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Abstract 

The recent surge of Deep Learning has led to breakthrough advancements in 

almost every field of its application. A particular deep learning architecture, 

arguably the most popular one is the Convolution Neural Networks. The interest in 

convnets has seen an exponential increase due to their effectiveness and scalability. 

CNNs have become the go-to solution for image data problems and has provided 

results that are at par with if not better than human standards. The simplicity of the 

CNN architecture is another big factor of its success. The image processing and 

classification capabilities of CNN have found great usage in medical field, making 

it possible to detect and classify diseases as severe as Cancer effectively for 

the sake of better care. In this project, we’ve initiated an elaborate study of 

Convolution Neural Networks, build multiple architectures from scratch and 

furthered our understanding with the preparation of an elementary dog-cat CNN 

classifier model followed by a more extensive CNN model for detection of lung 

cancer in a patient. The project is built on Google’s interactive and versatile 

cloud platform for AI development Google Colaboratory, using the open-source 

neural network library ‘Keras’ for model development and libraries such as 

matplotlib and tensorboard (tensorflow) for result plotting and analysis. Data for 

training and testing our model was extracted from the ‘ LUNA2016 medical image 

database ’. The model was tuned using Grid-Search and achieved over 97% test 

accuracy in its final iterations. To culminate, we have enlisted some future-work 

prospects like De-convolution/Translated-Convolution, implement one or more 

named CNN networks like Inception or Alexnet, test the model on larger images 

etc. 

 



Introduction 

The use of Convolutional Neural Networks can be traced back to the nineties for 

character recognition purposes(Le Cun et al., 1997) but it wasn't until the 2012 

AlexNet that it grew to the widespread acclaim that we know of today. In less than 

a decade, researchers have progressed from single-digit layers in a CNN model to 

triple-digits, integrating various other data science techniques to create umpteen 

possible configurations. The architecture and working of a Convolution Neural 

Network can be understood better by a simple binary image-classification model 

such as a dog-cat CNN that classifies an image as one of the two preset classes, 

Dog or Cat. The architecture of CNN models is predominantly similar, beginning 

with a few convolution layers that apply various convolution filters or kernels or 

masks to the input image. An image is represented as a matrix of gray-scale or 

color intensity values at the pixel represented by the matrix cell indices. Each 

filter/kernel can be thought of as a feature extractor that extracts 

positions of that particular feature represented by the kernel, on the input image. 

The convolution operation hence produces a feature map . The convolution layer 

are each followed by a pooling layer generally that sub-samples an image to 

provide lower dimensional matrices for better computations. A series of 

convolution + pooling layers are followed by a number of densely or fully 

connected layers after flattening the output. The fully connected layers operate as a 

typical neural network and finally classifies to binary (sigmoid/relu) or multiple 

classes (softmax). The medical field is a likely ground for machine learning 

practice and application, as medical regulations allow increased sharing of 

anonymized data for the sake of better care. The field is pretty young and 

flourishing at the forefront of technology. This problem is interesting and 



promising in that it has impactful implications for the future of healthcare, deep 

learning applications affecting personal decisions, and computer vision in general. 

Cancer is a disease that needs no documentation of its perils. It could be present in 

almost any part of the body like lungs, breast, prostate, skin etc. Lung cancer is the 

leading cause of cancer-related deaths worldwide. The National Lung Screening 

Trial (NLST), a randomized control trial in the U.S. including more than 50,000 

high-risk subjects, showed that lung cancer screening using annual low-dose 

computed tomography (CT) reduces lung cancer mortality by 20% in comparison 

to annual screening with chest radiography. Due to the absence of any true remedy 

or cure for the disease, detection in the early stage is crucial in preventing its 

spread. In this project, we are interested to train a convolution neural 

network and then use the trained model to solve a binary image classification 

problem to classify as positive or negative results. 

