e s

including computing, storage, networking, database, analytics, application

services, deployment, management, mobile, developer tools, and tools for the Internet

of Things. The most popular include Amazon Elastic Compute Cloud (EC2)

and Amazon Simple Storage Service (Amazon S3). Most services are not exposed

directly to end users, but instead offer functionality through APIs for developers to

use in their applications. Amazon Web Services' offerings are accessed over HTTP,

using the REST architectural style and SOAP protocol for older APIs and

exclusively JSON for newer ones.

Amazon markets AWS to subscribers as a way of obtaining large scale computing

capacity more quickly and cheaply then building an actual physical server farm. All

services are billed based on usage, but each service measures usage in varying ways.

As of 2017, AWS owns a dominant 34% of all cloud (IaaS, PaaS) while the next three

https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Server_farm
https://en.wikipedia.org/wiki/Availability_(system)
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/North_America
https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Storage_virtualization
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Analytics
https://en.wikipedia.org/wiki/Application_service_provider
https://en.wikipedia.org/wiki/Application_service_provider
https://en.wikipedia.org/wiki/Software_deployment
https://en.wikipedia.org/wiki/Systems_management
https://en.wikipedia.org/wiki/Mobile_application_development
https://en.wikipedia.org/wiki/Programming_tool
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/Amazon_Simple_Storage_Service
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/Representational_State_Transfer
https://en.wikipedia.org/wiki/SOAP_(protocol)
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Infrastructure_as_a_service
https://en.wikipedia.org/wiki/Platform_as_a_service

competitors Microsoft, Google, and IBM have 11%, 8%, 6% respectively according

to Synergy Group.

The AWS platform was launched in July 2002. In its early stages, the platform

consisted of only a few disparate tools and services. Then in late 2003, the AWS

concept was publicly reformulated when Chris Pinkham and Benjamin Black

presented a paper describing a vision for Amazon's retail computing infrastructure

that was completely standardized, completely automated, and would rely extensively

on web services for services such as storage and would draw on internal work already

underway. Near the end of their paper, they mentioned the possibility of selling

access to virtual servers as a service, proposing the company could generate revenue

from the new infrastructure investment. In November 2004, the first AWS service

launched for public usage: Simple Queue Service (SQS). Thereafter Pinkham and

lead developer Christopher Brown developed the Amazon EC2 service, with a team

in Cape Town, South Africa.

Amazon Web Services was officially re-launched on March 14, 2006, combining the

three initial service offerings of Amazon S3 cloud storage, SQS, and EC2. The AWS

platform finally provided an integrated suite of core online services, as Chris

Pinkham and Benjamin Black had proposed back in 2003, as a service offered to

other developers, web sites, client-side applications, and companies. Andy Jassy,

AWS founder and vice president in 2006, said at the time that Amazon S3 (one of the

first and most scalable elements of AWS) "helps free developers from worrying about

where they are going to store data, whether it will be safe and secure, if it will be

available when they need it, the costs associated with server maintenance, or whether

https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Amazon_Simple_Queue_Service
https://en.wikipedia.org/wiki/Cape_Town
https://en.wikipedia.org/wiki/Cloud_storage
https://en.wikipedia.org/wiki/Andy_Jassy

they have enough storage available. Amazon S3 enables developers to focus on

innovating with data, rather than figuring out how to store it.".In 2016 Jassy was

promoted to CEO of the division. Reflecting the success of AWS, his annual

compensation in 2017 hit nearly $36 million.

In 2014, AWS launched its partner network entitled APN (AWS Partner Network)

which is focused on helping AWS-based companies grow and scale the success of

their business with close collaboration and best practices.[17]

To support industry-wide training and skills standardization, AWS began offering a

certification program for computer engineers, on April 30, 2013, to highlight

expertise in cloud computing.

In January 2015, Amazon Web Services acquired Annapurna Labs, an Israel-based

microelectronics company reputedly for US$350–370M.

James Hamilton, an AWS engineer, wrote a retrospective article in 2016 to highlight

the ten-year history of the online service from 2006 to 2016. As an early fan and

outspoken proponent of the technology, he had joined the AWS engineering team in

2008.

