Project On
Airline Analysis

A Report for the Evaluation

Bachelor of Technology in Computer Science and Engineering

Under the Guidance of Submitted by

Name of the Guide Name of the Student :

Ms. N. Gayathri NAITIK SHARMA
16SCSE101059
1613101424

Department of Computer Science and Engineering
GALGOTIAS UNIVERSITY GREATER NOIDA UP.

Table of contents

Content Page No.
Front page 1
Abstract 3
Introduction 4

1.1 overall description

1.2 purpose

1.3 motivation and scope
Literature Survey 6
Proposed Approach 7
References 10

Abstract

In the contemporary world, Data analysis is a challenge in the era of varied inters- disciplines though there is

a specialization in the respective disciplines.

In other words, effective data analytics helps in analyzing the data of any business system. But it is the big data
which helps and axial rates the process of analysis of data paving way for a success of any business intelligence
system. With the expansion of the industry, the data of the industry also expands. Then, it is increasingly
difficult to handle huge amount of data that gets generated no matter what’s the business is like, range of fields

from social media to finance, flight data, environment and health.

Big Data can be used to assess risk in the insurance industry and to track reactions to products in real time. Big
Data is also used to monitor things as diverse as wave movements, flight data, traffic data, financial transac-
tions, health and crime. The challenge of Big Data is how to use it to create something that is value to the user.

How can it be gathered, stored, processed and analyzed it to turn the raw data information to support decision

making. In this paper Big Data is depicted in a form of case study for Airline data.
The proposed method is made by considering following scenario under consideration

An Airport has huge amount of data related to number of flights, data and time of arrival and dispatch, flight
routes, No. of airports operating in each country, list of active airlines in each country. The problem they faced
till now 1it’s, they have ability to analyze limited data from databases. The Proposed model intension is to

develop a model for the airline data to provide platform for new analytics based on the following queries.

Introduction

1.1 Overall description

Big Data is not only a Broad term but also a latest approach to analyze a complex and huge
amount of data; there is no single accepted definition for Big Data. But many researchers work-
ing on Big Data have defined Big Data in different ways. One such approach is that it is char-
acterized by the widely used 4 V’s approach. The first “V”* is Volume, from which the Big Data
comes from. This is the data which is difficult to handle in conventional data analytics. For
example, Volume of data created by the BESCOM (Bangalore Electricity Supply Company) in
the process of the power supply and its consumption for Bangalore city or for the entire Karna-
taka State generates a huge volume of data. To analyze such data, it is the Big data that comes
to aid of data analytics; the second “V” is velocity, the high speed at which the data is created,
processed and analyzed; the third “V” is variety which helps to analyze the data like face book
data which contains all types of variety, like text messages, attachments, images, photos and so
on; the forth “V” is Veracity, that is cleanliness and accuracy of the data with the available huge

amount of data which is being used for processing.

Researchers working in the structured data face many challenges in analyzing the data. For in-
stance the data created through social media, in blogs, in Facebook posts or Snap chat. These
types of data have different structures and formats and are more difficult to store in a traditional
business data base. The data in big data comes in all shapes and formats including structured.
Working with big data means handling a variety of data formats and structures. Big data can be
a data created from sensors which track the movement of objects or changes in the environment

such as temperature fluctuations or astronomy data. In the world of the internet

of things, where devices are connected and these wearables create huge volume of data. Thus
big data approaches are used to manage and analyze this kind of data. Big Data include data
from a whole range of fields such as flight data, population data, financial and health data such
data brings as to another V, value which has been proposed by a number of researcher i.e.,
Veracity.

Most of the time social media is analyzed by advertisers and used to promote produces and
events but big data has many other uses. It can also been used to assess risk in the insurance
industry and to track reaction to products in real time. Big Data is also used to monitor things
as diverse as wave movements, flight data, traffic data, financial transactions, health and crime.
The challenge of Big Data is how to use it to create something that is value to the user. How to
gather it, store it, process it and analyze it to turn the raw data information to support decision

making.

Hadoop allows to store and process Big Data in a distributed environment across group of com-
puters using simple programming models. It is intended to scale up starting with solitary ma-
chines and will be scaled to many machines. But now since huge amount of data in Terabytes
which is injected into Hadoop Distributed File System files and processed by HDFS Tool.

An Airport has huge amount of data related to number of flights, data and time of arrival and
dispatch, flight routes, No. of airports operating in each country, list of active airlines in each
country. The problem they faced till now it’s, they have ability to analyze limited data from
databases. The Proposed model intension is to develop a model for the airline data to provide

platform for new analytics based on the following queries.

1.1 Problem Statement

v Big amount of data generated on hourly basis.

v Asingle twin engine aircraft with an average 12 hour flight time can produce up to
844 TB of data

v There are many active users of flights

v Many flights are scheduled everyday

v" User varies from common man to celebrities

The proposed method is made by considering following scenario under consideration .An Air-
port has huge amount of data related to number of flights, data and time of arrival and dispatch,
flight routes, No. of airports operating in each country, list of active airlines in each country.
The problem they faced till now it’s, they have ability to analyze limited data from databases.
The Proposed model intension is to develop a model for the airline data to provide platform for

new analytics based on the following queries.

1. Extract unstructured data using python language.

2. Make unstructured data into structured using hadoop.
3. Analyse data for the following queries

a) List of airports operating in the country India?

b) How many active airlines in United State.?

c) List of airlines operating with code share?

d) Which country having highest Airport?

e) How many flight having same air code for flight which uses code share?

1.2 Purpose

The main purpose of the project to explore detailed analysis on airline data sets such as listing
airports operating in the India, list of airlines having zero stops, list of airlines operating with
code share which country has highest airports and list of active airlines in united states. The
main objective of project is the processing the big data sets using map reduce component of

hadoop ecosystem in distributed environment.

1.3 Motivation and scope

Product Perspective

The main purpose of the project to explore detailed analysis on airline data sets such as listing
airports operating in the India, list of airlines having zero stops, list of airlines operating with
code share which country has highest airports and list of active airlines in united states. The
main objective of project is the processing the big data sets using map reduce component of

Hadoop ecosystem in distributed environment.

Product Features

Airline data analysis can provide a solution for businesses to collect and optimize large datasets,
improve performance, improve their competitive advantage, and make faster and better deci-

sions.

v By using airline data analysis, we can save time of users.
v The data could even be structured, semi-structured or unstructured.
v Cost savings

v Implementing new strategies

v

Fraud can be detected the moment it happens

1.4 Qperating Environment or Software Environment

141

Software environment is the term commonly used to refer to support an application. A software
environment for a particular application could include the operating system, the database sys-

tem, specific analysis tools.

The software and hardware that we are using in our project Airline data analysis are:

Intel core i3 and above

142
143
144
145
146
14.7
1438
149

Windows 10

Windows subsystem for Linux
Ubuntu

Java JDK 1.8

Hadoop 3.0.0

Map reduce

Microsoft Excel

Minimum RAM 4GB and above

1.5 Assumptions and Dependencies

Constraints are limitations which are outside the control of the project. The Project must be

managed within these constraints.

Assumptions are made about events, or facts outside the control of project. External depend-

encies are activities which need to be completed before an internal activity can proceed.

Constraints, assumptions and dependencies can create risks that the project may be delayed

because access is not provided to the site (assumption).

Assumption will be that the complexity may arise due to large unstructured data set.

1.6_Constraints
Hardware limitation and timing constraints.

High feature may not correspond to semantic similarity.

System Environment

Windows subsystem for Linux with Ubuntu operating system will be required to run the

application

Proposed Model

This Project is based on V-model SDLC (Software Development Life Cycle)

The V-model is an SDLC model where execution of processes happens in a sequential man-

ner in a V-shape. It is also known as Verification and Validation model.

The V-Model is an extension of the waterfall model and is based on the association of a
testing phase for each corresponding development stage. This means that for every single
phase in the development cycle, there is a directly associated testing phase. This is a highly-

disciplined model and the next phase starts only after completion of the previous phase.

Under the V-Model, the corresponding testing phase of the development phase is planned in
parallel. So, there are Verification phases on one side of the ‘V’ and Validation phases on

the other side. The Coding Phase joins the two sides of the V-Model.

The following illustration depicts the different phases in a V-Model of the SDLC.

DISTRIBUTED FILE SYSTEM

Introduction

A distributed file system (DFS) is a file system with data stored on a server. The data is ac-
cessed and processed as if it was stored on the local client machine. The DFS makes it conven-
ient to share information and files among users on a network in a controlled and authorized
way. The server allows the client users to share files and store data just like they are storing
the information locally. However, the servers have full control over the data and give access

control to the clients.

There has been exceptional growth in network-based computing recently and client/server-
based applications have brought revolutions in this area. Sharing storage resources and infor-
mation on the network is one of the key elements in both local area networks (LANs) and wide
area networks (WANS). Different technologies have been developed to bring convenience to
sharing resources and files on a network; a distributed file system is one of the processes used

regularly.

One process involved in implementing the DFS is giving access control and storage manage-
ment controls to the client system in a centralized way, managed by the servers. Transparency
is one of the core processes in DFS, so files are accessed, stored, and managed on the local
client machines while the process itself is actually held on the servers. This transparency
brings convenience to the end user on a client machine because the network file system effi-
ciently manages all the processes. Generally, a DFS is used in a LAN, but it can be used in a
WAN or over the Internet. A DFS allows efficient and well-managed data and storage sharing
options on a network compared to other options. Another option for users in network-based

computing is a shared disk file system. A shared disk file system puts the

access control on the client’s systems so the data is inaccessible when the client system goes
offline. DFS is fault-tolerant and the data is accessible even if some of the network nodes are

offline.

Client

Client more than one client may access the same data simultaneously, the server must have a
mechanism in place (such as maintaining information about the times of access) to organize
updates so that the client always receives the most current version of data and that data con-

flicts do not arise.

Server

Server is a system which receives request or commands from client and gives back the re-

sponse according to the request. Server can run on any type computer.

Challenges in HDFS

v DFS due to failure of hardware components data do not reach the destination point.
Data in node can get altered or corrupted.

Lack of performance and scalability.

Lack of flexible resource management.

Lack of application deployment support.

Lack of quality of service.