 

 
 

Figure 1: 2D CT scan slice containing a small (5mm) early 
stage lung cancer nodule 
 

 



 Background 

 

Before getting started with model construction and tuning we gleaned all the 

necessary knowledge from sources like 

● Deeplearning.ai by Andrew Ng Course 1-2 

● Deeplearning.ai by Andrew Ng Course 4 

● Keras documentation 

● Towards-data-science blogs 

The deeplearning.ai courses provided an elaborate explanation of Neural Networks 

and CNN with the development of elementary layers, activations and 

back-propagation mechanisms without any predefined framework. This helped in 

getting a robust understanding of the maths involved and the use of each parameter 

or argument that is used later on. The course then talked about improving neural 

networks by use of hyperparameter tuning, regularization, and optimization. It 

explained about the training-validation-test data split, bias and variance, 

normalization, gradient-checking, types of regularization, weight 

initialization, overfitting/underfitting and other such significant aspects of model 

creation and optimization. 

Course-4 of the specialization got us introduced with the use of Convolution 

Neural Networks for computer vision tasks. It got us familiar with the CNN 

building blocks and vocabulary, talking more about the mathematical operations 

involved in convolution. We created our first CNN model as a programming 

assignment and moved on to create another one from scratch, this time a cat-dog 

image classifier. 



 

 

The elaborate Keras documentation next helped us to build our first Convolution 

Neural Network to classify images with a ‘Dog’ or ‘Cat’ label. The model was 

built using the sequential API in Keras and consists of three convolution-2D layers 

followed by a max-pooling-2D layer each. The final out is then flattened and fed to 

a densely connected layer feeding it to the final output layer with one node 

operating the sigmoid function and providing output: 

0 for cat 

1 for dog 

The model inputs images of dimensions 150 x 150, using 2000 images for training 

and 800 images for validation. The number of images is further increased by 

making use of the Image Processing class in Keras called ImageDataGenerator 

which generates batches of tensor image data with real-time data augmentations 

such as zooming, flipping, scaling etc. The model was compared on categorical 

crossentropy and binary crossentropy loss functions and RMSprop optimizer and 

adagrad optimizers. After getting a good grasp at model creation and tuning, we 

needed to visualize and analyze the model results and its architecture. The Python 

libraries such as seaborn and matplotlib were a great help in achieving the purpose. 

The tensorflow visualization toolkit, TensorBoard opened new horizons however. 



It made it easier to understand, debug and optimize the Tensorflow code. It also 

made it easier to present our model architecture through block diagrams and flow 

charts and analyze the accuracy and loss through graphs with a large number of 

other unexplored features which we never seem to end. All this was possible with 

a few lines of code to enable tensorboard on our already existing model definition 

and see it all on a locally hosted browser window. 

 

 

Figure : Tensorboad graphs for training and validation acc/loss of the Cat-Dog 

CNN model 

 



Our final task was to apply our learnings to create a Cancer prediction CNN model. 

We indulged ourselves into extensive Research Paper readings and learned as 

much as we could about Cancer and the application of Deep Learning to the 

Medical domain. We decided to move forward with the detection of Lung Cancer 

nodule model as the model was matched our caliber and the data was freely 

available from the LUNA2016 Medical Image Database. 

 

Examples of cancerous images 

 

Examples of non-cancerous images 

 

 

 

 

 

 

 

 



 

 

Deep Learning 

 

Artificial Neural Network 

An ANN mimics the working of a human neural system by operating on hidden 

layers consisting of neurons that are connected to each other and activate on 

stimuli from the neighbouring neurons. The various methods involved and 

terminology related to ANNs have been briefed below. 

Preprocessing 

 Deep neural network (Convolution neural network in this case) is used. The Deep 

neural network uses multiple hidden layers between input and output layers. Every 

hidden layer can have different no. of units. In fact, no. of hidden layers and units 

in each hidden layer are also hyperparameters for the deep learning algorithm.Here 

‘L’ stands for the no. of hidden layers in a neural Network. In deep learning 

networks, each layer of units trains on a distinct set of features based on the 

previous layer’s output. The further we advance into the neural 

net, the more complex the features nodes can recognize, since they aggregate and 

recombine features from the previous layers. Due to this property deep nets can 

handle very large high dimensional data with large no. of parameters. 