In January 2018, Amazon launched an autoscaling service on AWS.

In November 2018, AWS announced customized ARM cores for use in its

servers. Also in November 2018, AWS is developing ground stations to communicate

with customer's satellites.

Growth and profitability

https://en.wikipedia.org/wiki/Amazon_Web_Services#cite_note-17
https://en.wikipedia.org/wiki/Annapurna_Labs
https://en.wikipedia.org/wiki/Autoscaling

In November 2010, it was reported that all of Amazon.com's retail sites had migrated

to AWS. Prior to 2012, AWS was considered a part of Amazon.com and so its

revenue was not delineated in Amazon financial statements. In that year industry

watchers for the first time estimated AWS revenue to be over $1.5 billion.

In April 2015, Amazon.com reported AWS was profitable, with sales of $1.57 billion

in the first quarter of the year and $265 million of operating income. Founder Jeff

Bezos described it as a fast-growing $5 billion business; analysts described it as

"surprisingly more profitable than forecast”. In October, Amazon.com said in its Q3

earnings report that AWS's operating income was $521 million, with operating

margins at 25 percent. AWS's 2015 Q3 revenue was $2.1 billion, a 78% increase from

2014's Q3 revenue of $1.17 billion. 2015 Q4 revenue for the AWS segment increased

69.5% y/y to $2.4 billion with 28.5% operating margin, giving AWS a $9.6 billion

run rate. In 2015, Gartner estimated that AWS customers are deploying 10x more

infrastructure on AWS than the combined adoption of the next 14 providers.

In 2016 Q1, revenue was $2.57 billion with net income of $604 million, a 64%

increase over 2015 Q1 that resulted in AWS being more profitable than Amazon's

North American retail business for the first time. In the first quarter of 2016, Amazon

experienced a 42% rise in stock value as a result of increased earnings, of which

AWS contributed 56% to corporate profits.[32]

AWS had $17.46 billion in annual revenue in 2017. By end of 2018, the number had

grown to $25.65 billion.

https://en.wikipedia.org/wiki/Jeff_Bezos
https://en.wikipedia.org/wiki/Jeff_Bezos
https://en.wikipedia.org/wiki/Gartner
https://en.wikipedia.org/wiki/Amazon_Web_Services#cite_note-32

In 2019, AWS continued to surpass its parent company in terms of profitability;

Amazon reported 20% growth in sales while AWS reported 37% growth in 2019. In

2019, AWS alone accounted for 12% of Amazon's revenue (up from 11% in 2018).

Customer base

• On March 14, 2006, Amazon said in a press release: "More than 150,000

developers have signed up to use Amazon Web Services since its inception."

• In November 2012, AWS hosted its first customer event in Las Vegas.

• On May 13, 2013, AWS was awarded an Agency Authority to Operate (ATO)

from the U.S. Department of Health and Human Services under the Federal

Risk and Authorization Management Program.

• In October 2013, it was revealed that AWS was awarded a $600M contract

with the CIA.

• During August 2014, AWS received Department of Defense-Wide provisional

authorization for all U.S. Regions.

• During the 2015 re:Invent keynote, AWS disclosed that they have more than a

million active customers every month in 190 countries, including nearly 2,000

government agencies, 5,000 education institutions and more than 17,500

nonprofits.

• On April 5, 2017, AWS and DXC Technology (formed from a merger of CSC

and HPE's Enterprise Services Business) announced an expanded alliance to

increase access of AWS features for enterprise clients in existing data centers.

Notable customers include NASA, the Obama presidential campaign of

2012, and Netflix.

https://en.wikipedia.org/wiki/Parent_company
https://en.wikipedia.org/wiki/Las_Vegas
https://en.wikipedia.org/wiki/U.S._Department_of_Health_and_Human_Services
https://en.wikipedia.org/wiki/Federal_Risk_and_Authorization_Management_Program
https://en.wikipedia.org/wiki/Federal_Risk_and_Authorization_Management_Program
https://en.wikipedia.org/wiki/CIA
https://en.wikipedia.org/wiki/DXC_Technology

In 2019, it was reported that more than 80% of Germany's listed DAX companies use

AWS.