AN N N N SN

Lack of multiple data source support.

HADOOP DISTRIBUTED FILE SYSTEM — HDFS Bl

Introduction

Apache Hadoop is good choice for airline data analysis as it works for distributed big data.
Apache Hadoop is an open source software framework for distributed storage and large-scale
distributed processing of data-sets on clusters. Hadoop runs applications using the MapReduce
algorithm, where the data is processed in parallel on different CPU nodes. In short, Hadoop
framework is capable enough to develop applications capable of running on clusters of comput-
ers and they could perform complete statistical analysis for huge amounts of data. Hadoop
MapReduce is a software framework for easily writing applications which process big amounts
of data in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable,

fault-tolerant manner.

HDFS Architecture

Metadata (Name, replicas, ...): |

Metadata ops '[Namenode J’ /home/foo/data, 3, ...
BIoEKpps
Re;éd Datanodes Datanodes
{ -
Il N - q = Replication B = [|
m| = \ = Siots
H'”- ,/'i g \ /
) N \.\! =] - e \Y,
Rack 1 \WWite > Rack 2

Figure : HDFS architecture

Assumptions and Goals

Hardware Failure — In HDFS hardware failure is very common. HDFS instance has hundred
thousand of servers which contain data. So, because of this large network there is a probability
that failure will occur. Thus, HDFS error and fault control with automatic recovery should be

our main goal.

Streaming Data Access — Streaming data means is shifting/transferring of data at constant rate
(high speed) in order to carry out various functions. By data streaming, HDFS can provide High
Definition TV services or constant back up to storage medium. Therefore, data is read in con-
tinuously with constant data rate rather reading in form of blocks/packets.

Latency- Latency is defined as time delay caused due to various operations during the process.
In Hadoop, initial time is spent in various activities for example — resource distribution, job

submission and split creation. Thus, in Hadoop latency is very high.

Large Data Sets — In Hadoop, applications which are running require considerable data sets.

Memory requirement can vary from gigabytes to terabytes.

Moving Computation Vs Moving Data — In HDFS, computation is moved to data. In Hadoop
taking computation toward data is more efficient. HFDS provides interface which transfer ap-
plication to data where it is located

Name Node and Data Node

Hadoop Distributed File system follows Master-Slave architecture. Cluster is made in Hadoop,
and cluster consists of single Name node which acts as master server which is user for managing

file system namespace and it provides regulation for accessing files by client.

Difference between Name Node and Data Node

Names node is used for executing file system namespace operations like closing, renaming files

and directories whereas data node is responsible for reading and writing data. Name node

is responsible for mapping of blocks to data node while data node is used for creation, replication

and deletion.

In HDES file is divided into one or more blocks.

Hard Link

Hard link is a file that links a name with a file in distributed file system. There can be multiple
hard links for a same file, we can create multiple names for same file and create aliasing effect
for example if contents of file 1 are altered then these effects will be visible when the same file

is opened with another name.

Soft Link, Symbolic Link

In HDFS, reference for another or directory is there in target file. Reference is in the form of
relative path. If the link is deleted, target will not get affected. Also, if target is shifted or re-

moved, even then it will point to old target and non- existing target will be broken.

Replication Factor

Replication factor is defined as number of copies should be maintained for particular file. Rep-

lication factor is stored in Name Node which maintains file system namespace.

Data Replication

Data replication is a main feature of HDFS. Data replication makes HDFS very reliable system
that can store large files. In this, files are broken into blocks which are stored. All the blocks
have same size except the last block. In order to provide reliability blocks are replicated. In
HDFS block size and replication factor specified during creation, are not fixed and they can be
changed. Name node receives block report and heartbeat in periodic intervals, thus ensuring data
nodes are working properly. Block report contains list of all blocks in data node. Files can be

written only once and name node makes decisions for replication of blocks.

Replication Placement

Optimization replica replacement distinguishes Hadoop distributed file system from other DFS.

The main goal of rack-aware replica placement policy is increase network bandwidth utilization, fault tol-

erance and data reliability and availability.

Rack-1t is a combination of data nodes. In large networks, HDFS is run on cluster of comput-

ers which spread across multiple racks.
Two nodes at different racks communicate each other through switches.

Network bandwidth between machines of different racks is less than network bandwidth of ma-

chines in same rack.

In HDFS, policy of placing replicas on different racks is followed. This policy prevents loss of
data during rack failure and it also allows use of bandwidth from multiple racks during reading

of data. But this policy increases the cost of writing as multiple writes for different are required.
In HDFS Name node determines the rack 1D, where each data node belongs to.

Sample Case

Let replication factor is 3. First replica is on one node in local rack. Second replica will be in

other node in the same rack. While third replica will be on different rack.

Advantages of Replica Placement Policy

v' It helps in increasing write performance.
v' It ensures data reliability as the probability of rack failure is very less than chance of

node failure.

Replication Selection

HDFS follows the policy of minimum distance rack policy, that is, it responds to the read request
of the user by finding replica that is closest to the reader. If it finds replica and reader on the
same rack, then it selects that replica. In HDFS cluster is spanned across multiple data. Centers

and a replica which is present in local data center is preferred over remote replica (if present).

Safe Mode

When HDFS is started, Name node uses a special stage called safe mode.

When name node is in the safe mode then no replication occurs. In safe mode, name node re-

ceives heartbeat and block report from data nodes.

A block is safe if minimum numbers of replicas for that block are checked. In HDFS each

block has minimum number of specified replicas.

Name node is said to be in safe mode when configurable percent of its replicated data blocks
are verified.

Persistence of File System Metadata
In HDFS, name node stores the namespace.

Edit log is used by name node. Edit is basically a transaction log and it is stored in local host
as file system.

For example- changing of replication factor, creating a new file.

Fsimage is used store Namespace plus file system property and mapping of blocks to file.

Fsimage is stored in local file system of name nodes.

Role of Data node during Start-up

During start-up, data scans all its local file system and then it generates a list of all HDFS data
blocks which represent each of the local files. After that, it sends the report to Name none.
Report generated is called as Block Report.

In HDFS various events occurs: -

v’ It stores data in the local file system.

Local file system contains separate files each containing a block.

In HDFS all are not in single directory. It tries to find minimum number of files per
directory and then creates a sub directory

It is not efficient to create all local files in same directory as efficiency gets reduced.
Replication and Data Disk Failure

In HDFS, many times data done becomes unavailable due to which data is lost or replica
may also get corrupted. Due to these reasons there is a need for Re- replication. Rerep-
lication is also required when replication factor of file gets increased or hard disk on data

node gets failed.

Secondary Name Node

Secondary name node is used for connecting with name node and builds snapshot of directory

of primary name nodes.

Advantages of Hadoop

v

<\

In Hadoop, a code for ten 10 nodes can work for thousands nodes with little require-
ment of re-work.

Hadoop uses easy programming model that enables clients to quickly perform their
operations.

Hadoop provides reliable data storage.

It also provides efficient and dynamic of data.

Hadoop can work across machines

Apache Hadoop Framework consists of:

Hadoop Common — It utilities and libraries which are needed by Hadoop components.

Hadoop Distributed File System — HDFS- The Hadoop Distributed File System (HDFS) is

designed to store very large data sets reliably, and to stream those data sets at high bandwidth
to user applications. In a large cluster, thousands of servers both host directly attached storage
and execute user application tasks

Hadoop YARN — Yet another Resource Negotiator (YARN) is used to manage computer re-

source in cluster. These resources are used for scheduling user’s application.

Hadoop Map Reduce — It is programming technique used for large scale processing of data.
Map Reduce consists of one job tracker. In this clients submit map reduce tasks to job tracker.

Mappers and Reducer--Mappers are the tasks which are used for processing records in isola-
tion. In map-reduce architecture, output from mapper, combined together, is fed to second set

of tasks called reducer. In reducer results of various mappers can be together combined.

UML DIAGRAMS

UML is a standard language for specifying, visualizing, constructing, and documenting
the artifacts of software systems. UML was created by the Object Management Group (OMG)
and UML 1.0 specification draft was proposed to the OMG in January 1997. OMG is continu-
ously making efforts to create a truly industry standard. UML is not a programming language
but tools can be used to generate code in various languages using UML diagrams. UML has a
direct relation with object oriented analysis and design. After some standardization, UML has

become an OMG standard.
Use case Diagram:

There are three actors in our project first one is the airline data analyst, second is airline and the
third one is the user. The role of the analyst is to connect to the airline and then create an API
which give the access to the to extract the data from airline. After getting access from airline
using API .we can extract the airline data. Afterwards we will put the data into a excel table and
insert it into HDFS after which the analysis one the particular topic. The analyst will receive the
output by which the client will use the particular data.

Airline Data Anal

from Airine

Raw data in HDFS

e — . ‘5 Store the retrieve result K
along with corresponding
Query in Database Table

g — —— [requests for
< Dats Se——

Sequence Diagram:

A Sequence diagram is an interaction diagram that shows how processes operate with one an-
other and in what order. There are four objects in our project which are airline data analyst,
system interface, airline and client. first of all the process starts by the analyst by creating an
API for airline data . the analyst request for the excess of airline data and then the access grated
by the airline. Now the role of airline is done here, after we will program the raw data into HDFS
and then insert into the excel table than it will show the extract view of the data. Now we are
ready to fire the command and then we get the particular data as our output and provide to the

clients.

user

Airline

https://en.wikipedia.org/wiki/Interaction_diagram
https://en.wikipedia.org/wiki/Interaction_diagram
https://en.wikipedia.org/wiki/Interaction_diagram

|= = -
Interactive Sequence Diagram

Seqguence
- o] |

|

Client
2 i m T

T _Request. mmr.cahﬂ..m_.lf :

| | |

K- T s - AccessGranted . - oo fome e |

: Fetch Data Using Python : 1 :

| | |

I GetData = _ e e 1 |

o I I I

I | | |

:_ Load Data into HDFS | : :
& ! m I I &
| : Using Map Reduce Program 3 : :

} | |

! I I

! I I

| Command forQuery | \

v

' [- |

L. __Obtained Quarried dataas Qutput ________ | |

f Abstract View ! : :

| W } View Of Resut 5

! I

! I |

! | I

! I I I

! | I I

! I I |
S i = e

Figure: Sequence Diagram of Airline Analysis
Gantt Chart:-

Gantt chart is a graphical depiction of a project schedule. A Gantt chart is a type of bar
chart that shows the start and finish dates of several elements of a project that include resources,

milestones, tasks and dependencies.