 

Usable Function 

 

Sigmoid function 



A Sigmoid function is a mathematical function which has a “S” shaped curve. The 

sigmoid function is represented by the equation 

σ(t)=1/(1+e^(-t) ) 

The sigmoid function have a domain of real numbers and returns the value -1, 1 or 

0, 1 

depending upon the convention used. The values of 

σ(t) depends 

if t→ ∞ then σ(t)=1 

if t→ -∞ then σ(t)=0 

 

Hyperbolic tangent function (tanh) 

The hyperbolic tangent function is similar to cosine and sine function. It is 

represented by the equation 

tanx h=〖(e〗^x-e^(-x)) / (e^x+e^(-x)) 

The functions has a domain of real numbers and returns a values [0,1] 

if h→ ∞ then tanx(h)=1 

if h→ -∞ then tanx(h)=0 

The slope of the function is given by 

if tanx(h)=g(h) 

g^' (h)=1-tanx(h)^2 

 

ReLU and leaky ReLU activation function 

The ReLU activation function is defined by the equation 

f(z)=(0,z) 

where z is the input to the neuron. 



The leaky ReLU activation function is defined by the equation 

f(z)=(0.01z,z) 

 

Gradient descent 

Gradient descent is a first-order iterative optimization algorithm. To find a local 

minimum of a function using gradient descent, one takes steps proportional to the 

negative of the gradient (or of the approximate gradient) of the function at the 

current point. 

 

Loss (error) function 

The loss or error function is used to calculate the accuracy of the model. It is given 

by equation 

L(ŷ,y)= -(y□log log (ŷ) +(1-y) □log log (1-ŷ) ) 

Here y is the true label and ŷ is the predicted label. 

So, 

if y=1 L(ŷ,y)= -□log log (ŷ) 

this means we want log ŷ to be as big as possible. (ŷ is close to 1). 

if y=0 L(ŷ,y)= -□log log (ŷ) 

this means we want log (1-ŷ) to be large and ŷ should be small. (ŷ is close to 0). 

 

Cost function 

Cost function is the average of all the values of loss function which means we need 

smallest possible value of cost function. 

It is defined by 

J(w,b)=1/mΣL(ŷ^i,y^i) 



J(w,b)=-1/mΣ(y^i □log log (ŷ^i ) +(1-y^i ) □log log (1-ŷ^i ) ) 

We need to define values of w, b such that it minimizes the cost function. 

 

Convolution Neural Network 

Convolution Neural Network is a class of Deep Neural Network. It is used on 

image data and used to analyze the different features of the images. The concept of 

CNN is derived from biological process. Like neurons are connected with each 

other, nodes of CNN are connected with each other and transfer values or signals. 

CNN is highly used in image classification. But the process may need some 

preprocessing depending on the nature of the dataset. 

Tuning is the most important part in CNN, i.e accuracy on getting correct 

classification. Two very important terms regarding Neural Network are parameter 

and hyperparameter. 

There are difference between them. Parameters are those which the model learns 

from training data like weights and biases. Prediction process needs the help of 

parameters. Parameters are the confidence of neural network. These are the keys of 

machine learning algorithms. On the other hyperparameters are provided to the 

model, for example number of hidden layers and nodes, activation functions, 

number of filters kernel size, stride, pooling, learning rate etc. hyperparameters 

often help to estimate parameters. It’s on the hand of the developer to set the 

hyperparameters carefully. Mainly hyperparameters are tuned to increase the 

efficiency of the model. 

 

 

 



 

 

 

Deep Learning Libraries (TensorFlow and Keras) 

 

Tensorflow 

It is an open source software library supporting high performance numerical 

operations on variety of platforms like CPU,GPU,TPU. AI organization of Google 

developed this. It provides various support in many scientific domain like machine 

learning, deep learning etc. 