In August 2019, the U.S. Navy said it moved 72,000 users from six commands to an

AWS cloud system as a first step toward pushing all of its data and analytics onto the

cloud.

Significant service outages

• On April 20, 2011, AWS suffered a major outage. Parts of the Elastic Block

Store (EBS) service became "stuck" and could not fulfill read/write requests. It

took at least two days for service to be fully restored.

• On June 29, 2012, several websites that rely on Amazon Web Services were

taken offline due to a severe storm in Northern Virginia, where AWS' largest

data center cluster is located.

• On October 22, 2012, a major outage occurred, affecting many sites such

as Reddit, Foursquare, Pinterest, and others. The cause was a memory leak bug

in an operational data collection agent.

• On December 24, 2012, AWS suffered another outage causing websites such

as Netflix to be unavailable for customers in the Northeastern United States.

AWS cited their Elastic Load Balancing (ELB) service as the cause.

• On February 28, 2017, AWS experienced a massive outage of S3 services in its

Northern Virginia region. A majority of websites which relied on AWS S3

either hung or stalled, and Amazon reported within five hours that AWS was

fully online again. No data has been reported to have been lost due to the

outage. The outage was caused by a human error made while debugging, that

https://en.wikipedia.org/wiki/United_States_Navy
https://en.wikipedia.org/wiki/June_2012_North_American_derecho
https://en.wikipedia.org/wiki/Northern_Virginia
https://en.wikipedia.org/wiki/Reddit
https://en.wikipedia.org/wiki/Foursquare_City_Guide
https://en.wikipedia.org/wiki/Pinterest
https://en.wikipedia.org/wiki/Netflix
https://en.wikipedia.org/wiki/Elastic_Load_Balancing
https://en.wikipedia.org/wiki/Human_error
https://en.wikipedia.org/wiki/Debugging

resulted in removing more server capacity than intended, which caused a

domino effect of outages.

Availability and topology

As of 2019, AWS has distinct operations in 22 geographical "regions": 7 in North

America, 1 in South America, 5 in Europe, 1 In Middle-East and 8 in Asia Pacific.

AWS has announced 5 new regions that will be coming online in Italy, South Africa,

Spain, Osaka and Indonesia.

Each region is wholly contained within a single country and all of its data and

services stay within the designated region. Each region has multiple "Availability

Zones”, which consist of one or more discrete data centers, each with redundant

power, networking and connectivity, housed in separate facilities. Availability Zones

do not automatically provide additional scalability or redundancy within a region,

since they are intentionally isolated from each other to prevent outages from

spreading between Zones. Several services can operate across Availability Zones

(e.g., S3, DynamoDB) while others can be configured to replicate across Zones to

spread demand and avoid downtime from failures.

As of December 2014, Amazon Web Services operated an estimated 1.4 million

servers across 28 availability zones. The global network of AWS Edge locations

consists of 54 points of presence worldwide, including locations in the United States,

Europe, Asia, Australia, and South America.

In 2014, AWS claimed its aim was to achieve 100% renewable energy usage in the

future. In the United States, AWS's partnerships with renewable energy providers

https://en.wikipedia.org/wiki/North_America
https://en.wikipedia.org/wiki/North_America
https://en.wikipedia.org/wiki/South_America
https://en.wikipedia.org/wiki/Europe
https://en.wikipedia.org/wiki/Asia_Pacific
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Emergency_power_system
https://en.wikipedia.org/wiki/Emergency_power_system
https://en.wikipedia.org/wiki/Network_outage
https://en.wikipedia.org/wiki/Amazon_DynamoDB
https://en.wikipedia.org/wiki/Downtime
https://en.wikipedia.org/wiki/100%25_renewable_energy

include Community Energy of Virginia, to support the US East region; Pattern

Development, in January 2015, to construct and operate Amazon Wind Farm Fowler

Ridge; Iberdrola Renewables, LLC, in July 2015, to construct and operate Amazon

Wind Farm US East; EDP Renewables North America, in November 2015, to

construct and operate Amazon Wind Farm US Central; and Tesla Motors, to apply

battery storage technology to address power needs in the US West (Northern

California) region.