Analysis

Requirement

001 3 > 002 2
Planning weeks weeks
10 Oct | 31 Oct 31 Oct | 15 Nov
2017 2017 2017 2017
ABC XYZ
Detailed Design
: —
High Level 004 3 weeks
Design
31 Nov | 21 Dec
Designing 003 |2 2017 | 2017
weeks
ABC
15 Nov | 31 Nov
2017 2017
XYZ
Coding
005 3 weeks
21 Dec |7 Jan
2017 2018

ABC

Coding Integration
and Integration 007 3 Weeks
Coding 7 Feb |28 Feb
006 4 weeks 2018 2018
7 Jan|7 Feb XYZ
2018 2018
ABC
Integration Testing Description
008 2 weeks 009 2 weeks
Testing and 28 Feb | 14 Mar 14 Mar | 31 Mar
Documentation 2018 2018 2018 2018
ABC XYZ

DATA FLOW DIAGRAMS

Introduction

Data flow diagrams are the basic building blocks that define the flow of data in a system to the
particular destination and difference in the flow when any transformation happens. It makes
whole procedure like a good document and makes simpler and easy to understand for both pro-
grammers and non-programmers by dividing into the sub process. The data flow diagrams are
the simple blocks that reveal the relationship between various components of the system and
provide high level overview, boundaries of particular system as well as provide detailed over-

view of system elements.

The data flow diagrams start from source and ends at the destination level i.e., it decomposes
from high level to lower levels. The important things to remember about data flow diagrams
are: it indicates the data flow for one way but not for loop structures and it doesn’t indicate the

time factors.

Level 0 data flow diagram

Input Conmmand

Adirlime
Aanalysis of
Data Using

Hadoop

User

COutput Result

O Lewal DFD

HADOOP INSTALLATION AND SIMULATIONX

Supported Platforms

v" GNU/Linux is supported as a development and production platform

v Windows is also a supported platform.
Required Software

v Dataset

v" UBUNTU - LINUX operating system
v APACHE HADOOP FRAMEWORK.
v" Map Reduce

Modes of working of Hadoop:

STANDALONE MODE: By default Hadoop is configured to run in a non- distributed mode,

as a single Java process. This is useful for debugging.

PSEUDO DISTRIBUTED MODE: Hadoop can also be run on a single- node in a pseudo-

distributed mode where each Hadoop daemon runs in a separate Java process.

SIMULATIONS: Very first code is to find and displays every match of the given regular ex-

pression. Output is written to the output directory.
Steps for installing of Hadoop:
Step 1 — Installing Java
To get started, we'll update our package list:

sudo apt-get update

SNext, we'll install Open JDK, the default Java Development Kit on Ubuntu 16.04.
sudo apt-get install default-jdk

Once the installation is complete, let's check the version.

java —version

Output

Openjdk version "1.8.0 91"

OpenJDK Runtime Environment (build 1.8.0_91-8u91-b14-3ubuntul~16.04.1-b14)
OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode)

This output verifies that OpenJDK has been successfully installed.

Step 2 — Installing Hadoop

With Java in place, we'll visit the Apache Hadoop Releases page to find the most recent stable

release. Follow the binary for the current release:
On the server, we'll use wget to fetch it:

wget http://apache.mirrors.tds.net/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

In order to make sure that the file we downloaded hasn't been altered; we'll do a quick check

using SHA-256. Return the releases page, and then follow the Apache link:
Dist —Revision 16478:/release/hadoop/common En-

ter the directory for the version you downloaded:

Hadoop-3.0.0

Finally, locate the .mds file for the release you downloaded, then copy the link for the corre-

sponding file:hadoop-3.0.0.tar.gz.mds

Again, we'll right-click to copy the file location, then use wget to transfer the file:

http://apache.mirrors.tds.net/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

we get https://dist.apache.org/repos/dist/release/hadoop/common/hadoop-2.7.3/hadoop-
2.7.3.tar.gz.mds Then run the verification:shasum -a 256 hadoop-2.7.3.tar.gz

Output
d489df3808244b906eb38f4d081ba49e50c4603db03efd5e594a1e98b09259¢2
hadoop-2.7.3.tar.gz

Compare this value with the SHA-256 value in the .mds file:

cat hadoop-2.7.3.tar.gz.mds

~/hadoop-2.7.3.tar.gz.mds

hadoop-2.7.3.tar.gz: SHA256 = D489DF38 08244B90 6EB38F4D 081BA49E 50C4603D
BO3EFDS5E 594A1E98 B09259C2

You can safely ignore the difference in case and the spaces. The output of the command we ran
against the file we downloaded from the mirror should match the value in the file we down-

loaded from apache.org.

Now that we've verified that the file wasn't corrupted or changed, we'll use the tar command
with the -xflag to extract, -z to uncompress, -v for verbose output, and -f to specify that we're
extracting from a file. Use tab-completion or substitute the correct version number in the com-

mand below:
tar -xzvf hadoop-2.7.3.tar.gz

Finally, we'll move the extracted files into /usr/local, the appropriate place for locally installed

software. Change the version number, if needed, to match the version you downloaded.
sudo mv hadoop-2.7.3 /usr/local/hadoop

With the software in place, we're ready to configure its environment.

Step 3 — Configuring Hadoop's Java Home

Hadoop requires that you set the path to Java, either as an environment variable or in the Hadoop
configuration file.

The path to Java, /usr/bin/java is a symlink to /etc/alternatives/java, which is in turn a symlink
to default Java binary. We will use readlink with the -f flag to follow every symlink in every
part of the path, recursively. Then, we'll use sed to trim bin/java from the output to give us the
correct value for JAVA_HOME.

To find the default Java path

readlink -f /usr/bin/java | sed "s:bin/java::" Out-
put

lusr/lib/jvm/java-8-openjdk-amd64/jre/

You can copy this output to set Hadoop's Java home to this specific version, which ensures that
if the default Java changes, this value will not. Alternatively, you can use the readlink command
dynamically in the file so that Hadoop will automatically use whatever Java version is set as the

system default.

To begin, open hadoop-env.sh:

sudonano /usr/local/hadoop/etc/hadoop/hadoop-env.sh
Then, choose one of the following options:

Option 1: Set a Static Value

/usr/local/hadoop/etc/hadoop/hadoop-env.sh

#export JAVA_HOME=${JAVA_HOME}

export JAVA_HOME-=/usr/lib/jvm/java-8-openjdk-amd64/jre/

Option 2: Use Readlink to Set the Value Dynamically

lusr/local/hadoop/etc/hadoop/hadoop-env.sh #ex-

port JAVA_HOME=${JAVA_HOME}

export JAVA_HOME=$(readlink -f /usr/bin/java | sed "s:bin/java::")

Step 4 — Running Hadoop

Now we should be able to run Hadoop:

/usr/local/hadoop/bin/hadoop

Output

Usage: hadoop [OPTIONS] SUBCOMMAND [SUBCOMMAND OPTIONS]

Or hadoop [OPTIONS] CLASSNAME [CLASSNAME OPTIONS]

CLASSNAME is a user-provided Java class

OPTIONS is none or any of:

buildpaths

--configdir

--debug

--help

hostnames list[of,host,names]
hosts filename

loglevel level

AN NNV N N NN

workers

SUBCOMMAND is one of:

Admin Commands:

attempt to add class files from build tree
Hadoop config directory

turn on shell script debug mode

usage information

hosts to use in slave mode

list of hosts to use in slave mode

set the log4j level for this command

turn on worker mode

v daemonlog get/set the log level for each daemon

Client Commands:

v' archivecreate a Hadoop archive

checknativecheck native Hadoop and compression libraries availability
classpathprints the class path needed to get the Hadoop jar
conftestvalidate configuration XML files
credentialinteract with credential providers
distchdistributed metadata changer

distcpcopy file or directories recursively

dtutiloperations related to delegation tokens

envvars display computed Hadoop environment variables
fsrun a generic filesystem user client

gridmixsubmit a mix of synthetic job, modeling a profiled
jar<jar>run a jar file

jnipathprints the java.library.path

kerbname show auth_to_local principal conversion

key manage keys via the KeyProvider

rumenfolderscale a rumen input trace

rumentrace convert logs into a rumen trace

s3guard manage metadata on S3

trace view and modify Hadoop tracing settings

S N N N N N T N N N N N N N N N R NN

version print the version
Daemon Commands:

v" KMS run KMS, the Key Management Server
v SUBCOMMAND may print help when invoked w/o parameters or with -h.

The help means we've successfully configured Hadoop to run in stand-alone mode. We'll ensure
that it is functioning properly by running the example MapReduce program it ships with. To do
so, create a directory called input in our home directory and copy Hadoop's configuration files

into it to use those files as our data.
mkdir ~/input

cp /usr/local/hadoop/etc/hadoop/*.xml ~/input

Next, we can use the following command to run the MapReducehadoop-mapreduce-examples
program, a Java archive with several options. We'll invoke its grep program, one of many ex-
amples included in hadoop-mapreduce-examples, followed by the input directory, input and the
output directory grep_example. The MapReduce grep program will count the matches of a literal
word or regular expression. Finally, we'll supply a regular expression to find occurrences of the
word principal within or at the end of a declarative sentence. The expression is case-sensitive,

so we wouldn't find the word if it were capitalized at the beginning of a sentence:

/usr/local/hadoop/bin/hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-

mapreduce-examples-3.0.0.jar grep ~/input ~/grep_example'principal[.]*'

When the task completes, it provides a summary of what has been processed and errors it has encoun-

tered, but this doesn't contain the actual results.

Output atjava.lang.reflect.Method.in-
voke(Method.java:498) atorg.apache.hadoop.util.Run-
Jar.run(RunJar.java:221) atorg.apache.hadoop.util.Run-

Jar.main(RunJar.java:136)

MAP-REDUCE

Introduction

Map-reduce refer to two distinct things; the programming model and the specific implementa-
tion of the framework. It is a programming model for data processing. The model is simple, yet
not too simple to express useful programs in Hadoop can run map reduce programs written in

various languages like java, ruby, python and C++.