Keras 

Keras is a high level API on Neural Network. Which is developed in python 

language and can run on Tensorflow, Theano and CNTK. 

➢ It is very user friendly 

➢ It is well documented. 

➢ It is scalable. 

➢ It runs on CPU and GPU. 

➢ It allows very fast and easy prototyping. 

 

TensorBoard 

The computations you'll use TensorFlow for - like training a massive deep neural 

network - can be complex and confusing. To make it easier to understand, debug, 

and optimize TensorFlow programs, we've included a suite of visualization tools 

called TensorBoard. You can use TensorBoard to visualize your TensorFlow 

graph, plot quantitative metrics about the execution of your graph, and show 



additional data like images that pass through it. When TensorBoard is fully 

configured, it looks like this: 

The computations of Tensorflow can be sometimes very complex and very 

confusing. But when it comes to the form of graph i.e when a very complex thing 

is visualized in certain matter it becomes easy to interpret. Tensorboard offers 

nothing but visualizing the computations. 

 

 

 



Figures above and below : Cat-Dog model visualization through TensorBoard 

graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Lung Cancer debrief 

In simple words cancer is abnormal growth of cells, and ultimately to the 

stoppage of the essential cellular functions of the organism. These cells are 

generally called ‘tumor cells’ and they often clump together into lumps to form 

‘tumors’. They also carry the potential to invade other parts of the body of the 

organism and have detrimental effects there. 

Lung cancer can be divided into four stages depending on severity as following 

● Stage 1: Cancer is found in the lung only. 

● Stage 2: Cancer is grown to nearby lymph nodes. 

● Stage 3: Cancer is in the lung and lymph nodes are grown in the middle of the 

chest. 

● Stage 3A: Cancer is found in lymph nodes only on the same side of the chest 

where it first started.. 

● Stage 3B: Cancer has spread to lymph nodes on the opposite side of the chest or 

to lymph nodes above the collarbone. 

● Stage 4: Cancer has spread to both lungs, into the area around the lungs, or to 

distant organs. 

Early symptoms may include 

● Bad painful cough 

● Cough with phlegm or blood 

● Heavy chest pain while deep breathing, laughing, coughing or any other 

muscular activities near chest 

● shortness of breath 

● weakness and fatigue 

● loss of appetite and weight loss 



Causes 

About ninety percent of lung cancer cases involve smoking. Smoking causes 

destruction of lung tissues, lung can repair them but heavy smoking makes lung 

stopping it’s natural behaviour. 

A radioactive gas Radon, is the second leading cause, according to the American 

Lung Association. 

Breathing in other hazardous substances can also cause lung cancer if it happens 

over a long period of time. A type of lung cancer called mesothelioma is almost 

always caused by exposure to asbestos. 

Other substances that can cause lung cancer are: 

● nickel 

● petroleum products 

● uranium 

● arsenic 

● Cadmium 

● Chromium 

Inherited genetic mutations may be the reason to develop lung cancer, especially if 

you smoke or are exposed to other carcinogens. 

But above all there may be no specific reason for lung cancer. 

 

 

 

 

 

 



Risk factors 

Above all the biggest risk factor is smoking. Inhaling toxic substances increases 

risk of getting lung cancer. Secondhand smoke is also a major risk factor. Other 

risk factors may include family health history, previous therapy or health history 

etc. 

 

Diagnosis 

● Imaging tests : An abnormal lump can be seen on X-ray. MRI, CT, and PET 

scans. These scans produce more detail and find smaller lesions. 

● Sputum cytology : Microscopic examination of phlegm of cough can determine 

if cancer cells are present. 

 

Treatment 

● Self-care 

● Quitting smoking 

● Medications 

● Chemotherapy and Targeted therapy 

● Surgery 

● Pulmonary lobectomy and Video-Assisted thoracoscopic surgery 

● Medical procedure 

● Thoracotomy and Radiation therapy 

● Supportive care 

● Palliative care 

● Specialists 

 



Methodology 

 

Problem Statement 

The Goal of the project is to train a Convolution Neural Network for binary image 

classification i.e detecting whether a person has lung cancer or not , which includes 

following tasks: 

● Fetch and Preprocess the whole dataset. 