https://en.wikipedia.org/wiki/Fowler_Ridge_Wind_Farm
https://en.wikipedia.org/wiki/Fowler_Ridge_Wind_Farm
https://en.wikipedia.org/wiki/Avangrid
https://en.wikipedia.org/wiki/EDP_Renewables_North_America
https://en.wikipedia.org/wiki/Tesla_Motors

CHAPTER .15

DIFFIE HELLMAN

Diffie–Hellman key exchange (DH) is a method of securely exchanging

cryptographic keys over a public channel and was one of the first public-key

protocols named after Whitfield Diffie and Martin Hellman. DH is one of the earliest

practical examples of public key exchange implemented within the field of

cryptography.

In public key cryptosystem, enciphering and deciphering are governed by distinct

keys, E and D, such that computing D from E is computationally infeasible (e.g.,

requiring more than 10100 instructions). The enciphering key E can thus be publicly

disclosed without compromising the deciphering key D. This was the main ideology

behind Diffie-Hellman Key Exchange Protocol. Each user of the network can,

therefore, place his enciphering key in a public directory. This enables any user of the

system to send a message to any other user enciphered in such a way that only the

intended receiver can decipher it. As such, a public key cryptosystem is a multiple

access cipher. A private conversation can therefore be held between any two

individuals regardless of whether they have ever communicated before. Each one

sends messages to the other enciphered in the receiver’s public enciphering key and

deciphers the messages he receives using his own secret deciphering key. Diffie–

Hellman key exchange establishes a shared secret between two parties that can be

used for secret communication for exchanging data over a public network. The above

conceptual diagram illustrates the general idea of the key exchange by using colours

instead of very large numbers.  

The process begins by having the two parties, Alice and Bob, agree on an arbitrary

starting colour that does not need to be kept secret in this example the color is yellow.

Each of them selects a secret color that they keep to themselves – in this case, orange

and blue-green. The crucial part of the process is that Alice and Bob each mix their

own secret color together with their mutually shared color, resulting in orange-tan

and light-blue mixtures respectively, and then publicly exchange the two mixed

colours. Finally, each of the two mixes the color he or she received from the partner

with his or her own private color. The result is a final color mixture (yellow-brown in

this case) that is identical to the partner's final color mixture. If a third party listened

to the exchange, it would be computationally difficult for this party to determine the

secret colors. In fact, when using large numbers rather than colors, this action is

computationally expensive for modern supercomputers to do in a reasonable amount

of time.

 Figure 1: Illustration of idea behind Diffie-Hellman

CHAPTER 1.6

PRIME NUMBER

A prime number (or a prime) is a natural number greater than 1 that cannot be formed

by multiplying two smaller natural numbers.  

The only user-defined pre-existing parameter in the Diffie-Hellman protocol is the

selection of prime number. The prime number p should be large enough to defend

against the known attacks against it. The most efficient attack is NFS (attack on the

network file system); that has been used against numbers on the order of 2^768 (a

232-digit number). It would appear wise to pick a p that's considerably bigger than

that; around 1024 bits at a minimum, and more realistically at least 1536 bits.

Another property about p is that p−1 should have a large prime factor q, and one

should know what the factorization of p−1 is. If we pick a random prime p, and a

random generator g, well, we’re probably secure, but we won't be certain (and we

might leak a few bits of the private exponent if the order of your random g happens to

have some small factors).

CHAPTER 1.7

METHOD

Follow the mathematical implementation of Diffie Hellman key exchange protocol. p

is a prime number.

g is a primitive root modulo of p

1. Alice and Bob agree to use a modulus p = 23 and base g = 5  

2. Alice gets her private key (key which she should not share with anyone) generated

as 4. 3. Thus, public key generated for Alice shall be 54%23 = 625%23 = 4 

4. Bob gets his private key (key which he should not share with anyone) generated as

3. 5. Thus, public key generated for Bob shall be 53%23 = 125%23 = 10 

6. Now, Alice gets the public key of Bob and generates a secret key. i.e. p

=> (104) % 23 => 10000 % 23 => 18 

7. On the other side, Bob also uses a similar method to generate a secret key i.e.

=> (43) % 23 => 64 % 23 => 18

Thus, it is proven that mathematically, Alice and Bob generate the same key without

each one of them knowing other one’s private key. This is the implementation of

Diffie-Hellman Key Exchange Protocol.