Map-reduce programs are inherently parallel, thus putting very large scale data analysis into the
hands of anyone with enough machines at her disposal. Map-reduce comeinto its own for large

datasets.

Map-reduce works by breaking the processing into two phases: the map phase and the reduce
phase. Each phase has key value as input, the types of which may be chosen by the programmer.

The programmer also specifies two functions: the map function and the reduce function.

The input to our map phase is the raw NCDC data. We choose a text input format that gives us
each line in the dataset as a text value. The key is offset of the beginning of the line from the

beginning of the file, but as we have no need for this, we ignore it.
Map function: -

Our map function is simple. we simply used the values of the datasets in which we are interested.
The map function is just a data preparation phase setting up the data in such a way that the
reducer function can do its work on it: for example, Finding the maximum temperature of the
year. The map function is also good place to drop bad records; here we filter out temperatures

that are missing, suspects, or erroneous.

Reduce function: -
Reduces a set of intermediate values which share a key to a smaller set of values.

Reducer has 3 primary phases:

Shuffle
Reducer is input the grouped output of a mapper. In the phase the framework, for each Re-
ducer, fetches the relevant partition of the output of all the Mappers.

Sort
The framework groups Reducer inputs by keys (since different Mappers may have output the
same key) in this stage. The shuffle and sort phases occur simultaneously i.e. while outputs are
being fetched they are merged.

Reduce

In this phase the reduce (object, iterator, outputcollector, reporter) method is called for each <

(key, (list of values)> pair in the grouped inputs

Map-reduce architecture!

Reduce

Reduce

Figure 8.4: Diagram of Mapper and Reducer

There are basically two phases here mapper and reducer. The number of mapper used here is
depends on the no. of blocks used in the HDFS. Firstly, mappers do the portioning of the blocks.
A partitioner works like a condition in processing an input dataset. The partition phase takes
place after the Map phase and before the Reduce phase. The number of partitioner is equal to
the number of reducers. That means a partitioner will divide the data according to the number
of reducers. After the Map phase and before the beginning of the Reduce phase is a handoff
process, known as shuffle and sort. When the mapper task is complete, the results are sorted by
key, partitioned if there are multiple reducers, and then written to disk. The reduce phase will

then sum up the number of times each word was seen and write that sum count tog
Benefits of map-reduce

Map Reduce is useful for batch processing on terabytes or petabytes of data stored in Apache

Hadoop.
The following tables describe some of MapReduce’s key benefits:

v Simplicity: - Developers can write their application in their language of own choice,
such as java, C++ or python and map-reduce jobs are easy to run.

v" Scalability: - Map-reduce can process petabytes of data, stored in HDFS of one cluster.
Speed: - Parallel processing means that Map-reduce can take problems that used to take
days to solve and solve them in few hours.

v Recovery: -Map-reduce takes care of failures if a machine with one copy of the data is
unavailable, another machine has a copy of the same value/key pair, which can be used
to solve the same sub task. The job tracker keep track of it all.

v Minimal data motion: - Map-reduce moves compute processes to the data on HDFS and
not the other way round. Processing tasks can occur on the physical node where the data
resides. This significantly reduces the network 1/0 patterns and contributes to Hadoop’s

processing speed. Ether with the word as output.

FLUME®

Introduction

Apache Flume is a tool/service/data ingestion mechanism for collecting aggregating and trans-
porting large amounts of streaming data such as log files, events (etc...) from various sources to
a centralized data store. Flume is a highly reliable, distributed, and configurable tool. It is prin-

cipally designed to copy streaming data (log data) from various web servers to HDFS.

It is a very use case is collecting log data from one system-a bank of web servers, for example-
and aggregating it in HDFS for later analysis. Flume supports a large variety of sources, some
of the more commonly used ones include tail (which pipes data from a local file being written
into the flume, just like Unix tail), syslog, and Apache log4j (allowing java applications to write

events to files in HDFS via flume).

Flume nodes can be arranged in arbitrary topologies. Typically, there is a node running on each
source machine (each web server, for example), with tiers of aggregating nodes that the data
flows through on its way to HDFS. Flumes offers different levels of delivery reliability, from
best effort delivery, which doesn’t tolerate any flume node failures, to end to end, which guar-

antees delivery even in the event of multiple flume node failures between the source and HD.

1‘ Facebook Twitter

‘ —1_:‘,’?.7’}:
W
a1
5

/
3 B

Web servers

Log/Event d;taigenerato rs

N

g

N

Log/Event data

Flume

N

| Log/Event data

Figure: Structure of Apache Flume

Applications of Flume

Assume an e-commerce web application wants to analyze the customer behavior from a partic-
ular region. To do so, they would need to move the available log data in to Hadoop for analysis.
Here, Apache Flume comes to our rescue. Flume is used to move the log data generated by

application servers into HDFS at a higher speed.

Advantages of Flume
Here are the advantages of using Flume —

v Using Apache Flume we can store the data in to any of the centralized stores (HBase,

HDFS).

v" When the rate of incoming data exceeds the rate at which data can be written to the
destination, Flume acts as a mediator between data producers and the centralized stores

and provides a steady flow of data between them.

v Flume provides the feature of contextual routing.

v The transactions in Flume are channel-based where two transactions (one sender and

one receiver) are maintained for each message. It guarantees reliable message delivery.

HDFS | "

HBase

Centralized stores

v Flume is reliable, fault tolerant, scalable, manageable, and customizable.

What flume does

Flume lets Hadoop users ingest high-volume streaming data into HDFS for storage.

Specifically, Flume allows users to:

Stream data: - and analysis Ingest streaming data from multiple sources into Hadoop for stor-

age.

Insulate system: - Buffer storage platform from transient spikes, when the rate of incoming

data exceeds the rate at which data can be written to the destination.

Guarantee data delivery: - Flume NG uses channel-based transactions to guarantee reliable
message delivery. When a message moves from one agent to another, two transactions are
started; one on the agent that delivers the event and the other on the agent that receives the event.

This ensures guaranteed delivery semantics

Scale horizontally: - To ingest new data streams and additional volume as needed.
Features of Flume

Some of the notable features of Flume are as follows —

v Flume ingests log data from multiple web servers into a centralized store (HDFS, HBase)
efficiently.

v Using Flume, we can get the data from multiple servers immediately into Hadoop. Along
with the log files, Flume is also used to import huge volumes of event data of airlines
and flights.

v Flume supports a large set of sources and destinations types.

v Flume supports multi-hop flows, fan-in fan-out flows, contextual routing, etc..Flume can

be scaled horizontally.

METHODOLOGY!®

This Project is based on V-model SDLC (Software Development Life Cycle)

The V-model is an SDLC model where execution of processes happens in a sequential man-

ner in a V-shape. It is also known as Verification and Validation model.

The V-Model is an extension of the waterfall model and is based on the association of a
testing phase for each corresponding development stage. This means that for every single
phase in the development cycle, there is a directly associated testing phase. This is a highly-

disciplined model and the next phase starts only after completion of the previous phase.
V-Model -Design

Under the V-Model, the corresponding testing phase of the development phase is planned in
parallel. So, there are Verification phases on one side of the ‘“V’ and Validation phases on

the other side. The Coding Phase joins the two sides of the V-Model.

The following illustration depicts the different phases in a V-Model of the SDLC.

Acceptance

Requirement \‘
Analysis ‘

=\

Acceptance

Testing

V- Model - VerificationPhases

There are several Verification phases in the V-Model, each of these are explained in detail

below.

v Business Requirement Analysis
This is the first phase in the development cycle where the product requirements are
understood from the customer’s perspective. This phase involves detailed communi-
cation with the customer to understand his expectations and exact requirement. This
IS a very important activity and needs to be managed well, as most of the customers
are not sure about what exactly they need. The acceptance test design planning is
done at this stage as business requirements can be used as an input for acceptance
testing.

v System Design
Once you have the clear and detailed product requirements, it is time to design the
complete system. The system design will have the understanding and detailing the
complete hardware and communication setup for the product under development.
The system test plan is developed based on the system design. Doing this at an earlier
stage leaves more time for the actual test execution later.

v" Architectural Design

Architectural specifications are understood and designed in this phase. Usually more
than one technical approach is proposed and based on the technical and financial
feasibility the final decision is taken. The system design is broken down further into
modules taking up different functionality. This is also referred to as High Level
Design (HLD).
The data transfer and communication between the internal modules and with the out-
side world (other systems) is clearly understood and defined in this stage. With this
information, integration tests can be designed and documented during this stage.

v" Module Design
In this phase, the detailed internal design for all the system modules is specified,
referred to as Low Level Design (LLD). It is important that the design is compatible
with the other modules in the system architecture and the other external systems. The
unit tests are an essential part of any development process and helps eliminate the
maximum faults and errors at a very early stage. These unit tests can be designed at

this stage based on the internal module designs.
Coding Phase

The actual coding of the system modules designed in the design phase is taken up in the
Coding phase. The best suitable programming language is decided based on the system and

architectural requirements.

The coding is performed based on the coding guidelines and standards. The code goes
through numerous code reviews and is optimized for best performance before the final build

is checked into the repository.

ValidationPhases

The different Validation Phases in a V-Model are explained in detail below.
Unit Testing

Unit tests designed in the module design phase are executed on the code during this valida-
tion phase. Unit testing is the testing at code level and helps eliminate bugs at an early stage,

though all defects cannot be uncovered by unit testing.

Integration Testing

Integration testing is associated with the architectural design phase. Integration tests are per-

formed to test the coexistence and communication of the internal modules within the system.

System Testing

System testing is directly associated with the system design phase. System tests check the
entire system functionality and the communication of the system under development with
external systems. Most of the software and hardware compatibility issues can be uncovered

during this system test execution.
Acceptance Testing

Acceptance testing is associated with the business requirement analysis phase and involves
testing the product in user environment. Acceptance tests uncover the compatibility issues
with the other systems available in the user environment. It also discovers the non- functional

issues such as load and performance defects in the actual user environment.
V- Model— Application

V- Model application is almost the same as the waterfall model, as both the models are of
sequential type. Requirements have to be very clear before the project starts, because it is
usually expensive to go back and make changes. This model is used in the medical develop-

ment field, as it is strictly a disciplined domain.