● Train a Neural network on the training data. 

● Optimize the network to improve accuracy. 

● Compare the performances of Algorithms used. 

Inputs: The inputs to the network are 40*40 pixel image snippets. 

Outputs: The output of the network is the class label for the input image. 

 

Data source 

Publicly available LIDC/IDRI database is used. This data uses the Creative 

Commons Attribution 3.0 Unported License . Scans with a slice thickness greater 

than 2.5 mm were excluded. In total, 888 CT scans are included.Each radiologist 

marked lesions they identified as non-nodule, nodule < 3 mm, and nodules >= 3 

mm. 

Data Description : 

Total 2948 images are used. 

The data includes three datasets: 

● Training Data: Contains total 2064 grayscale images 

● Validation data: Contains 442 grayscale images 

● Testing data: Contains 442 grayscale images 



Image size 40*40 pixels 

 

Model 

The model is implemented using the Sequential API in Keras. It consists of three 

Convolution-2D layers with 16, 32 and 64 kernels of size (3,3), (5,5) and (7,7) 

respectively each followed by a Maxpooling-2D layer of size (2,2) pooling with a 

stride of 2. Maxpooling layers reduce the dimensionality of data thereby reducing 

the number of parameters, leading to a reduction in training time and tackling 

overfitting. Pooling layers downsample each feature map independently. They 

reduce the height and width, keeping the depth constant. 

In the end we have fully connected layers that flatten the last convolution layer’s 

output and connect every node of the present layer with the other node of the next 

layer. Neurons in a fully connected layer have full connections to all activations in 

the previous layer, as they have in regular Neural Networks. We need the 

Flattening layers since the output of both convolution and pooling layers are 3D 

volumes, but a fully connected layer expects a 1D vector of numbers. The 

Flattening operation simply involves arranging the 3D volume of 

numbers into a 1D vector. The flatten output becomes an input to the fully 

connected layers. 

We then implement grid search to find the best values for hyperparameters 

optimizer, epochs and batch size. 

 

 

 

 



Model description 

Convolution Layer 1: 

Kernel size (3,3) 

Number of filters 16 

Strides (1,1) 

Padding Same 

Activation Relu 

Convolution Layer 2: 

Kernel size (5,5) 

Number of filters 32 

Strides (1,1) 

Padding Same 

Activation Relu 

Convolution Layer 3: 

Kernel size (7,7) 

Number of filters 64 

Strides (1,1) 

Padding Same 

Activation Relu 

 

 

 

 

 

 



Model Summary 

 

 

 

 

 



Model Configuration 

 