CHAPTER 1.8

ENCRYPTION

Encryption is widely used on the internet to protect user information being sent

between a browser and a server, including passwords, payment information and other

personal information that should be considered private. Organizations and individuals

also commonly use encryption to protect sensitive data stored on computers, servers

and mobile devices like phones or tablets. There are various encryption techniques

that are present some of which are:

A) Triple DES

B) RSA

C) Blowfish

D) Two fish

E) AES

The technique that we have used in our project is AES and it is described below.

CHAPTER 1.9

ADVANCED ENCRYPTION ALGORITHM

The more popular and widely adopted symmetric encryption algorithm nowadays is

the Advanced Encryption Standard (AES). It is found to be at least six time faster

than triple DES. A replacement for DES was needed as its key size was too small.

With increasing computing power, it was considered vulnerable against exhaustive

key search attack. Triple DES was designed to overcome this drawback, but it was

found to be slow.

The AES has hree fixed 128-bit block ciphers with cryptographic key sizes of 128, 192

and 256 bits. Key size is unlimited, whereas the block size maximum is 256 bits. The

AES design is based on a substitution-permutation network (SPN) and does not use

the Data Encryption Standard (DES) Feistel network. The diagram below shows the

implementation of AES encryption technique.

 Figure 2: The schematic of AES structure

CHAPTER 1.10

PYTHON

Python is an interpreted high-level programming language for general-purpose

programming. Created by Guido van Rossum and first released in 1991, Python has a

design philosophy that emphasizes code readability, notably using significant

whitespaces. It provides constructs that enable clear programming on both small and

large scales. Python features a dynamic type system and automatic memory

management. It supports multiple programming paradigms, including object-oriented,

imperative and procedural, and has a large and comprehensive standard library.  

Such large and comprehensive standard libraries along with the documented support

helped us to choose python as the language which we used to build both, the stand

alone as well as web-based application.  

Below is a brief description of the frameworks and libraries extensively used to build

the desired framework.

CHAPTER 1.11

PYTHON FLASK

Flask is a BSD licensed microframework for Python based on Werkzeug and Jinja 2.

“Micro” does not mean that your whole web application must fit into a single Python

file (although it certainly can), nor does it mean that Flask is lacking in functionality.

The “micro” in microframework means Flask aims to keep the core simple but

extensible. Flask won’t make many decisions for you, such as what database to use.

Those decisions that it does make, such as what templating engine to use, are easy to

change. Everything else is up to you, so that Flask can be everything you need and

nothing you don’t.

By default, Flask does not include a database abstraction layer, form validation or

anything else where different libraries already exist that can handle that. Instead,

Flask supports extensions to add such functionality to your application as if it was

implemented in Flask itself. Numerous extensions provide database integration, form

validation, upload handling, various open authentication technologies, and more.

Flask may be “micro”, but it’s ready for production use on a variety of needs. Flask

has many configuration values, with sensible defaults, and a few conventions when

getting started. By convention, templates and static files are stored in subdirectories

within the application’s Python source tree, with the names templates and static

respectively. While this can be changed, you usually don’t have to, especially when

getting started.

CHAPTER 1.12

ELASTIC CLOUD COMPUTE [EC2]

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure,

resizable compute capacity in the cloud. It is designed to make web-scale cloud

computing easier for developers.  

Amazon EC2’s simple web service interface allows you to obtain and configure

capacity with minimal friction. It provides you with complete control of your

computing resources and lets you run on Amazon’s proven computing environment.

Amazon EC2 reduces the time required to obtain and boot new server instances to

minutes, allowing you to quickly scale capacity, both up and down, as your

computing requirements change. Amazon EC2 changes the economics of computing

by allowing you to pay only for capacity that you actually use. Amazon EC2 provides

developers the tools to build failure resilient applications and isolate them from

common failure scenarios. For compute, AWS’ main offering is its EC2 instances,

which can be tailored with a large number of options. It also provides related services

such as Elastic Beanstalk for app deployment, the EC2 Container service, AWS

Lambda and Autoscaling. In general terms, prices are roughly comparable, especially

since AWS shifter from by-the-hour to by-the-second pricing for its EC2 and EBS

services in 2017. This economic pricing, reliable and secure infrastructure and vast

online support enabled us to use Amazon to host and deploy the service on it is IaaS

platform.