The following pointers are some of the most suitable scenarios to use the V-Model applica-

tion.

Requirements are well defined, clearly documented and fixed.
Product definition is stable.
Technology is not dynamic and is well understood by the project team.

There are no ambiguous or undefined requirements.

NN NN

The project is short.

V- Model-Prosand Cons

The advantage of the V-Model method is that it is very easy to understand and apply. The
simplicity of this model also makes it easier to manage. The disadvantage is that the model
is not flexible to changes and just in case there is a requirement change, which is very com-

mon in today’s dynamic world, it becomes very expensive to make the change.
The advantages of the V-Model method are as follows —

v" This is a highly-disciplined model and Phases are completed one at a time.

v Works well for smaller projects where requirements are very well understood.

v Simple and easy to understand and use.

v’ Easy to manage due to the rigidity of the model. Each phase has specific delivera-

bles and a review process.
The disadvantages of the V-Model method are as follows —

v" High risk and uncertainty.
Not a good model for complex and object-oriented projects.

Poor model for long and ongoing projects.

A AN

Not suitable for the projects where requirements are at a moderate to high risk of
changing.
v Once an application is in the testing stage, it is difficult to go back and change func-

tionality.

In this paper the tools used for the proposed method is Hadoop,map reduce which is mainly
used for structured data. Assuming all the Hadoop tools have been installed and having semi
structured information on airport data. The above mentioned queries have to be addressed

Methodology used is as follows:

1. Create tables with required attributes

2. Extract semi structured data into table using the load a command
3. Analyse data for the following queries

QL. Find list of Airports operating in the Country India

Step1l rm -r ~/airport_output

Step2 rm -r ~/airport_in

Step 3 cat ~/airport_inputjawk ‘{print $3}> ~/airport_in

Step 4 /usr/local/hadoop/bin/hadoop jar
/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.0.0.jar

wordcount ~/airport_in ~/airport_output

&) r00t@DESKTOP-C52US00: ~

final

) impl.M
in

tputBuffer

reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and @ on-disk map-outputs
mapred.Merger: Merging 1 sorted segments
mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 3991 bytes
reduce.MergeManagerImpl: Merged 1 segments, 4805 bytes to disk to satisfy reduce memory limit
reduce.MergeManagerImpl: Merging 1 files, 4889 bytes from disk
reduce.MergeManagerImpl: Merging @ segments, & bytes from memory into reduce
mapred.Merger: Merging 1 sorted segments
mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 3991 bytes
mapred.LocalJobRunner: 1 / 1 copied.
Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
mapred.Task: Task:attempt_locall1667916395_60861_r_000060_8 is done. And is in the process of committing
mapred.localJobRunner: 1 / 1 copied.
mapred.Task: Task attempt_locall667916395_60061_r_000000_6 is allowed to commit now
output.FileQutputCommitter: Saved output of task ‘attempt_locall667916395_eeel_r_eeeeee_e' to file:/root/airport_output
mapred.LocalJobRunner: reduce > reduce
mapred.Task: Task 'attempt_locall667916395_8661 r_eeeeee_e' done.
mapred.Task: Final Counters for attempt_locall667916395_8001_r_e@oeee_8: Counters: 24
File System Counters
ILE: Number of bytes read=484397
: Number of bytes written=861836
NMumber of read operations=@
: Number of large read operations=e
FILE: Number of write operations=0
Map-Reduce Framework
Combine input records=8
Combine output records=8
Reduce input groups=245
Reduce shuffle bytes=4889
Reduce input records=245
Reduce output records=245
Spilled Records=245
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=0
Total committed heap usage (bytes)=198316544
Shuffle Errors
BAD_ID=8
CONNECTION=0
I0_ERROR=0
WRONG_LENGTH=8
WRONG_MAP=8
WRONG_REDUCE=@
File Qutput Format Counters

) Select root@DESKTOP-C52U5Q)
INFO mapred.LocalJobRunner: map
INFO .Task: Task 'attempt_local1667916395_0001_m_000000_8' done
3 INFO .Task: Final Counters for attempt_locall667916395_0001_m_000000_0: Counters: 18
File System Counters
FILE: Number of bytes read=396347
FILE: Number of bytes written=794634
FILE: Number of read operations=0
FILE: Number of large read operations=@
FILE: Number of write operations=8
Map-Reduce Framework
Map input records=8108
Map output records=8108
Map output bytes=112714
Map output materialized bytes=4009
Input split bytes=86
Combine input records=8108
Combine output records=245
Spilled Records=245
Failed Shuffles=@
Merged Map outputs=0
GC time elapsed (ms)=54
Total committed heap usage (bytes)=198316544
File Input Format Counters
Bytes Read=80282
12:36:35,799 INFO mapred.LocalJobRunner: Finishing task: attempt_locall667916395_0601_m_000000_0
12:36:35 INFO mapred.LocalJobRunner: map task executor complete.
12:36:35 INFO mapred.LocalJobRunner: Waiting for reduce tasks
12:36: @ INFO mapred.LocalJobRunner: Starting task: attempt_locall667916395_0001_r_000000_0
12:36: INFO output.FileQutputCommitter: File Output Committer Algorithm version is 2
12:36: INFO output.FileQutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: fals
INFO mapred.Task: Using ResourceCalculatorProcessTree @ []
INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@7dde854c
12: WARN impl.MetricsSystemImpl: JobTracker metrics system already initialized
12:36: INFO reduce.MergeManagerImpl: MergerManager: memorylLimit=1319370752, maxSingleShufflelimit=329842688, mergeThreshold=870784704, ioSortFactor=10,
memToMemMergeOutputsThreshold=10
018-04-14 12:36: 5 INFO reduce.EventFetcher: attempt_local1667916395_0001_r_ 000000 0 Thread started: EventFetcher for fetching Map Completion Events
018-04-14 12:36: INFO reduce.LocalFetcher: localfetcher#l about to shuffle output of map attempt_local1667916395 0001 _m_000000_© decomp: 4005 len: 4009 to MEMORY
018-04-14 12: INFO reduce.InMemoryMapOutput: Read 4005 bytes from map-output for attempt_local1667916395_0001_m_000000_0
018-04-14 12:36: INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 4005, inMemoryMapOutputs.size() -> 1, commitMemory -> @, usedMemory ->400

12:
12:

3
3
3
3
3
3
3
3

018-04-14 12: INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
018-04-14 12: INFO mapred.LocalJobRunner: 1 / 1 copied.
018-04-14 12 INFO reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and @ on-disk map-outputs

Step 5 cat ~/airport_output/part-r-00000|grep -w 'India’

%) root@DESKTOP-C52USQ0: ~

95_0001_r_000000_6

[eR-N-N-N

mapreduce. Job 79 sfully
5 INFO mapr
em Counters
Number o
Number
: Number
Number of large read operations=0
: Number of write op
Map-Reduce Framework
input r

Input

Combine inp

Combi output recor
Reduce input groups
Reduce shuffle byt
Reduce input r r
Reduce output (o]
Spilled Record
Shuffled Maps
Failed Shuffle
Merged Map outpu

GC time elapsed

Shuffle

File Inpu
B
File Outpi
B

00t@DESKTOP-C52USQO 3 rt_output/part-r-00000|grep -w 'India’
140

Q2. How many Active Airlines in United state.
Step 1 rm -r ~/airlines_output

Step 2 /usr/local/hadoop/bin/hadoop jar
/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.0.0.jar grep

~[airlines_input ~/airlines_output 'United States,Y"

&) root@DESKTOP-C52USQO: ~/airlines_output = X
input ~/airli

configuration2.Ab
j java.lang.0bj gnoring this prope
) impl. fi loaded properties from hadoop-m: cs2.properties
impl. emImpl: heduled » ic snapshot period at 1@ s
impl. i temImpl: JobTr: tri em started
input.FileInputFormat: Total input
) mapredu obSubmi number of
0 mapreduce.JobSubmi 3 r job: job_1 12295 0001
) mapredu i T
0 mapreduc
mapreduce 3 i job_1i
mapred. stputCommit
INFO output.Fi i : File i » Alg hm version is 2
INFO output.Fi n 2 t i e _temporary

INFO mapred.

INFO mapred. 1JobRunne

INFO mapred. 1JobRunner

INFO output.Fi utputCommi 2 4 hm version
INFO output.FileQutputCommi 3 mit i anup

INFO mapred.T
INFO
INFO
INFO
INFO
INFO
139,182

ng flush of map output

ng map output
bufend 84; bu

0001_m_000008_0 is done.

INFO r k: 28_0001_m_000000_0' done.
INF = i r 112 001_m_00! Counters:

mapreduce.Job: map 106% reduce 100%
mapreduce.Job: Job job_locall1229515328_0001 completed successfully
mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=1264750
FILE: Number of bytes written=1583342
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=@
Map-Reduce Framework
Map input records=6048
Map output records=141
Map output bytes=3384
Map output materialized bytes=32
Input split bytes=105
Combine input records=141
Combine output records=1
Reduce input groups=1
Reduce shuffle bytes=32
Reduce input records=1
Reduce output records=1
Spilled Records=2
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=46
Total committed heap usage (bytes)=449839104
Shuffle Errors
BAD_ID=0
CONNECTION=0
I0_ERROR=6
WRONG_LENGTH=8
WRONG_MAP=0
WRONG_REDUCE=8
File Input Format Counters
Bytes Read=316243
File Output Format Counters
Bytes Written=13@
12:56:40,849 WARN impl.MetricsSystemImpl: JobTracker metrics system already initialized
12:56:41,142 INFO input.FileInputFormat: Total input files to process : 1
FO mapreduce.JobSubmitter: number of splits:1
FO mapreduce.JobSubmitter: Submitting tokens for job: job_local90163926_0002
FO mapreduce.JobSubmitter: Executing with tokens: []
FO mapreduce.Job: The url to track the job: http://localhost:8080/

lines_output
INFO mapreduce.Job: The url to track the job: http://localhost:8080/
41,417 INFO mapreduce.Job: Running job: job_local90163926_0002
141,418 INFO mapred.LocalJobRunner: OutputCommitter set in config null
141,419 INFO output.FileQutputCommitter: File Output Committer Algorithm version is 2
141,420 INFO output.FileOutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures

141,422 1IN mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
41,429 mapred.LocalJobRunner: Waiting for map tasks
41,429 mapred.LocalJobRunner: Starting task: attempt_local99163926_0002_m_000000_0
41,432 output.FileQutputCommitter: File Output Committer Algorithm version is 2
output.FileQutputCommitter: FileOutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures
mapred.Task: Using ResourceCalculatorProcessTree : []
mapred.MapTask: Processing split: file:/root/grep-temp-140417767/part-r-00000:0+118
mapred.MapTask: (EQUATOR) @ kvi 26214396(104857584)
mapred.MapTask: mapreduce.task.io.sort.mb: 160
mapred.MapTask: soft limit at 83886080
mapred.MapTask: bufstart = @; bufvoid = 104857660
mapred.MapTas! start = 26214396; length = 6553600
41,602 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
141,634 INFO mapred.LocalJobRunner
141,635 mapred.MapTask: Starting flush of map output
141,635 I mapred.MapTask: Spilling map output
41,636 mapred.MapTask: bufstart = @; bufend = 24; bufvoid = 104857600
141,636 mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214396(104857584); length = 1/6553600
6:41,779 mapred.MapTask: Finished spill @
41,823 mapred.Task: Task:attempt_local90163926_0002_m_000000_0 is done. And is in the process of committing
41,831 mapred.LocalJobRunner: map
41,832 mapred.Task: Task 'attempt_local90163926_6002_m_000000_6' done
12:56:41,837 INFO mapred.Task: Final Counters for attempt_local90163926_0002_m_000000_0: Counters: 17
File System Counters
LE: Number of bytes read=948637
LE: Number of bytes written=1577417
LE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=1
Map output records=1
Map output bytes=24
Map output materialized bytes=32
Input split bytes=108
Combine input records=0
Spilled Records=1

129 root@DESKTOP-C52USQ irlines_output
Map input records=1
Map output records=1
Map output bytes=24
Map output materialized bytes=32
Input split bytes=108
Combine input records=0
Spilled Records=1
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=0
Total committed heap usage (bytes)=330301440
File Input Format Counters
Bytes Read=130
12:56: INFO mapred.LocalJobRunner: Finishing task: attempt_local90163926_0002_m_000000_0
12:56: INFO mapred.LocalJobRunner: map task executor complete.
12:56: mapred.LocalJobRunner: Waiting for reduce tasks
12:56: mapred.LocalJobRunner: Starting task: attempt_local90163926_0602_r_000000_0
output.FileQutputCommitter: File Output Committer Algorithm version is 2
output.FileQutputCommitter: FileQutputCommitter skip cleanup _temporary folders under output directory:false, ignore cleanup failures: fals

F
F

H1H 6 mapred.Task: Using ResourceCalculatorProcessTree : [
HH 6 mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@5e4e8ac7
HH WARN impl.MetricsSystemImpl: JobTracker metrics system already initialized!
018-04-14 12:56: INFO reduce.MergeManagerImpl: MergerManager: memorylLimit=1319370752, maxSingleShufflelLimit=329842688, mergeThreshold=870784704, ioSortFactor=10
memToMemMergeOutputsThreshold=10
reduce.EventFetcher: attempt_local90163926_0602_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events
reduce.LocalFetcher: localfetcher#2 about to shuffle output of map attempt_local90163926_6002_m 000000_0 decomp: 28 len: 32 to MEMORY
56:41,916 INFO reduce.InMemoryMapOutput: Read 28 bytes from map-output for attempt_local90163926_0002_m_000000_0
56:41,917 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 28, inMemoryMapOutputs.size() -> 1, commitMemory -> @, usedMemory ->28
56:41,920 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning
56:41,921 mapred.LocalJobRunner: 1 / 1 copied.
56:41,921 reduce.MergeManagerImpl: finalMerge called with 1 in-memory map-outputs and @ on-disk map-outputs
56:41,993 mapred.Merger: Merging 1 sorted segments
56:41,993 mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 18 bytes
56:41,998 reduce.MergeManagerImpl: Merged 1 segments, 28 bytes to disk to satisfy reduce memory limit
56:41,999 reduce.MergeManagerImpl: Merging 1 files, 32 bytes from disk
56:41,999 reduce.MergeManagerImpl: Merging @ segments, @ bytes from memory into reduce
mapred.Merger: Merging 1 sorted segments
mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 18 bytes
mapred.LocalJobRunner: 1 / 1 copied.
mapred.Task: Task:attempt_local90163926_0002_r_000000_0 is done. And is in the process of committing
mapred.LocalJobRunner: 1 / 1 copied.
mapred.Task: Task attempt_local90163926_6002_r_000000_0 is allowed to commit now
output.FileQutputCommitter: Saved output of task 'attempt 1local909163926 0002 r 000000 8' to file:/root/airlines output

&) root@DESKTOP-C52USQ0: ~/airlines_output
018-04-14 12:56:42,039 INFO output.FileOutputCommitter: Saved output of task 'attempt_local99163926_ 0002 r_000eee @' to file:/root/airlines_output
018-04-14 12:56:42,040 INFO mapred.LocallobRunner: reduce > reduce
018-04-14 12:56:42,040 INFO mapred.Task: Task 'attempt_local98163926_0002_r_000000_8' done.
018-84-14 12:56:42,042 INFO mapred.Task: Final Counters for attempt_local90163926_0002_r_000000_0: Counters: 24
File System Counters
FILE: Number of bytes read=948733
FILE: Number of bytes written=1577481
FILE: Number of read operations=0
FILE: Number of large read operations=@
FILE: Number of write operations=0
Map-Reduce Framework
Combine input records=@
Combine output records=@
Reduce input groups=1
Reduce shuffle bytes=32
Reduce input records=1
Reduce output records=1
Spilled Records=1
Shuffled Maps =1
Failed Shuffles=@
Merged Map outputs=1
GC time elapsed (ms)=0
Total committed heap usage (bytes)=330301440
Shuffle Errors
BAD_ID=0
CONNECTION=0
10_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Qutput Format Counters
Bytes Written=32
018-04-14 12:56:42,072 INFO mapred.LocallobRunner: Finishing task: attempt_local90163926_0002_r_000000_0
INFO mapred.LocalJobRunner: reduce task executor complete
FO mapreduce.Job: Job job_local98163926_0002 running in uber mode : false
INFO mapreduce.Job: map 100% reduce 100%
6 INFO mapreduce.Job: Job job_local9@163926_0002 completed successfully
:56 INFO mapreduce.Job: Counters: 30
File System Counters
FILE: Number of bytes read=189737@
FILE: Number of bytes written=3154898
FILE: Number of read operations=0
FILE: Number of large read operations=@
FILE: Number of write operations=0

Step 3 cdairlines_output
Step 4 Is —Irt

Step 5 cat part-r-00000

@ root@DESKTOP-C52USQQ: ~/airlines_output -
FILE: Number of write operations=0
Map-Reduce Framework
Map input records=1
Map output records=1
Map output bytes
Map output materialized bytes=32
Input split byte
Combine input reco
Combine output records=0
Reduce input groups
Reduce s
Reduce input reco
Reduce output reco
Spilled Record
Shuffled Maps
Failed Shuffles=
Merged Map outpu
GC time elapsed (ms)=0
060288
Shuffle

WRONG_LENGTH=0

WRONG_MAP=0

WRONG_REDUCE=0
File Input Format Co

Bytes Read
File OQutput For

roo SKTOP-C 0: airlines_output

root@ESKTOP-C52USQ0:~/3
total @
-rw-r--r-- 1 root root Apr 1 3:26 part-r-00000
root Apr 1 8:26 _SUCCESS
lines_output# cat part-r-00000

put# 1s -1rt

United States,Y
@DESKTOP-C52 /airlines_output# .

Q3. Which country (or) territory having highest Airports?
Step-1: rm -r ~/airport_output

Step-2: rm -r ~/airport_in

Step-3: cat ~/airport_inputlawk ‘{print $3}'> ~/airport_in

Step-4:/usr/local/hadoop/bin/hadoop jar/usr/local/hadoop/share/hadoop/mapre-

duce/hadoop-mapreduce-examples-3.0.0.jar wordcount ~/airport_in ~/airport_output
) root@DESKTOP-C52USQO: ~

adoop/mapr: adoop-mapr xampl

creating P ytor for publ

property

INFO mapreduce.JobSub
INFO red Ls

eanup failu

1JobRunner:
1JobRunner
ileOutputCommitter: Fi Committer Al
i tCommitter

$MapOutputBuffer

111,846 I
1,847
111,847 : kvstar 4857 8 o 872); lengtt 2429/65

ocess of committing

Final

read operation
operati)

Map-Redu

map-output
-> map-output

1e,

to MEMORY

) root@DESKTOP-C52USQ0: ~ - X

mapred.LocalJobl
reduce. Me agerT W i Y u © on-disk map-outputs

1 byte
y reduce memory limit

reduce

:12,327 INFO
51 INF

73 INFO

INFO mapred.Tas

INFO output.File Commi ed output of

INFO redu

3 INFO Task: k * mpt_local21.

INFO F for attempt_l
tem Counters
FILE: Number
FILE: Number
FILE: Number
FILE: Number
FILE: Number

ce shuffle byt
input r
output

ONNECTION=0
RROR=0
LENGTH=0

Q4 How many flight from YRT to YEK having zero(0) ,1 stops ?
Step 1 rm -r ~/airroute_output
Step 2 cat ~/airroute_inputjawk '{print $3"to"$5"-"$8}'> ~/airroute_in

Step3 /usr/local/hadoop/bin/hadoop jar
/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.0.0.jar

wordcount ~/airroute_in ~/airroute_output

mp

public f

d s
sk:attempt_local529 61¢ @_© is done. And is
JobRunner: map

°

FILE: Number

FILE

FILE:
Map-Reduce Framevo

Map input

Map

Map

Combine
Spilled

P (m
tted hea|
Counte;

.LocalJobRunr
6 .LocalJobRunner
INFO mapred.LocalJobRunner
INFO mapred.LocalJobRunner:
INFO output.Fil
INFO output.