{'layers': [{'class_name': 'Conv2D', 

'config': {'activation': 'relu', 

'activity_regularizer': None, 

'batch_input_shape': (None, 40, 40, 1), 

'bias_constraint': None, 

'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

'bias_regularizer': None, 

'data_format': 'channels_last', 

'dilation_rate': (1, 1), 

'dtype': 'float32', 

'filters': 16, 

'kernel_constraint': None, 

'kernel_initializer': {'class_name': 'VarianceScaling', 

'config': {'distribution': 'uniform', 

'mode': 'fan_avg', 

'scale': 1.0, 

'seed': None}}, 

'kernel_regularizer': None, 

'kernel_size': (3, 3), 

'name': 'conv2d_11', 

'padding': 'same', 

'strides': (1, 1), 

'trainable': True, 



'use_bias': True}}, 

{'class_name': 'MaxPooling2D', 

'config': {'data_format': 'channels_last', 

'name': 'max_pooling2d_10', 

'padding': 'same', 

'pool_size': (2, 2), 

'strides': (2, 2), 

'trainable': True}}, 

{'class_name': 'Conv2D', 

'config': {'activation': 'relu', 

'activity_regularizer': None, 

'bias_constraint': None, 

'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

'bias_regularizer': None, 

'data_format': 'channels_last', 

'dilation_rate': (1, 1), 

'filters': 32, 

'kernel_constraint': None, 

'kernel_initializer': {'class_name': 'VarianceScaling', 

'config': {'distribution': 'uniform', 

'mode': 'fan_avg', 

'scale': 1.0, 

'seed': None}}, 

'kernel_regularizer': None, 

'kernel_size': (5, 5), 



'name': 'conv2d_12', 

'padding': 'same', 

'strides': (1, 1), 

'trainable': True, 

'use_bias': True}}, 

{'class_name': 'MaxPooling2D', 

'config': {'data_format': 'channels_last', 

'name': 'max_pooling2d_11', 

'padding': 'same', 

'pool_size': (2, 2), 

'strides': (2, 2), 

'trainable': True}}, 

{'class_name': 'Conv2D', 

'config': {'activation': 'relu', 

'activity_regularizer': None, 

'bias_constraint': None, 

'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

'bias_regularizer': None, 

'data_format': 'channels_last', 

'dilation_rate': (1, 1), 

'filters': 64, 

'kernel_constraint': None, 

'kernel_initializer': {'class_name': 'VarianceScaling', 

'config': {'distribution': 'uniform', 

'mode': 'fan_avg', 



'scale': 1.0, 

'seed': None}}, 

'kernel_regularizer': None, 

'kernel_size': (7, 7), 

'name': 'conv2d_13', 

'padding': 'same', 

'strides': (1, 1), 

'trainable': True, 

'use_bias': True}}, 

{'class_name': 'MaxPooling2D', 

'config': {'data_format': 'channels_last', 

'name': 'max_pooling2d_12', 

'padding': 'same', 

'pool_size': (2, 2), 

'strides': (2, 2), 

'trainable': True}}, 

{'class_name': 'Flatten', 

'config': {'data_format': 'channels_last', 

'name': 'flatten_4', 

'trainable': True}}, 

{'class_name': 'Dense', 

'config': {'activation': 'relu', 

'activity_regularizer': None, 

'bias_constraint': None, 

'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 



'bias_regularizer': None, 

'kernel_constraint': None, 

'kernel_initializer': {'class_name': 'VarianceScaling', 

'config': {'distribution': 'uniform', 

'mode': 'fan_avg', 

'scale': 1.0, 

'seed': None}}, 

'kernel_regularizer': None, 

'name': 'dense_7', 

'trainable': True, 

'units': 1024, 

'use_bias': True}}, 

{'class_name': 'Dropout', 

'config': {'name': 'dropout_4', 

'noise_shape': None, 

'rate': 0.2, 

'seed': None, 

'trainable': True}}, 

{'class_name': 'Dense', 

'config': {'activation': 'linear', 

'activity_regularizer': None, 

'bias_constraint': None, 

'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 

'bias_regularizer': None, 

'kernel_constraint': None, 



'kernel_initializer': {'class_name': 'VarianceScaling', 

'config': {'distribution': 'uniform', 

'mode': 'fan_avg', 

'scale': 1.0, 

'seed': None}}, 

'kernel_regularizer': None, 

'name': 'dense_8', 

'trainable': True, 

'units': 1, 

'use_bias': True}}, 

{'class_name': 'Activation', 

'config': {'activation': 'sigmoid', 

'name': 'activation_4', 

'trainable': True}}], 

'name': 'sequential_5'} 

 

 

 

 

 

 

 

 

 

 



Visualization of the model 

 

 

 

Figure : tensorboard graph representation of model 

 

 



Hyperparameter Tuning 

 

The model was trained on different combinations of hyperparameters and the 

performance in each case was recorded as below: 

1. 

epochs = [ 10,25] 

batches = [50,100,104] 

optimizers = ['SGD', 'adam'] 