CHAPTER 1.13

Proposed Model

1. HYBRID APP

User Module The User Module is for the registration of the farmers and the client.

There will be two registration pages one for the farmer and the other for the client.

After sign up the user will be directed to the login page from where he needs to log in

and lands to the home page of the app. Farmer and Client both will have a different

home screen where they will have a feature to share crops details and can be able to

see the daily prices and notification about the crops

Home Screen Home Screen is the main page of this Application. this module shows

some category options to the user to their choice. By clicking someone option a user

gets the main page of that particular category which is easy to use by the user. As we

already told, there will be two separate home screens for the farmer as well as for the

client. In Farmer home screen It shows three types of options

• Customer Notification/Details

• Sell Crops

• Daily Rate Update and Daily News Update by GOI

• Framer Details

• Buy Crops

• Share and see details related to crops

CustomerNotification/Details In this module farmer can see the details of the client

who requested or looking for the crops in his nearby areas, so the customer details

will be shared with the farmer and from there the farmer can contact the client

directly without any intervention of any other person all these details will get stored

on the google cloud using google firebase database and API.

Sell Crops The App provides a special section for selling the crops, in this sections a

farmer can update the details of the crops which he wants to sell and it will get store

on our cloud and also get reflected in the farmer notification and the buy crops

section of the client home screen. The client can fetch the details of the crops and the

person associated with the crops and deal directly with the farmer

 Daily Rate Update and Crops News In the farmer section there will be a special

sections, for the daily rate of the crops and the news related to the crops, we are

tracking these details from a government of India API reflect these details using

HTTP request using Alamo fire and JSON. The Code and Implementation of the

Hybrid App can be found here

2. Storing File using Diffie Hellman on AWS

Diffie-Hellman: The Diffie-Hellman algorithm was one of the asymmetric key

exchange algorithm. This algorithm is mostly used for key exchange. Although

symmetric algorithms are fast and secure, but keeping the key secure and exchange is

always a problem. You have to make sure to get the private key to all systems. This

algorithm helps with this. The Diffie-Hellman algorithm establishes a secure

communication channel. This channel is used to exchange a private key. And then

this private key is used to do symmetric encryption between the two systems.

The web application of the project is used for secure storage on the cloud. The major

steps included in the web application are as follows:

• The first step for the user is to register on our web app . On registering the user

would be given an automatically generated private key that would be used by

the user for transactions and the file storage. For security purposes the private

key of the user is not stored in the database.

• On selecting the upload file option the user is taken to another page that allows

the user to submit the encrypted file.

• Clicking the file directory option on the page takes the user to the above page

which displays all the different files stored on the cloud.

• Selecting different options like download-public key lists the public keys of the

registered users which the user can download and use for authenticating the

user when someone tries to open his uploaded file.

• Clicking on register user tab take the user to a page where the user registers

himself with the platform.  

For this purpose we are using amazon web services to host a server and that server

will generate a public key pair and with the help of putty and putty generation that

file is going to convert into a private key and using that private key we encrypt our

file using Diffie Hellman Algorithm.

CHAPTER 2

LITERATURE REVIEW

A.The Modern Farming Techniques using Android Application. The main

awareness of this work is focused on Indian farmers as it addresses the key

problems of getting the market and wether updates of different products, and

information about the rain and also provides multiple language support.