apache. hadoop . mapreduc
stem al i !
i ioSortFactor

als29 X ® Thread rted: En ing Map Completion
INFO reduce. s fle output of ma 01_m_0000ee_6 decomp: 630 416 to MEM

output for _locals 0001_m_000000_0
put of s) -> 1, commitMemory @, usediemory -

NFO redu o

@ Select root@DESKTOP-C52U5Q0: ~ X

is in the p

mmit now
el r

Reduce input
Reduce

Step 4 cat ~/airroute_output/part-r-00000|grep "YRTtoYEK"

Step 5 rm -r ~/airroute_in

@ Select root@DESKTOP-C52U500: ~

Q5.How many flights having same air code for flight which uses code share
Stepl: cd ~

Step2: rm -r ~/airroute_outputl

Step3: cat ~/airroute_inputlawk '{print $1"-"$7}'> ~/airroute_in

Step 4:/usr/local/hadoop/bin/hadoop jar
/usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.0.0.jar

wordcount ~/airroute_in ~/airroute_outputl

root@DESKTOP-C52USQN
ESKTOP-C52

mp

publi

mapred. T

operation
d oper:
operation

Map-Redu

1 committed heap
it unte

200000_0
1JobRunne

1J0bRunr
eOutputComm:

doop . mapreduc
tialized!
4704, ioSortFactc

r_000000_0 T : EventFetcher for
Ffle output of map o 7_
from map-output attempt_1
map-output ¢ 7500

Returnir

and @ on-

mapred

8) root@DESKTOP-C52USQO: ~
Merger
Merg

pred.Merger

pred.Merger:

o
016 INFO
021 INFO

reco

utput rec
Reduce input group
Reduce shuffle bytes
Reduce input record
Reduce ou

Step 5: cat ~/airroute_output1/part-r-00000|grep -w "Y

n is deprecated
_0001_r_ X
1 copied
attempt_loca 00
Saved output of

38137_0001_

Step 6: rm -r ~/airroute_in

E)‘ root@DESKTOP-C52USQO:

INFO mapred.LocalJobRunner
INFO mapred. L 1JobRunne

INFO mapreduce.Jol
INFO mapreduce
INFO mapreduce.

FILE:
Map-Reduce Framewor!

Map input r

Map

Map

input
huf:

es Read 51
at Counte

tpu

t1/part-r-00000|grep

done

137_0001_r_0600000_0

oot/airroute_outputl

(@) root@DESKTOP-C52USQO: ~

TESTING®

Software testing is an investigation conducted to provide stakeholders with information

about the guality of the software product or service under test Software testing can also pro-

vide an objective, independent view of the software to allow the business to appreciate and
understand the risks of software implementation. Test techniques include the process of ex-
ecuting a program or application with the intent of finding software bugs (errors or

other defects), and verifying that the software product is fit for use.

Software testing involves the execution of a software component or system component to
evaluate one or more properties of interest. In general, these properties indicate the extent to

which the component or system under test

v Meets the requirements that guided its design and development,
Responds correctly to all kinds of inputs,

Performs its functions within an acceptable time,

Is sufficiently usable,

Can be installed and run in its intended environments, and

NN

Achieves the general result its stakeholder’s desire.

As the number of possible tests for even simple software components is practically infinite,
all software testing uses some strategy to select tests that are feasible for the available time
and resources. As a result, software testing typically (but not exclusively) attempts to execute
a program or application with the intent of finding software bugs (errors or other defects).
The job of testing is an iterative process as when one bug is fixed, it can illuminate other,

deeper bugs, or can even create new ones.

Software testing can provide objective, independent information about the quality of soft-

ware and risk of its failure to users or sponsors.!

https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Operating_environment
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Software_testing#cite_note-Kaner_1-1

Software testing can be conducted as soon as executable software (even if partially complete)

exists. The overall approach to software development often determines when and how testing

is conducted.

Types of Testing

Functional Testing

In software development, functional testing relates to the testing of a system’s functionality.
Typically the testing of each function is performed independently. Functional testing is gen-
erally performed against a specific requirement, providing a check as to whether it works as

it should e.g. does the system do x when y is pressed = yes/no.
Regression Testing

Regression testing looks at whether software that has previously worked as it should contin-
ues to do so after an update or change has been made. Changes can vary from an update to
the actual software e.g. a new version or patch that has been released, or it can be used when
an integrated application is added or updated. Regression testing is typically a form of func-
tional testing but it is specifically focused on looking for new issues and risks in existing
functions that have previously worked.

Compatibility Testing

Compatibility testing is a non-functional type of testing which looks at how software per-
forms across a range of devices, operating systems and browsers. To be effective it is rec-
ommended to always perform compatibility testing on real environments rather than using
emulators. With the increasing focus on digital transformation initiatives, compatibility test-
ing is growing in importance, particularly when considering user experience and customer

satisfaction.

Automated Testing

Automated testing refers to a type of testing that uses independant software to test the system
being tested. Automated testing can be used to perform other types of testing such as func-
tional or performance testing. Automated testing lends itself well to testing which is repeti-

tive in nature and can be time-consuming if performed manually e.g. functional

https://en.wikipedia.org/wiki/Software_development_process
https://www.ten10.com/services/functional-testing/
https://www.ten10.com/services/compatibility-testing/
https://www.ten10.com/services/automated-testing/

regression testing. The pre-scripted nature of automated testing can enable increased test

coverage to be achieved.
Smoke / Sanity Testing

Smoke testing checks whether fundamental functionality in a piece of software is working.
Smoke testing is typically used at an early stage in the software development lifecycle to
determine if the system is stable enough to begin more extensive testing or whether there are

any basic issues that would prevent testing or waste time.
Acceptance Testing

Acceptance testing is focused on users’ requirements from a system and checks whether
these are satisfied by the system. To perform acceptance testing a set of acceptance criteria
is normally specified to test against, with automated tests often being used alongside un-

scripted exploratory testing to better-represent a user’s approach to using the software.

Performance Testing

Performance testing is a type of non-functional testing (a test level). It can look at the stabil-
ity, responsiveness and speed of a system amongst other things. Generally performance test-
ing is carried out in a representative test environment replicating the numbers of users — often
in the hundreds or thousands — anticipated to be using the system concurrently. There are a
number of sub-categories to performance testing such as stress testing, peak/load testing, and

soak testing.

Accessibility Testing

Accessibility testing is a form of usability testing. In the UK accessibility testing is used to
check websites and software are accessible for people with disabilities including those with
disabilities relating to hearing, sight, cognitive understanding and old age. Those with disa-
bilities often make use of assistive technology such as screen readers so accessibility testing
checks that the various elements of a page are tagged properly to be read by these technolo-

gies.
Usability testing

Usability testing checks how intuitive and ‘usable’ software is for the end-users. It is gener-

ally conducted by real users (rather than emulators) and is objective-led e.g. find a

https://www.ten10.com/services/performance-testing/
https://www.ten10.com/services/accessibility-testing/

red jacket on the site and add to your shopping basket, rather than giving a user specific steps
to follow to complete a task. Checklists can also be used to test against recognised usability
principles. This type of testing is used to understand just how user-friendly a piece of soft-

ware is.
Security Testing

Security testing is a category of testing, performed to identify vulnerabilities in a system and
related infrastructure, in order to protect customer and organisation data, as well as intellec-
tual property. There are a number of different sub-categories to security testing such as
penetration testing, which aims to identify vulnerabilities which an attacker could exploit

from external or internal access.
TEST CASES

Pre-Conditions: An Airline.csv file should be created.

Test Case : SA_101
System : Airline Analysis Test Case Name:Airline.csv

Designed by: Yukti

Executed by: Yukti Design Date: 01/05/2020
Short Description :Check the Airline.csv file Execution Date: 04/05/2020
STEP ACTION EXPECTED SYSTEM | ACTUAL| PASS/ | COMMENT
RESPONSE RESULT | FAIL
1. Changing Source | Should show an error. Error Pass | <Executed>
of the file from Shown
airline to abcd.

2. Leaving any Should show an error. Error Pass | <Executed>

keywords Shown
3. Changing any Should show an error. Error Pass | <Executed>
data Shown

Post-Conditions: All the conditions done normal or default after test

Test Case : SA_102

System > Airline Analysis Test Case Name: Checking
Designed by: Yukti

Executed by: Yukti Design Date: 01/05/2020

Short Description :Check the Airline.csv file Execution Date: 04/05/2020

Pre-Conditions:An Airroute.csv file should be created

STEP ACTION EXPECTED ACTUAL | PASS/ | COMMENT
SYSTEM RESULT | FAIL
RESPONSE
1. Changing Source of | Should show an Error Pass <Executed>
the file from air error. Shown
route to abcd.

2. Leaving any Should show an Error Pass <Executed>
keywords error. Shown

3. Changing any data Should show an Error Pass <Executed>
error. Shown

Post-Conditions: All the conditions done normal or default after test

Test Case : SA 103

Designed by: Yukti

Executed by: Yukti

System : Airline Analysis

Short Description :Check the Airline.csv file

Test Case Name: Checking

Design Date: 01/05/2020

Execution Date: 04/05/2020

Pre-Conditions: Airport.csv file should be created

STEP ACTION EXPECTED SYSTEM| ACTUAL | PASS/ | COMMENT
RESPONSE RESULT | FAIL
1. Changing Source of | Should show an error. | Error Pass | <Executed>
the file from airport Shown
to abcd.
2. Leaving any Should show an error. | Error Pass | <Executed>
keywords

Shown

3. Changing any data | Should show an error. | Error

Shown

Pass

<Executed>

Post-Conditions: All the conditions done normal or default after test.

Test Case : SA_104
System . Airline Analysis

Designed by: Yukti

Test Case Name: Checking

Executed by: Yukti Design Date: 01/05/2020

Short Description :Check the Airline.csv file Execution Date: 04/05/2020

Pre-Conditions:

v Knowing about the logic.
v" Creating JAR file Wordcount jar.