Cross validation = 10 

Best parameter combination 

{'batch_size': 104, 'epochs': 25, 'optimizer': 'adam'} 

Accuracy on test data: 97.05% 

2. 

epochs = [25,35] 

batches = [50,104,150] 

optimizers = ['adam'] 

Cross validation = 10 

Best parameter combination 

{'batch_size': 150, 'epochs': 25, 'optimizer': 'adam'} 

Accuracy on test data: 97.29% 

3. 

epochs = [20,25,40] 

batches = [200,150] 

optimizers = ['adam'] 

Cross validation = 10 



Best parameter combination 

{'batch_size': 200, 'epochs': 40, 'optimizer': 'adam'} 

Accuracy on test data: 96.38% 

4. 

epochs = [20,25,40] 

batches = [200,150] 

optimizers = ['adam'] 

Cross validation = 3 

Best parameter combination 

{'batch_size': 200, 'epochs': 40, 'optimizer': 'adam'} 

Accuracy on test data: 97.51% 

5. 

epochs = [40,45] 

batches = [200,250] 

optimizers = ['adam'] 

Cross validation = 3 

Best parameter combination 

{'batch_size': 250, 'epochs': 40, 'optimizer': 'adam'} 

Accuracy on test data: 96.83% 

6. 

epochs = [40,45] 

batches = [150,250,300] 

optimizers = ['adam'] 

Cross validation = 3 

Best parameter combination 



{'batch_size': 150, 'epochs': 45, 'optimizer': 'adam'} 

Accuracy on test data: 97.29% 

7. 

epochs = [40,45] 

batches = [150,250,300] 

optimizers = ['adam'] 

Cross validation = 3 

Best parameter combination 

{'batch_size': 300, 'epochs': 45, 'optimizer': 'adam'} 

Accuracy on test data: 97.51% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results and Discussion 

 

The best combination of parameters calculated from grid search i.e parameters of 

7th experiment was used to train the model. The model achieved an accuracy of 

97.51%. The final loss and accuracy graphs for training and validation have been 

plotted using tensorboard as below: 

 

 



 

 

 



 

 

 

 

 

 

 

 

 

 

 



Confusion Matrix 

 

After finding the best combination of hyperparameters for our model, we ran a 

further analysis to find misclassified images of the final test results and calculated 

confusion matrix to determine why it was not close to 100%. Our model has 

classified more examples as negative when they should be positive than vice versa 

which might be because of the nature of some of the positive examples. It is likely 

that it would be just as difficult for a human to classify those images as a 

doctor.Also, there is always a possibility of the data being wrongly 

classified. 

 

 

Confusion matrix 

                                         Predicted Positive Class         Predicted Negative Class 

Actual Positive Class                     208                                             8 

Actual Negative Class                      4                                             222 

 

 

 

 



Conclusion and Future Scope 

 

In this project, we explored the very powerful Convolution Networks and applied it 

to predict the presence of lung cancer in a patient using an image snippet of a scan. 

Experimentation showed that CNN was highly efficient in performing the task and 

the accuracy was further improved by optimization of hyperparameters. The 

images used specify a predetermined section of the lung and the model is also 

rather simple but still we were able to get ground-breaking results. 

We plan to explore Deconvolution, Transpose-Convolution for Upscaling and 

other possible extensions of CNN. For the Cancer model, we would like to 

implement one or more of the named CNN networks like Inception or Alexnet 

using transfer learning and compare the workings and result with the previous 

models. The current model works on images of 40 x 40 dimensions, increasing 

which might be plausible to perform testing on larger scans, possibly of the entire 

lung instead of a predetermined section. 

 

 

 

 

 

 

 

 

 

 



References 

 

1. https://apollack11.github.io/machine-learning.html 

2. https://keras.io/ 

3. https://www.tensorflow.org/ 

4. https://www.healthline.com/health/lung-cancer#stages 

5.https://towardsdatascience.com/building-a-convolutional-neural-network-cnn-in-

keras-329fbbadc5f5 

6. https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 

 