Annually, such loss exceeds 40% in total. So, the paper presented here suggest

various ways in which a farmer can utilise mobile on their handsets using

application to assist them for relatively better cultivation and merchandise

B.Mahafarm is an app which talks about Information and Communication

Technology (ICT) in agriculture is an emerging field which is focusing on the

enhancement of agriculture sector and rural development in India. Using

innovation is a key and vital measure in the rural domain. The advancement of

ICT can be utilised for providing accurate and timely relevant information and

services related to agriculture to the farmers, thereby facilitating an

environment for remunerative agriculture. This paper describes a mobile

application for farmers which would exhaustively help them in their farming

C.E-Agro Android Application this paper talks about software application is

basically for sustainable development of farmers. Many times farmer is

confused to take decisions regarding selection of fertiliser, pesticide and time

to do particular farming actions. To avoid this problem this application is very

helpful. Fertiliser schedule of every form of crop can get registered. Based on

sowing date of crop, farmer will get reminders about application of fertiliser,

herbicide as per schedule, pesticide for diseases alerts and weather alerts if

particular crop exceeds its favourable temperature range. Crop suggestion are

given supported Soil kind, geographical location. Farmer will get real time

crop rates to get more benefit. This system combines fashionable net and

mobile communication systems with GPS for economical and sleek farming.

This paper presents the introduction, theories and deep analysis of DBMS, use

of Smartphone in agriculture. This papers developed on brief study of some

common problems faced by the farmers across the nation.

D.Android Application Agriculture Based.This paper talks about AgriCom is an

android based application which is providing information to farmers regarding

different crops and farming practices and other agricultural products. It is

dynamic and interactive to take in the feedback and other input from the end

users and can guide people regarding the different procedures that needs to be

adopted .rThis project shows a simulation of live environment which takes

different aspects of farming into consideration such as market demand and

supply , production, forecast, fertiliser preferences etc.

E.Security in cloud by using Diffie Hellman Protocol. This paper focuses on

how one can overcome the security concern faced by the user using Diffie

Hellman protocol. It basically tries to eliminate the insecurity faced by the

user for his data is on cloud server and under the control of the cloud service

provider. A secure and trusted channel is provided with the help of Diffie

Hellman protocol such that no one except the user can access the data without

his permission. Cloud computing has a very impactful scope. Multiple data

scheme of encryption can be considered for maintaining security and liability

of the data. Homomorphic encryption seems to be very effective but needs

further study and consideration.

CHAPTER 2.1

Implementation and architecture diagram

CHAPTER 2.2

Output / Screen Shots

1. Hybrid App

The Video Demo of the app can be found here

 (Image: Splash Screen) (Image: Registration) (Image: Login)

https://drive.google.com/open?id=1y6IY_QCDnhy66SkEHDgbzDrTzBprYw31

(Image:Home). (Image: Profile) (Image: Chat)

CHAPTER 2.3

2. Diffie Hellman In AWS

The Video Demo of the app can be found here

 Image: Home Page

https://drive.google.com/open?id=10FHE416vGTDZfVr7WGeh6mdl3EI0Pz6E

 Image: Configure

 Image: Server Authentication

 Image: Putty

 (Image: terminal)

CHAPTER 2.4

Conclusion/ Future Enhancements

The farmers will derive greater benefit when they can make better decisions about

where and whom to sell their crops after getting market prices for and also he get to

know about the daily updates and news about the crops which will helps him in

yielding large amount of healthy crops

And the second proposed model aims to address the problem of secure file storage on

the cloud. This method is a basic implementation of the proposed methodology that

can be improvised and customised according to the needs. It proposes uses Diffie

Hellman to provide double layer of security to the files that are stored on the AWS

Cloud.

In Future I will try to add the weather forecast and news about the crops in the app as

due to Covid - 19 all the government API are not working and most of them are in no

use, In future I will try to make this enhancements possible.

And in the second part I will try to add more extension file to upload as of now it is

supporting only the text and png file so in future I will add other extensions as well.

CHAPTER 2.5

REFERENCES

1. Flutter Application Development - https://flutter.dev/

2. Krishi Ville-Android based solution for Indian agriculture. Authors-Manav

Singhal Kshitij Verma, Anupam Shukla. ABV-Indian Inst. of Inf. Technol. &

Manage., Gwalior, India. Advanced Networks and Telecommunication Systems

(ANTS), 2011. IEEE fifth International Conference on Digital Object symbol ten.

1109/ANTS. 2011.636865. Publication Year:2011

3. N.K. Mishra ‘FAO /AFMA/ Myanmar on improving Agriculture Marketing’,

Journal on Agricultural Marketing Information System. 2003, Vol 15, issue no 4,

pp .no 2-4.