STEP ACTION EXPECTED SYSTEM | ACTUAL PASS/ | COMMENT
RESPONSE RESULT | FAIL
1. Checking Valid JSON format Valid JSON | Pass | <Executed>
whether the format.
data received is
a valid JSSON
form.
2. The whole data | Whole JSON must be Got the Pass | <Executed>
must be broken | broken accordingly into | expected
into different different fields. result.
fields

Post-Conditions: Getting the result in structured form

System

Test Case : SA_105

. Airline Analysis

Designed by: Yukti

Executed by: Yukti

Short Description :Check the result of Query

Test Case Name: Checking

Design Date: 01/05/2020

Execution Date: 04/05/2020

Pre-Conditions: The data should be in the structured form.

STEP

ACTION

EXPECTED SYSTEM

RESPONSE

ACTUAL
RESULT

PASS/
FAIL

COMMENT

Use of required | It should give the correct Output in form | Pass <Executed>
command result according to the of data

queries
Aggregation of | Should Give a valid Got a valid Pass <Executed>
the result. aggregation. aggregation of

the result.

APPENDIX A: SCREESHOTS OF PROGRAM

TASK —I: Download the airline data (data set) from website relating to a particular event

using python language.

_| pythonforfetchcode:tit - Notepad - X
File Edit Format View Help
import urllib.request
import urllib.parse
import re
url="https://openflights.org/data.html’
values={'s':'basics', 'submit':'search'}
data=urllib.parse.urlencode(values)
data=data.encode('utf-8')
reg=urllib.request.Request(url,data)
resp=urllib.request.urlopen(req)
respData=resp.read()
print(respData)
paragraphs=re.findall(r'<p>(.*?)¢</p>"',str(respData))
for eachp in paragraphs:

print(eachP)

R 10
HOTypeheretosearch 0 @ @ cooskc. h\DLE(P_ﬂhH. B ricbplorer [Microsoft... M) pythonfor.. R A &) F B ENG sorag

APPENDIX B: SOURCE CODE TASK -1

MAPPER CODE SCREENSHOTS

import java.io.IOException;

import org.apache.hadoop.io.Longiritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

// Calculate occurrences of a character
public class AlphaReducer extends Reducer<Text, LongWritable, Text, Longhritable> {
private LongWritable result = new LongWritable();

public void reduce(Text key, Iterable<Longhiritable> values, Context context)
throws I0Exception, Interruptedexception {
long sum = 0;
for (Longwritable val : values) {
sum += val.get();

result.set(sum);
context.write(key, result);

STRUCTURED DATA

1. Airline data set

@9~ = airroutel xdsx - Microsoft Excel - %
Home | inset Pagelayout Formulas Data Review View c@ o @
=0 X cut = Shoasr | L= = By i 5, Fem Tx [= Auosum~ Agr ¢
S Caibri 15 Sty | = B (Erwapres General ¥ B i = & 0 s T A
P Fromatpainter | B L L E- [S-A- = Bl Mesge e conterr| SR %+ | B COMLOU, DUNE oe{ T O RIR) o, SRR RS
Clipboard) Font . Alignment A Number > Styles ceils Editing

[AL ~E % | aircode |5

- c D | E F I G | 1 b K L ™M N
1061 4 3201 DFW 3670 EZE 3988 ¥ 0 777 =
1062/ 41 3201 E2E 3988 DFW 3670 Y 0 777 =
1063 4M 3201 €26 3988 JFK 3797 ¥ 0 777
1066 41 3201 JFK 3797 E2E 3988 Y 0 777
1992 58 503 ARH 4362 CsH 6110 ¥ 0 AN4
199358 503 ARH 4362 MMK 2949 ¥ 0 AN4
1997, 58 503 ARH 4362 USK 4369 Y 0 AN4
1998/ 5N 503 CSH 6110 ARH 4362 Y 0 AN4
2002/ 5N 503 MMK 2949 ARH 4362 Y 0 AN4
2005/ 58 503 MMK 2949 TOs 663 Y 0 AN4
2012/58 503 TOS 663 MMK 2949 ¥ 0 AN4
2013/58 503 USK 4369 ARH a362 Y 0 AN4
2036 5T 1623 YBK 29 vcs 5487 ¥ 0 ATR
2037/5T 1623 YBK 29 VXN 5534 Y 0 ATR
2043 5T 1623 YCs 5487 YBK 2y 0AT4
2044/5T 1623 YCS 5487 YRT 132y 0 ATRAT4
2048 5T 1623 YEK 50 YXN 5534 Y 0 ATRAT4
2049 5T 1623 YEK 50 v 187 0 ATRAT4
2066 5T 1623 YRT 132 vBK 2y 0ATA
2067/5T 1623 YRT 132 vCs 5487 Y 0 ATRAT4
2070/57 1623 YRT 132 YUT 147 ¥ 0ATa
2071/57 1623 YRT 132 Yva 187y 0 ATRFRIATA
2073 57 1623 YRT 132 vzs ay 0 ATRAT4
2075/57 1623 YTH 141 Yva 187 0 ATR
2081 5T 1623 YWG 160 YRT 132v 0 FRIATR =
< < ¥ ¥ airroute < ¥J [l il L (S0

Ready 14163 of 65532 records found |

EOTypeheretosearch o D @ coos. Bpoic. BEricc. [vic. 4evn. @i BB M. &

2. Airports data set

A9~ |5 Airports.lslsx - Microsoft Excel s X
Home | Insert Pagelayout Formulas Data Review View c@o@ =
=% cut 3 ™ Tlas | = - = = = "= H D Cam ? EEh X Autosum ~ Av
D... . Calibri v 11 AR | % S5 Wrap Text General j_;_;[_L;'ﬁ o= u!J Grue %—r lﬁ
S it | B 7 = - s i O o o |00 FRL [| | G, SRR
Clipboard 3 Font) Alignment y Number 5 | Styles Cells Editing
| M8089 ~ £ v
c D 3 F G H 1 J K L M | N =
1 |Country Ifcode Iccode Latitude longitude_ altitude Timezone dst Tz E
2 Papua_New_Guinea GKA AYGA -6.081689 145.391881 5282 ou Pacific/Port_Moresby
3 Papua_New_Guinea MAG AYMD -5.207083 145.7887 20 v Pacific/Port_Moresby
4 Papua_New_Guinea HGU AYMH -5.826789 144.295861 5388 wou Pacific/Port_Moresby
5 |Papua_New_Guinea LAE AYNZ -6.569828 146.726242 239 ou Pacific/Port_Moresby
6 Papua_New_Guinea POM AYPY -9.443383 147.22005 146 ou Pacific/Port_Moresby
7 Papua_New_Guinea WWK AYWK -3.583828 143.669186 19 ou Pacific/Port_Moresby
8 Greenland UAK BGBW 61.160517 -45.425978 112 -3 E America/Godthab
9 |Greenland GOH BGGH 64.190922 -51.678064 283 -3[E America/Godthab
10 Greenland SFJ BGSF 67.016969 -50.689325 165 -3E America/Godthab
11 Greenland THU BGTL 76.531203 -68.703161 251 -4 E America/Thule
12 Iceland AEY BIAR 65.659994 -18.072703 6 ON Atlantic/Reykjavik
13 Iceland EGS BIEG 65.283333 -14.401389 76 ON Atlantic/Reykjavik
14 Iceland HFN BIHN 64.295556 -15.227222 24 ON Atlantic/Reykjavik
15 |Iceland HZK BIHU 65.952328 -17.425978 48 ON Atlantic/Reykjavik
16 Iceland IFJ BIIS 66.058056 -23.135278 8 ON Atlantic/Reykjavik
17 Iceland KEF BIKF 63.985 -22.605556 171 ON Atlantic/Reykjavik
18 Iceland PFJ BIPA 65.555833 -23.965 1 ON Atlantic/Reykjavik
19 |Iceland RKV BIRK 64.13 -21.940556 48 ON Atlantic/Reykjavik
20 Iceland s BISI 66.133333 -18.916667 10 ON Atlantic/Reykjavik
21 Iceland VEY BIVM 63.424303 -20.278875 326 ON Atlantic/Reykjavik
22 Canada YAM CYAM 46.485001 -84.509445 630 -5 A America/Toronto
23 Canada YAV CYAV 50.056389 -97.0325 760 -6 A America/Winnipeg
24 Canada YAW CYAW 44.639721 -63.499444 167 -4 A America/Halifax
25 Canada YAY CYAY 51.391944 -56.083056 108 -3.5A America/St_Johns =
W 4% ¥ Airport /3 4 [
Ready |
O Type here to search 0 @ airo...
3.0 Word Count Program for Map reduce
1J] WordCount.java &2 = =
1= import java.io.IOException; |~
2 import java.util.*;
3
4 dimport org.apache.hadoop.fs.Path;
5 dimport org.apache.hadoop.conf.*;

6 dmport org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*; 3
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileQutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

~

8
9

public class WordCount] { F>

public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
16 private final static IntWritable one = new IntWritable(l);
1 private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
L) String line = value.toString();
21 StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

References

[1] http://cra.org/ccc/wpcontent/uploads/sites/2/2015/05 /bigdatawhitepaper.pdf

[2] www.ijcsmc.com/docs/papers/June2017/V616201764.pdf

[3] https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[4] https://www.uml-diagrams.org/index-examples.html.

[5] https://www.researchgate.net/figure/The-MapReduce-architecture-MapReduce-

[6] https://flume.apache.org/

[7] https://www.digitalocean.com/community/tutorials/how-to-install-hadoop-in-stand-

alone-mode-on-ubuntu-16-04

[8] https://www.tutorialspoint.com/sdlc/sdic_v_model.htm

[9] https://www.ten10.com/types-testing-introduction-different-types-software-testing

http://cra.org/ccc/wpcontent/uploads/sites/2/2015/05
http://www.ijcsmc.com/docs/papers/June2017/V6I6201764.pdf
http://www.uml-diagrams.org/index-examples.html
http://www.uml-diagrams.org/index-examples.html
https://www.researchgate.net/figure/The-MapReduce-architecture-MapReduce-
https://www.digitalocean.com/community/tutorials/how-to-install-hadoop-in-stand-
https://www.tutorialspoint.com/sdlc/sdlc_v_model.htm
http://www.ten10.com/types-testing-introduction-different-types-software-testing
http://www.ten10.com/types-testing-introduction-different-types-software-testing