4. Yan Bo and Bu Yibi, ‘Agricultural Marketing System in China’, Journal on

Agricultural Marketing Information System, 2003, vol 15, issue no 4, pp.no 33-37.

5. Brithal, P. S., Jha, A. K. and Singh, H. (), “Linking Farmers to promote for top

worth Agricultural Commodities”, Agricultural economic science analysis Review,

2007, Vol. 20, pp.no. 425-439.

6. Dhankar, G. H.,‘Development of Internet Based Agricultural Marketing System in

India’ Agricultural Marketing, 2003, vol 4, pp no. 7-16.

7. Pathak N, “Contribution of Agriculture to the Development of Indian Economy”,

The Journal of Indian Management and strategy, 2009 vol 14, issue no 1, pp.no

52- 56.

8. Shakeel-Ul-Rehman, M. Selvaraj and M. Syed Ibrahim “Indian Agricultural

Marketing- A Review”, Asian Journal of Agriculture and Rural Development,

2012 Vol. 2, No.1, pp.no. 69-75.

9. Xiaolan Fu and Shaheen Akter, ‘Impact of Mobile Telephone on the Quality and

Speed of Agricultural Extension Services Delivery: Evidence from the Rural e-

services Project in India’ International Conference on Agriculture social scientist,

2012, issue no 2, pp.no. 1-32

10.Saurabha A,Ghogare, Priyanka M Monga 2015 ‘E- Agriculture Introduction and

Figuration of its Application’ International Journal of Advanced Research in

Computer Science and Software Engineering,2006, vol 5, issue no 1, ppno.44–47.

2012.

11.Monika Jadhav, Vishakha Jagtap, Shankar M Patil ‘Android Application for

farmer’ International Research Journal of Engineering and Technology, volume 6,

Issue 04, pp.no. 56-72

12.abRuj S, NaDiffe Hellman A, Stomernovic I. DACC: distributed access

management in clouds. 2011 International Joint Conference of IEEE

TrustCom-11/IEEE ICESS-11/FCST-11, IEEE pc Society, 2011:91-98.

13. M. Klems, A. Lenk, J. Nimis, T. Sandholm and S. Tai. “What’s within the Cloud?

Associate in nursing subject area Map of the Cloud Landscape.” IEEE Xplore,

pp23-31, june.2009.

14.S. Kamara and K. Lauter. Scientific discipline cloud storage. In money

Cryptography and information Security (FC’10),volume 6054 of LNCS,

p a g e s 1 3 6 s t r o n g K E Y A G R E E M E N T s u p p o r t e d P U B L I C K E Y

AUTHENTICATION” Proceedings of the fourteenth International Conference on

money Cryptography and information Security, Tene-rife,Spain,LNCS6052,pp.

383-390,Jan 2010.

15.M.Joshi, YS Moudgil “SECURE CLOUD STOARGE” International Journal of

applied science 2011, ijcscn.com.

16.Yaoxue Zhang and Yuezhi Zhou_ “Transparent Computing: Spatio-Temporal

Extension on von Neumann design for Cloud Services” TSINGHUA SCIENCE

AND TECHNOLOGY, ISSN 1007-0214l l02/12l lpp10-21 Volume eighteen,

Number 1, Feb 2013.

17. Linlin Wu and Rajkumar Buyya “Service Level Agreement (SLA) in Utility

Computing Systems” Cloud Computing and Distributed Systems (CLOUDS)

Laboratory Department of applied science and package Engineering The

University of Melbourne, Australia.

18. Kawser Wazed Nafi, Tonny Shekha Kar, Sayed Anisul Hoque, Dr. M. M. A

Hashem “A Newer User Authentication, File coding and Distributed Server based

mostly Cloud Computing security architecture” (IJACSA) International Journal of

Advanced applied science and Applications,Vol. 3, No. 10, 2012.

19.Abdul Muttalib Khan, Mohd. Haroon Khan, Dr. Shish Ahmad “Security in Cloud

by Diffie Hellman Protocol” International Journal of Engineering and Innovative

Technology (IJEIT) Volume 4, Issue 5, November 2014

